

Spin Transport using Magneto-elastic Bosons

Vitaliy I. Vasyuchka

Fachbereich Physik and Landesforschungszentrum OPTIMAS Technische Universität Kaiserslautern Germany

University of Kaiserslautern (Germany)

Dmytro Bozhko

Andrii Chumak

Oleksandr Serha

Burkard Hillebrands

Taras Shevchenko National University of Kyiv (Ukraine)

Gennadii Melkov

Weizmann Institute of Science (Israel)

Victor L'vov

Anna Pomyalov

Yttrium Iron Garnet Y₃Fe₅O₁₂ (YIG)

"Yttrium-Iron Garnet is a marvel of nature.

Its role in the physics of magnets is analogous to that of germanium in semiconductor physics, water in hydrodynamics, and quartz in crystal acoustics."

Yttrium Iron Garnet Y₃Fe₅O₁₂ (YIG)

"Yttrium-Iron Garnet is a marvel of nature.

Its role in the physics of magnets is analogous to that of germanium in semiconductor physics, water in hydrodynamics, and quartz in crystal acoustics."

V. Cherepanov, I. Kolokolov, and V. L'vov, The saga of YIG: spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet, Phys. Rep. 229, 81–144 (1993).

Unit cell

- 8 octahedral iron atoms (spin 5/2 up)
- 12 tetrahedral iron atoms (spin 5/2 down)

Magnetic moment of a unit cell is 10 Bohr magnetons at zero temperature

- Room temperature ferrimagnet ($T_{\rm C}$ = 560 K)
- Longest known magnon lifetime (up to 700 ns)
- Very low phonon damping

Yttrium Iron Garnet Y₃Fe₅O₁₂ (YIG)

"Yttrium-Iron Garnet is a marvel of nature.

Its role in the physics of magnets is analogous to that of germanium in semiconductor physics, water in hydrodynamics, and quartz in crystal acoustics."

V. Cherepanov, I. Kolokolov, and V. L'vov, *The saga of YIG: spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet*, Phys. Rep. **229**, 81–144 (1993).

Unit cell

- 48 oxygen atoms
- 8 octahedral iron atoms (spin 5/2 up)
- 12 tetrahedral iron atoms (spin 5/2 down)
- 12 dodecahedral yttrium atoms

Magnetic moment of a unit cell is 10 Bohr magnetons at zero temperature

Single-crystal YIG film

- Room temperature ferrimagnet (T_c = 560 K)
- Longest known magnon lifetime (up to 700 ns)
- Very low phonon damping

Vitaliy Vasyuchka

SPICE Young Research Leaders Workshop

Spin waves

Magnon gas

Magnons as quanta of spin waves $\varepsilon = \hbar \omega = \frac{\eta}{\hbar} p^2$ Energy Momentum $\vec{p} = \hbar \vec{q}$ $m=\hbar/(2\eta)$ Mass s = 1Spin Four- and three-magnon scattering 10²² cm⁻³ magnons at 300 K ****

Magnon spectrum of in-plane magnetized YIG film

Vitaliy Vasyuchka

 $H_0 = 1710 \text{ Oe}$

Magnon distribution

Magnons are bosons (*s*=1) and similar to other quasi-particles are described in thermal equilibrium by Bose-Einstein distribution with zero chemical potential

Bose-Einstein distribution

$$\rho(f) = \frac{D(f)}{\exp\left(\frac{hf - \mu}{k_{\rm B}T}\right) - 1}$$

μ: chemical potential

Vitaliy Vasyuchka

Vitaliy Vasyuchka

SPICE Young Research Leaders Workshop

Vitaliy Vasyuchka

SPICE Young Research Leaders Workshop

Bose-Einstein condensation of magnons

Vitaliy Vasyuchka

SPICE Young Research Leaders Workshop

Brillouin light scattering spectroscopy

SPICE Young Research Leaders Workshop

Wavenumber resolution

$$q_{\rm magnon} = 2q_{\rm Laser}\sin\left(\Theta_{\parallel}\right)$$

Max wavenumber 2.36×10^5 rad/cmWavenumber resolution 0.02×10^5 rad/cm

D.A. Bozhko, PhD thesis (2017)

