Femtosecond quantum spin dynamics in antiferromagnets D. Bossini

JSPS "Overseas Researcher" Fellow at University of Tokyo, Japan

Davide Bossini, Insulator Spintronics

Davide Bossini, Insulator Spintronics

2

Ultrafast manipulation of the magnetic order

Davide Bossini, Insulator Spintronics 2

Ultrafast manipulation of the magnetic order

Davide Bossini, Insulator Spintronics 2

Ultrafast manipulation of the magnetic order

Davide Bossini, Insulator Spintronics 2

Ultrafast manipulation of the magnetic order

Davide Bossini, Insulator Spintronics 2

Ultrafast manipulation of the magnetic order

Davide Bossini, Insulator Spintronics 2

Ultrafast manipulation of the magnetic order

Davide Bossini, Insulator Spintronics 2

Ultrafast manipulation of the magnetic order

Davide Bossini, Insulator Spintronics 2

Ultrafast manipulation of the magnetic order

Davide Bossini, Insulator Spintronics 2

Dielectric antiferromagnet

Davide Bossini, Insulator Spintronics

3

Dielectric antiferromagnet

No free electrons
Majority of magnetically ordered materials
No stray field, technological potential
Intrinsically faster spin dynamics

Dielectric antiferromagnet

No free electrons
Majority of magnetically ordered materials
No stray field, technological potential
Intrinsically faster spin dynamics

$$\hat{H} = J \sum_{\langle i,j \rangle} \hat{S}_i \cdot \hat{S}_j$$

Collinear magnetic sublattices

Davide Bossini, Insulator Spintronics 3

Davide Bossini, Insulator Spintronics 4

Davide Bossini, Insulator Spintronics 4

Davide Bossini, Insulator Spintronics 4

 Femtosecond period
Nanometer
wavelength
Defined by E_{ex}

Davide Bossini, Insulator Spintronics 4

 Femtosecond period
Nanometer
wavelength
Defined by E_{ex}

Davide Bossini, Insulator Spintronics 4

 Femtosecond period
Nanometer
wavelength
Defined by E_{ex}

Davide Bossini, Insulator Spintronics 4

 Femtosecond period
Nanometer
wavelength
Defined by E_{ex}

Measure spin dynamics triggered by femto-nanomagnons

Davide Bossini, Insulator Spintronics 4

Problem: high-wavevector magnons are usually unaccessible

Davide Bossini, Insulator Spintronics

5

Problem: high-wavevector magnons are usually unaccessible

Davide Bossini, Insulator Spintronics

5

Problem: high-wavevector magnons are usually unaccessible

Davide Bossini, Insulator Spintronics

5

Problem: high-wavevector magnons are usually unaccessible

Spin and momentum conservation
Light-induced bound state of a magnon pair: *two-magnon mode* High-wavevector region: DOS

Davide Bossini, Insulator Spintronics

5

Problem: high-wavevector magnons are usually unaccessible

Spin and momentum conservation
Light-induced bound state of a magnon pair: *two-magnon mode* High-wavevector region: DOS

$$E_{2M} = E_{ex} + \Delta$$

Davide Bossini, Insulator Spintronics

Problem: high-wavevector magnons are usually unaccessible

Davide Bossini, Insulator Spintronics 5

Problem: high-wavevector magnons are usually unaccessible

Davide Bossini, Insulator Spintronics 5

Sample: KNiF₃

Davide Bossini, Insulator Spintronics

6

Sample: KNiF₃

Davide Bossini, Insulator Spintronics 6

Sample: KNiF₃

T_N = 246 K Zero-absorption regime of spin dynamics D. Bossini et al. PRB (R) 89, 060405 (2014)

Davide Bossini, Insulator Spintronics 6

Davide Bossini, Insulator Spintronics 7

Davide Bossini, Insulator Spintronics 7

ISRS

Davide Bossini, Insulator Spintronics 7

ISRS

2M period in KNiF₃: 45 fs Pulses shorter than period

Davide Bossini, Insulator Spintronics 7

ISRS

2M period in KNiF₃: 45 fs Pulses shorter than period period laser pulses

Davide Bossini, Insulator Spintronics 7

Detection

Pump-probe technique

Magneto-optical response to the photo-excitation measured as a function of the delay

Davide Bossini, Insulator Spintronics

8
Detection

Pump-probe technique

Magneto-optical response to the photo-excitation measured as a function of the delay

