

Manipulation of interface-induced Skyrmions studied with STM

Kirsten von Bergmann

Institute of Applied Physics, University of Hamburg, Germany

DMI: driving force for non-collinear states

Dzyaloshinskii-Moriya (DM) interaction due to spin-orbit coupling

when inversion symmetry is broken
→ in chiral crystal structures
→ at surfaces / interfaces

T. Moriya, Phys. Rev. **120**, 91 (1960).image taken from:A. Fert et al., Nature Nanotech. **8**, 152 (2013).

I. Dzialoshinski, J. Phys. Chem. Solids **4**, 241 (1958). T. Moriya, Phys. Rev. **120**, 91 (1960).

$$E_{\rm DM} = \sum_{i,j} \mathbf{D}_{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j)$$

with unique rotational sense

M. Bode, ...KvB, et al., Nature 447, 190 (2007).

<u>Review:</u> Interface-DMI in STM: KvB et al., J. Phys.: Condens. Matter **26**, 394002 (2014).

interface-induced DMI

M. Bode, ...KvB et al., Nature 447, 190 (2007). P. Ferriani, KvB et al., Phys. Rev. Lett. 101, 027201 (2008). M. Heide et al., Phys. Rev. B 78, 140403 (2008). S. Meckler et al., Phys. Rev. Lett. 103, 157201 (2009). S. Emori et al., Nature Mater. 12, 611 (2013). K.-S. Ryu et al., Nature Nano. 8, 527 (2013). G. Chen et al., Phys. Rev. Lett. 110, 177204 (2013).

skyrmions and skyrmionic bubbles (with unique rotational sense)

~3 nm

~200 nm

~1000 nm

S. Heinze, KvB et al., Nature Phys. 7, 713 (2011). N. Romming, ...KvB et al., Science **341**, 636 (2013). W. Jiang et al., Science 349, 283 (2015). G. Chen et al., Appl. Phys. Lett. 106, 242404 (2015). O. Boulle et al., Nature Nano 11, 449-454 (2016). C. Moreau-Luchaire et al., Nature Nano 11, 444 (2016). S. Woo et al., Nature Mater. 15, 501 (2016).

spin-polarized STM

tuning of magnetism

SP-STM: PdFe / Ir(111)

similar to: S. Mühlbauer et al., Science 323, 915 (2009), X.Z. Yu et al., Nature 465, 901 (2010).

UH

SP-STM contrast for skyrmions

topology |S| = 1

out-of-plane components

in-plane components

→ rotational sense of skyrmions is unique, and is preserved for opposite magnetic field

spin structure of an isolated skyrmion

two overlapping 180° domain walls

material parameters

B-dependent size and shape of Skyrmions

N. Romming, ...KvB et al., Phys. Rev. Lett. **114**, 177203 (2015).

double layer DL-Fe / Ir(111)

uniaxial dislocation lines (~5.5nm) in three rotational domains spin spiral is coupled to atomic lattice

K. von Bergmann

DL-Fe / Ir(111): zigzag spin spiral (~1.4 nm) cycloidal (due to DMI) no change in *B* < 9T

P.-J. Hsu, ...KvB, et al., Phys. Rev. Lett. 116, 017201 (2016).

higher Fe layers on Ir(111)

monolayer: nanoskyrmion lattice 1 nm double layer: spin spiral 1-2 nm triple layer: spin spiral 3 – 10 nm quadruple layer: ferromagnetic (?)

K. von Bergmann University of Hamburg A. Finco, ...KvB et al., Phys. Rev. Lett. **119**, 037202 (2017).

higher Fe layers on Ir(111) at RT

TL - spin spiral stable at RT, but period is about 10 x larger! also: at RT spin spiral $3ML \cong 4ML$

A. Finco, ...KvB et al., Phys. Rev. Lett. **119**, 037202 (2017).

TL-Fe layer on Ir(111): period (T)

UΗ

K. von Bergmann

TL - spin spiral stable at RT, but period is about 10 x larger!

possible explanation: layer-dependent magnetic interactions

A. Finco, ...KvB et al., Phys. Rev. Lett. **119**, 037202 (2017).

triple layer TL-Fe/Ir(111)

TL-Fe: two different reconstructions with spin spiral ground state, wavefront according to structural symmetry

triple layer TL-Fe/Ir(111)

the magnetization follows a sine
 → homogeneous spin spiral
 → anisotropy negligible
 DMI is governed by the interface
 → change in A due to strain

tailoring non-collinear magnetism by misfit dislocation lines

A. Finco, ...KvB, et al., Phys. Rev B 94, 214402 (2016)

triple layer TL-Fe / Ir(111)

 \rightarrow single magnetic objects

spin structure

in-plane magnetization components

out-of-plane magnetization components

 \rightarrow single magnetic objects

are these magnetic skyrmions?

experimentally derived spin structure is equivalent to a distorted magnetic skyrmion, distortion is in agreement with symmetry of underlying atomic structure

critical electric fields

critical electric field E = U/d (upper bound due to parallel plate approximation)

E-field: changes surface charge distribution, atom positions \rightarrow change in *K*? change in *A*? change in *D*?

M. Schott et al., Nano Lett. 17, 3006 (2017).

P.-J. Hsu, ..., KvB et al., Nature Nanotech. 12, 123 (2017).

B- and **E-**dependent energy landscape

local *E*-fields: \rightarrow switching of single skyrmions 1 V/nm ~ 40 mT

with the B-field we can tune the energy landscape

P.-J. Hsu, ..., KvB et al., Nature Nanotech. 12, 123 (2017).

summary

acknowledgements

Aurore

Finco

Dr. Pin-Jui Hsu

Niklas Romming

Dr. André Prof. Roland Kubetzka Wiesendanger

Group of Prof. Stefan Heinze (Univ of Kiel, Germany)

Deutsche Forschungsgemeinschaft

DFG GrK 1286

DFG

Funded by the Horizon2020 Framework Programme of the European Union

FET-OPEN (No. 665095)