Bose-Einstein magnon condensate

Vitaliy Vasyuchka

SPICE Young Research Leaders Workshop

Condensation scenarios and phonons

Condensation scenarios and phonons

Vitaliy Vasyuchka

SPICE Young Research Leaders Workshop

Magnon spectrum

pumping powers

= 6810 MHz

 $H_0 = 1710 \text{ Oe}$

population at different

Intercoupling of BEC and MEM in a parametrically populated magnon gas

MEM peak appears below the threshold of magnon BEC formation

spectrum

Calculated magnon

Population of the low energy states at different pumping powers

Vitaliy Vasyuchka

SPICE Young Research Leaders Workshop

Magnon spectrum

pumping powers

= 6810 MHz

Calculated magnon

spectrum

powers

 $H_0 = 1710 \text{ Oe}$

Intercoupling of BEC and MEM in a parametrically populated magnon gas

MEM peak appears below the threshold of magnon BEC formation

Population of the low energy states at different pumping

Vitaliy Vasyuchka

SPICE Young Research Leaders Workshop

Magnon spectrum

pumping powers

= 6810 MHz

Calculated magnon

Population of the

low energy states

at different pumping

 $H_0 = 1710 \,\mathrm{Oe}$

spectrum

powers

Intercoupling of BEC and MEM in a parametrically populated magnon gas

MEM peak appears below the threshold of magnon BEC formation

Formation of the magnon BEC is accompanied by saturation of the MEM peak

Vitaliy Vasyuchka

Magnon spectrum

pumping powers

= 6810 MHz

Calculated magnon

Population of the

low energy states

at different pumping

 $H_0 = 1710 \,\mathrm{Oe}$

spectrum

powers

Intercoupling of BEC and MEM in a parametrically populated magnon gas

MEM peak appears below the threshold of magnon BEC formation

Formation of the magnon BEC is accompanied by saturation of the MEM peak

Vitaliy Vasyuchka

Magnon spectrum

pumping powers

 $H_0 = 1710 \,\mathrm{Oe}$

Intercoupling of BEC and MEM in a parametrically populated magnon gas

MEM peak appears below the threshold of magnon BEC formation

Formation of the magnon BEC is accompanied by saturation of the MEM peak

= 6810 MHz

Calculated magnon spectrum

Population of the low energy states at different pumping powers

Magnon bottleneck and accumulation of magnon-phonon hybrid particles

TECHNISCHE UNIVERSITÄT

Hamiltonian approach to magnon-phonon hybridization

Hamiltonian equation of motion:

$$i\frac{\partial a_q}{\partial t} = \frac{\partial \mathcal{H}}{\partial a_q^*} \qquad \qquad i\frac{\partial b_q}{\partial t} = \frac{\partial \mathcal{H}}{\partial b_q^*}$$

Magnon – phonon hybridization Hamiltonian

$$\begin{split} \mathcal{H} &= \mathcal{H}_2 + \mathcal{H}_4 \\ \mathcal{H}_2 &= \sum_{q} \left[\begin{array}{c} \omega_q^{\mathsf{m}} a_q a_q^{*} + \omega_q^{\mathsf{p}} b_q b_q^{*} + \frac{\Delta}{2} \left(a_q b_q^{*} + a_q^{*} b_q \right) \\ \mathbf{magnons} & \mathsf{phonons} \end{array} \right], \qquad \begin{array}{c} \omega_q^{\mathsf{m}} - \mathsf{magnon dispersion law} \\ \mathcal{M}_q^{\mathsf{p}} - \mathsf{phonon dispersion law} \\ \Delta - \mathsf{coupling amplitude} \\ \end{split}$$
$$\\ \mathcal{H}_4 &= \frac{1}{4} \sum_{q_1 + q_2 = q_3 + q_4} T_{12,34} a_1^{*} a_2^{*} a_3 a_4 \\ \end{array} \qquad \begin{array}{c} T_{12,34} - \mathsf{interaction amplitudes} \\ \end{array}$$

Interaction Hamiltonian of $2\leftrightarrow 2$ magnon scattering

Vitaliy Vasyuchka

Magnon-phonon hybridization

Transition to hybridized MEM modes c_q^{\pm} using linear canonical Bogolyubov transformation (rotation by the angle φ_q in the (a_q, b_q) plane)

$$\begin{cases} a_q = \cos\left(\varphi_q\right)c_q^- + \sin\left(\varphi_q\right)c_q^+ \\ b_q = -\sin\left(\varphi_q\right)c_q^- + \cos\left(\varphi_q\right)c_q^+ \\ & \cos\left(\varphi_q\right) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 + \frac{O_q}{\sqrt{1 + O_q^2}} \end{bmatrix}^2, \quad O_q = \frac{\Theta_q^p - \Theta_q^m}{\Delta} \\ & \Delta = \Omega_{q_x}^+ - \Omega_{q_x}^- \end{cases}$$

Diagonal quadratic Hamiltonian for the upper and lower MEM modes

$$\begin{split} \tilde{\mathcal{H}}_{2} &= \sum_{q} \left[\Omega_{q}^{+} c_{q}^{+} c_{q}^{+*} + \Omega_{q}^{-} c_{q}^{-} c_{q}^{-*} \right] \\ \Omega_{q}^{\pm} &= \frac{1}{2} \left\{ \omega_{q}^{\mathsf{m}} + \omega_{q}^{\mathsf{p}} \pm \sqrt{\left[\omega_{q}^{\mathsf{m}} - \omega_{q}^{\mathsf{p}} \right]^{2} + \Delta^{2}} \right\} \end{split}$$