All-optical detection via a second-order magneto-optical effect

$$\epsilon_s^{\lambda\nu} = \sum_{ij} \sum_{\gamma\delta} \rho^{\lambda\nu\gamma\delta} \langle \hat{S}_i^{\gamma\uparrow} \hat{S}_j^{\delta\Downarrow} \rangle$$

J. Ferrè et al. Rep. Prg. Phys 47, 513 (1984)

Davide Bossini, Insulator Spintronics

8

Laser-induced dynamics

 Pump and probe linearly and orthogonally polarized

Oscillations @ 22THz (T=45 fs)

 \sim Lifetime \approx 500 fs

Mainz, 2nd August 2017

Davide Bossini, Insulator Spintronics 9

Mainz, 2nd August 2017

Davide Bossini, Insulator Spintronics 10

Davide Bossini, Insulator Spintronics 10

Davide Bossini, Insulator Spintronics 10

$$\langle \hat{S}_i^{z\uparrow} \hat{S}_j^{z\Downarrow} \rangle \qquad L^z(t)$$

Davide Bossini, Insulator Spintronics 11

$$\langle \hat{S}_i^{z\uparrow} \hat{S}_j^{z\Downarrow} \rangle \qquad L^z(t)$$

Same timedependence

Davide Bossini, Insulator Spintronics 11

Same timedependence

Davide Bossini, Insulator Spintronics 11

Same timedependence

Macroscopic probe of the femtosecond dynamics of nanometer spin correlations

Davide Bossini, Insulator Spintronics 11

Davide Bossini, Insulator Spintronics 12

Davide Bossini, Insulator Spintronics 12

Nearest-neighbors correlations

Davide Bossini, Insulator Spintronics 13

Nearest-neighbors correlations

Counterintuitive: MO macroscopic probe

Davide Bossini, Insulator Spintronics 13

Nearest-neighbors correlations

Counterintuitive: MO macroscopic probe

Experimental evidence of short-range nature of the interaction ?

Davide Bossini, Insulator Spintronics 13

P. Fleury et al. PRL 24, 1347 (1970)

$\begin{array}{l} K_2 NiF_4, \ T_N = 96 \ K\\ 2M-mode \ up \ to\\ T \sim 1.5 \ x \ T_N \end{array}$

Davide Bossini, Insulator Spintronics 14

P. Fleury et al. PRL 24, 1347 (1970)

 $\begin{array}{l} K_2 NiF_4, \ T_N = 96 \ K\\ 2M-mode \ up \ to\\ T \sim 1.5 \ x \ T_N \end{array}$

Long-range order

Davide Bossini, Insulator Spintronics 14

Mainz, 2nd August 2017

TN

P. Fleury et al. PRL 24, 1347 (1970)

 $\begin{array}{l} K_2 NiF_4, \ T_N = 96 \ K\\ 2M-mode \ up \ to\\ T \sim 1.5 \ x \ T_N \end{array}$

Long-range order

Short-range spin-spin correlations

Davide Bossini, Insulator Spintronics 14

Mainz, 2nd August 2017

TN

R. Birgenau et al. PRB 3, 1736 (1971)

$k{\sim}0$ magnons soften at T_N

Davide Bossini, Insulator Spintronics 15

R. Birgenau et al. PRB 3, 1736 (1971)

$k{\sim}0$ magnons soften at T_N

Time-domain experiments no signal above T_N

Davide Bossini, Insulator Spintronics 15

R. Birgenau et al. PRB 3, 1736 (1971)

$k{\sim}0$ magnons soften at T_N

Time-domain experiments no signal above T_N

J. Zhao et al. PRB 73, 184434 (2006) Long-wavelength magnons contributions ?

Davide Bossini, Insulator Spintronics 15

Davide Bossini, Insulator Spintronics 16

same exchange (short-range)

different anisotropy (long-range)

Davide Bossini, Insulator Spintronics 16

same exchange (short-range)

different anisotropy (long-range)

Temperature dependence femto-nanomagnonics

Davide Bossini, Insulator Spintronics 16

same exchange (short-range)

different anisotropy (long-range)

Temperature dependence femto-nanomagnonics Softening and/or divergence evidence of long-range

Davide Bossini, Insulator Spintronics 16

Pump: 1.9 eV, Probe = 1.3 eV
Fluence = 4.5 mJ/cm²

Davide Bossini, Insulator Spintronics 17

Pump: 1.9 eV, Probe = 1.3 eV
Fluence = 4.5 mJ/cm²

D. Bossini et al. in preparation

Davide Bossini, Insulator Spintronics 17

Pump: 1.9 eV, Probe = 1.3 eV
Fluence = 4.5 mJ/cm²

D. Bossini et al. in preparation

Contribution only from femto-nanomagnons

Davide Bossini, Insulator Spintronics 17

Role of temperature

Temperature defines the amplitude and lifetime (magnon-magnon interaction)

S. Chinn et al. PRB **3**, 1709 (1971)

U. Balucani et al. PRB 8, 4247 (1973)

Davide Bossini, Insulator Spintronics 18

Role of temperature

Temperature defines the amplitude and lifetime (magnon-magnon interaction)

S. Chinn et al. PRB **3**, 1709 (1971)

U. Balucani et al. PRB 8, 4247 (1973)

Softening temperature (NO T_N): massive thermal population of femto-nanomagnons

Davide Bossini, Insulator Spintronics 18

Role of temperature

Temperature defines the amplitude and lifetime (magnon-magnon interaction)

S. Chinn et al. PRB **3**, 1709 (1971)

U. Balucani et al. PRB 8, 4247 (1973)

Softening temperature (NO T_N): massive thermal population of femto-nanomagnons

KNiF₃ $T_s \approx 1.2 \cdot 10^{-20} \text{J}$ $T_N \approx 0.3 \cdot 10^{-20} \text{J}$

Davide Bossini, Insulator Spintronics 18
Role of temperature

Temperature defines the amplitude and lifetime (magnon-magnon interaction)

S. Chinn et al. PRB **3**, 1709 (1971)

U. Balucani et al. PRB 8, 4247 (1973)

Softening temperature (NO T_N): massive thermal population of femto-nanomagnons

 KNiF3
 $T_s \approx 1.2 \cdot 10^{-20} \text{J}$ $T_N \approx 0.3 \cdot 10^{-20} \text{J}$

 K_2NiF4
 $T_s \approx 1 \cdot 10^{-20} \text{J}$ $T_N \approx 0.1 \cdot 10^{-20} \text{J}$

Davide Bossini, Insulator Spintronics 18

 $\Delta S = 0$

Davide Bossini, Insulator Spintronics 19

 $\Delta S = 0$ No magnetization dynamics (no angular momentum)

Davide Bossini, Insulator Spintronics 19

 $\Delta S = 0$ No magnetization dynamics (no angular momentum)

Precession forbidden, dynamics purely longitudinal!

Davide Bossini, Insulator Spintronics 19

 $\Delta S = 0$ No magnetization dynamics (no angular momentum)

Precession forbidden, dynamics purely longitudinal!

$$\begin{split} \boldsymbol{L} &\equiv \boldsymbol{S}^{\Uparrow} - \boldsymbol{S}^{\Downarrow} \\ \hat{H}_{1}(t) &= \delta(t) \frac{4\pi I_{1}}{n_{R}c} \sum_{\langle i,j \rangle} \Xi_{ij} \left(\frac{\hat{S}_{i}^{+\Uparrow} \hat{S}_{j}^{-\Downarrow} + \hat{S}_{i}^{-\Uparrow} \hat{S}_{j}^{+\Downarrow}}{2} + A \hat{S}_{i}^{z\Uparrow} \hat{S}_{j}^{z\Downarrow} \right) \end{split}$$

Davide Bossini, Insulator Spintronics 19

 $\Delta S = 0$ No magnetization dynamics (no angular momentum)

Precession forbidden, dynamics purely longitudinal!

$$\begin{split} \boldsymbol{L} &\equiv \boldsymbol{S}^{\Pi} - \boldsymbol{S}^{\Psi} \\ \hat{H}_{1}(t) &= \delta(t) \frac{4\pi I_{1}}{n_{R}c} \sum_{\langle i,j \rangle} \Xi_{ij} \begin{pmatrix} \hat{S}_{i}^{+\uparrow} \hat{S}_{j}^{-\downarrow} + \hat{S}_{i}^{-\uparrow} \hat{S}_{j}^{+\downarrow} \\ 2 \end{pmatrix} \\ & \text{Symmetric in x-y plane} \end{split}$$

Davide Bossini, Insulator Spintronics 19

 $\Delta S = 0$ No magnetization dynamics (no angular momentum)

Precession forbidden, dynamics purely longitudinal!