Statistical description

$$\frac{\partial \mathcal{N}_{q}^{-}}{\partial t} = \frac{d \mu_{q}}{dq} - F_{q}^{-+}$$
$$\mu_{q} \propto \left|T_{q}^{--}\right|^{2} \left(\mathcal{N}_{q}^{-}\right)^{3}$$
$$F_{q}^{-+} \propto \left|T_{q}^{-+}\right|^{2} \left(\mathcal{N}_{q}^{-}\right)^{2} \mathcal{N}_{q}^{+}$$

- balance equation for the lower MEM mode occupation numbers $\,\mathcal{N}^{\,\bar{}}$

- flux of $\mathcal N$ $\bar{}$ towards the hybridization region

- transition rate $\mathcal{N}^{-} \rightarrow \mathcal{N}^{+}$ in the hybridization region

The dimensionless lower-MEM and upper-MEM densities:

$$\mathcal{N}_{q}^{-} = \frac{N_{q}^{-}}{N_{o_{q}^{\simeq}+5}^{-}}, \ \mathcal{N}_{q}^{-} = \frac{N_{q}^{-}}{N_{o_{q}^{\simeq}-5}^{-}}$$

Statistical description

$$\frac{\partial \mathcal{N}_{q}^{-}}{\partial t} = \frac{d \mu_{q}}{dq} - F_{q}^{-+}$$
$$\mu_{q} \propto \left|T_{q}^{--}\right|^{2} \left(\mathcal{N}_{q}^{-}\right)^{3}$$
$$F_{q}^{-+} \propto \left|T_{q}^{-+}\right|^{2} \left(\mathcal{N}_{q}^{-}\right)^{2} \mathcal{N}_{q}^{+}$$

- balance equation for the lower MEM mode occupation numbers $\,\mathcal{N}^{\,\bar{}}$

- flux of $\mathcal N$ $\bar{}$ towards the hybridization region

- transition rate $\,\mathcal{N}^{\,\bar{}}\to\mathcal{N}^{\,\bar{}}$ in the hybridization region

Taking into account the equations for T_q

$$\frac{d}{dq} \left[\cos^8 \varphi_q \left(\mathcal{N}_q^- \right)^3 \right] = 3a \left(\mathcal{N}_q^- \right)^2 \cos^4 \varphi_q \sin^4 \varphi_q$$

$$\cos\left(\varphi_{q}\right) = \frac{1}{\sqrt{2}} \left[1 + \frac{O_{q}}{\sqrt{1 + O_{q}^{2}}} \right]^{2}, \quad O_{q} = \frac{\omega_{q}^{\mathsf{p}} - \omega_{q}^{\mathsf{m}}}{\Delta}$$
$$\mathcal{N}_{q}^{-} = \frac{N_{q}^{-}}{N_{o_{q}}^{-} + 5}, \quad \mathcal{N}_{q}^{-} = \frac{N_{q}^{-}}{N_{o_{q}}^{-} - 5}, \quad a \approx \frac{N_{o_{q}}^{\mathsf{p}} - \omega_{q}^{\mathsf{m}}}{N_{o_{q}}^{-} - 5} \approx \frac{\mathcal{N}_{\mathsf{BEC}}^{\mathsf{H}}}{\mathcal{N}_{\infty}^{-}}$$

Vitaliy Vasyuchka

SPICE Young Research Leaders Workshop

Bottleneck accumulation

Solution of the kinetic equation

$$\mathcal{N}_{q}^{-} = \frac{1}{(\cos\varphi_{q})^{8/3}} \left[1 - a \int_{q}^{\infty} \frac{(\sin\varphi_{p})^{4} dp}{(\cos\varphi_{p})^{4/3}} \right]$$

relative population of the BEC state

Vitaliy Vasyuchka

SPICE Young Research Leaders Workshop

 $rac{{\mathcal N}_{\mathsf{BEC}}^{\scriptscriptstyle +}}{{\mathcal N}_{\scriptscriptstyle \infty}^{\scriptscriptstyle -}}$

Bottleneck accumulation

Increase in the magnon BEC population $\mathcal{N}_{\text{BEC}}^+$ decreases bottleneck effect and explains the MEM saturation phenomenon

5.00

(2H2) 4.90 4.85 4.85 4.80 4.80 4.75

4.70

0.2

Transport measurements

Group velocities of magnon-phonon

Experimental time-space diagram for BEC and MEM

Vitaliy Vasyuchka

Transport measurements

Group velocities of magnon-phonon

Experimental time-space diagram for BEC and MEM

Vitaliy Vasyuchka

Summary

- Observed effects evidence the **bottleneck** * accumulation of hybridized magneto-elastic bosons at the bottom of the magnon spectrum
- Developed minimal model qualitatively describes ** the observed phenomena
- Transport measurements give an information about * spectral positions of accumulated quasi-particles
- Accumulated hybridized bosons with non-zero ** group velocity can be used for spin transport
- Bottleneck accumulation can occur in any multicomponent gas-mixture of interacting quasiparticles with different scattering amplitudes

SPICE Young Research Leaders Workshop

Mainz, 2 August 2017

2000

 $v_{\rm or} \approx 200 \, {\rm m/s}$

200 ns long pumping pulse

Time (ns)

1500

1000

100

500