$$\begin{split} \boldsymbol{L} &\equiv \boldsymbol{S}^{\parallel} - \boldsymbol{S}^{\nleftrightarrow} \\ \hat{H}_{1}(t) &= \delta(t) \frac{4\pi I_{1}}{n_{R}c} \sum_{\langle i,j \rangle} \Xi_{ij} \begin{pmatrix} \hat{S}_{i}^{+\uparrow} \hat{S}_{j}^{-\Downarrow} + \hat{S}_{i}^{-\uparrow} \hat{S}_{j}^{+\Downarrow} \\ \frac{2}{2} \end{pmatrix} \\ & \text{Symmetric in x-y plane} \end{split}$$

Davide Bossini, Insulator Spintronics 19

Thermodynamics

M = M(T)L = L(T)

Davide Bossini, Insulator Spintronics 20

Thermodynamics

$\mathbf{M} = \mathbf{M}(\mathbf{T})$ L = L(T)

Davide Bossini, Insulator Spintronics 20

Thermodynamics Dynamics of $L^{z}(t)$ $\mathbf{M} = \mathbf{M}(\mathbf{T})$ 20 15 L = L(T)Rotation (mdeg) 10 5 0 -5 -10-15 200 300 600 -100100 400 500 700 800 Delay (fs)

Davide Bossini, Insulator Spintronics 20

Thermodynamics M = M(T)

L = L(T)

Oscillations of T coherently controlled

Davide Bossini, Insulator Spintronics 20

Further reasons: effective field, equation of motion

Davide Bossini, Insulator Spintronics 21

Further reasons: effective field, equation of motion

Classically: mean field approach to spin dynamics (precession)

Davide Bossini, Insulator Spintronics 21

Further reasons: effective field, equation of motion

Classically: mean field approach to spin dynamics (precession)

$\langle \boldsymbol{S}_i \boldsymbol{S}_j angle = \langle \boldsymbol{S}_i angle \langle \boldsymbol{S}_j angle$

Davide Bossini, Insulator Spintronics 21

Further reasons: effective field, equation of motion

Classically: mean field approach to spin dynamics (precession)

$\langle \boldsymbol{S}_i \boldsymbol{S}_j \rangle = \langle \boldsymbol{S}_i \rangle \langle \boldsymbol{S}_j \rangle$

Femto-nanomagnonics: dynamics of nearest neighbors correlations

Davide Bossini, Insulator Spintronics 21

Further reasons: effective field, equation of motion

Classically: mean field approach to spin dynamics (precession)

Femto-nanomagnonics: dynamics of nearest neighbors correlations

Davide Bossini, Insulator Spintronics 21

Goal: equation of motion

Davide Bossini, Insulator Spintronics 22

Goal: equation of motion

$$H_0 = J \sum_{i,\delta} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_{i+\delta} \quad \delta H = \frac{1}{2} f(t) \sum_{i,\delta} \Delta J(\delta) \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_{i+\delta},$$

Davide Bossini, Insulator Spintronics 22

Goal: equation of motion

$$H_0 = J \sum_{i,\delta} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_{i+\delta} \quad \delta H = \frac{1}{2} f(t) \sum_{i,\delta} \Delta J(\delta) \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_{i+\delta},$$

$$|\mu_{\mathbf{k}}\rangle = \sqrt{1 - |\mu_{\mathbf{k}}|^2} \sum_{n=0}^{\infty} \mu_{\mathbf{k}}^n |n_{\mathbf{k}}\rangle |n_{\mathbf{k}}\rangle$$

Davide Bossini, Insulator Spintronics 22

Goal: equation of motion

$$H_{0} = J \sum_{i,\delta} \hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{i+\delta} \quad \delta H = \frac{1}{2} f(t) \sum_{i,\delta} \Delta J(\delta) \hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{i+\delta},$$
$$|\mu_{\mathbf{k}}\rangle = \sqrt{1 - |\mu_{\mathbf{k}}|^{2}} \sum_{n=0}^{\infty} \mu_{\mathbf{k}}^{n} |n_{\mathbf{k}}\rangle |n_{\mathbf{k}}\rangle \quad \partial_{t} \mu_{\mathbf{k}} = \{\mu_{\mathbf{k}}, H(\mu_{\mathbf{k}}, \mu_{\mathbf{k}}^{*})\}$$

Davide Bossini, Insulator Spintronics 22

Goal: equation of motion

$$\begin{split} H_{0} &= J \sum_{i,\delta} \hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{i+\delta} \quad \delta H = \frac{1}{2} f(t) \sum_{i,\delta} \Delta J(\delta) \hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{i+\delta}, \\ |\mu_{\mathbf{k}}\rangle &= \sqrt{1 - |\mu_{\mathbf{k}}|^{2}} \sum_{n=0}^{\infty} \mu_{\mathbf{k}}^{n} |n_{\mathbf{k}}\rangle |n_{\mathbf{k}}\rangle \quad \partial_{t} \mu_{\mathbf{k}} = \{\mu_{\mathbf{k}}, H(\mu_{\mathbf{k}}, \mu_{\mathbf{k}}^{*})\} \\ L_{z} &= L_{z}(0) - zS \sum_{\mathbf{k}} \frac{\gamma_{\mathbf{k}}}{\sqrt{1 - \gamma_{\mathbf{k}}^{2}}} \frac{2\text{Re}\mu_{\mathbf{k}}}{1 - |\mu_{\mathbf{k}}|^{2}} \\ \text{D. Bossini et al. in preparation} \end{split}$$

Davide Bossini, Insulator Spintronics 22

Femto-nanomagnonics

Davide Bossini, Insulator Spintronics 23

Femto-nanomagnonics

Coherent control (ISRS excitation)

Davide Bossini, Insulator Spintronics 23

Femto-nanomagnonics

Coherent control (ISRS excitation)

Manipulate magnetic phases via femto-nanomagnons

Davide Bossini, Insulator Spintronics 23

Femto-nanomagnonics

Coherent control (ISRS excitation)

Manipulate magnetic phases via femto-nanomagnons
Resonant pumping ?

Davide Bossini, Insulator Spintronics 23

Femto-nanomagnonics

Coherent control (ISRS excitation) Manipulate magnetic phases via femto-nanomagnons Resonant pumping ?

Direct IR-pumping

Davide Bossini, Insulator Spintronics 23

Femto-nanomagnonics

Coherent control (ISRS excitation)
 Manipulate magnetic phases via femto-nanomagnons
 Resonant pumping ? Direct IR-pumping
 Phonon-assisted IR-pumping

Davide Bossini, Insulator Spintronics 23

Femto-nanomagnonics

Coherent control (ISRS excitation) Manipulate magnetic phases via femto-nanomagnons Resonant pumping ? **Direct IR-pumping** Phonon-assisted IR-pumping

Exciton-magnon process (visible-nearIR)

Davide Bossini, Insulator Spintronics 23

Femto-nanomagnonics

Coherent control (ISRS excitation)
 Manipulate magnetic phases via femto-nanomagnons

Resonant pumping ?

Direct IR-pumping Phonon-assisted IR-pumping Exciton-magnon process (visible-nearIR) D. Bossini *et al.* in preparation

Davide Bossini, Insulator Spintronics 23

Conclusions

 Excitation, control and detection of femtonanomagnons
 Disclosure of quantum spin dynamics

Davide Bossini, Insulator Spintronics 24

Conclusions

- 1. Excitation, control and detection of femtonanomagnons
- 2. Disclosure of quantum spin dynamics

Femto-nanomagnonics!

D. Bossini et al. Nat. Comm. **7,** *10645 (2016)* **D. Bossini** et al. Physica Scritpa **92**, 024002 (2017)

Davide Bossini, Insulator Spintronics 24

Conclusions

- 1. Excitation, control and detection of femtonanomagnons
- 2. Disclosure of quantum spin dynamics

Femto-nanomagnonics!

D. Bossini et al. Nat. Comm. 7, 10645 (2016)
D. Bossini et al. Physica Scritpa 92, 024002 (2017)

Experimental prove of quantum natureSpatial propagation

Davide Bossini, Insulator Spintronics 24

Acknowledgements

S. Dal Conte, G. Cerullo

IFN-CNR Dipartimento di Fisica, Politecnico di Milano, Milano, Italy

R. V. Pisarev Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia

A. Secchi, Y. Hashimoto, J. Mentink, Th. Rasing, A.V. Kimel Radboud University Nijmegen, Institute for Molecules and Materials, Nijmegen, The Netherlands

H. Gomonay, J. Sinova

Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany

D. Mihailovic

Jozef Stefan Institute & CENN-Nanocenter, Jamova 39, Ljubljana SI-1000, Slovenia

Davide Bossini, Insulator Spintronics 25