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Yttrium Iron Garnet Y3Fe5O12 (YIG)

“Yttrium-Iron Garnet is a marvel of nature. 
Its role in the physics of magnets is analogous to that of germanium in semiconductor 

physics, water in hydrodynamics, and quartz in crystal acoustics.” 

48 oxygen atoms
8 octahedral iron atoms (spin 5/2 up)

12 tetrahedral iron atoms (spin 5/2 down)
12 dodecahedral yttrium atoms

Unit cell
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Magnetic moment 
of a unit cell is 
10 Bohr magnetons 
at zero temperature

Bulk YIG crystal 

Wiki

V. Cherepanov, I. Kolokolov, and V. L’vov, The saga of YIG: 

spectra, thermodynamics, interaction and relaxation of magnons 

in a complex magnet, Phys. Rep. 229, 81–144 (1993).
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V. Cherepanov, I. Kolokolov, and V. L’vov, The saga of YIG: 

spectra, thermodynamics, interaction and relaxation of magnons 

in a complex magnet, Phys. Rep. 229, 81–144 (1993).

 Room temperature 
ferrimagnet (TС = 560 K) 

 Longest known magnon 
lifetime (up to 700 ns)

 Very low phonon damping
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Yttrium Iron Garnet Y3Fe5O12 (YIG)

“Yttrium-Iron Garnet is a marvel of nature. 
Its role in the physics of magnets is analogous to that of germanium in semiconductor 

physics, water in hydrodynamics, and quartz in crystal acoustics.” 

48 oxygen atoms
8 octahedral iron atoms (spin 5/2 up)

12 tetrahedral iron atoms (spin 5/2 down)
12 dodecahedral yttrium atoms

Unit cell

Single-crystal YIG film

Magnetic moment 
of a unit cell is 
10 Bohr magnetons 
at zero temperature

1 1  04 2
1 1  04 2 1 1 1

4 2 2

1 1 0 4 2

x

y

z Scientific Research Company
“Carat”, Lviv, Ukraine

V. Cherepanov, I. Kolokolov, and V. L’vov, The saga of YIG: 

spectra, thermodynamics, interaction and relaxation of magnons 

in a complex magnet, Phys. Rep. 229, 81–144 (1993).

 Room temperature 
ferrimagnet (TС = 560 K) 

 Longest known magnon 
lifetime (up to 700 ns)

 Very low phonon damping
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Spin waves
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Magnon gas

 Energy  

 Momentum

 Mass

 Spin

 Four- and three-magnon scattering

 1022 cm-3 magnons at 300 K

Magnons as quanta of spin waves

1s 
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dipolar interaction exchange interaction

Landau-Lifshitz equation:

Magnon spectrum 

of in-plane magnetized YIG film

2q

Thickness modes
having a non-uniform 
harmonic distribution of
dynamic magnetization
along the film thickness

6 µm thick YIG film 

2q
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Magnon distribution

µ=0

Magnons are bosons (s=1) 
and similar to other quasi-particles 
are described in thermal equilibrium 
by Bose-Einstein distribution
with zero chemical potential 

µ: chemical potential

Bose-Einstein
distribution
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fp

fp/2

Parametric pumping
by electromagnetic wave 
at microwave frequency

Control of magnon gas density 

by parametric pumping

µ=0
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Energy and 
momentum 

conservation laws

fp

fp/2

Control of magnon gas density 

by parametric pumping

µ=0

Bose-Einstein
distribution

Parametric pumping
by electromagnetic wave 
at microwave frequency

≥ 1020 cm-3

pumped magnons
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fp

fp/2

Control of magnon gas density 

by parametric pumping

Emin>µ>0

Bose-Einstein
distribution Magnon thermalization

due to 4-particle scattering:
incoherent magnon gas

Energy and 
momentum 

conservation laws

Parametric pumping
by electromagnetic wave 
at microwave frequency

≥ 1020 cm-3

pumped magnons
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fp

fp/2

Bose-Einstein magnon 

condensate 

Bose-Einstein condensation of magnons

µ=Emin

Bose-Einstein
distribution Magnon thermalization

due to 4-particle scattering:
incoherent magnon gas

S.O. Demokritov et al., Nature 443, 430 (2006)

Energy and 
momentum 

conservation laws

Parametric pumping
by electromagnetic wave 
at microwave frequency

≥ 1020 cm-3

pumped magnons
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Brillouin light scattering spectroscopy

Frequency resolution

Wavenumber
uncertainty!

Inelastic scattering of photons on magnons:

Stokes anti-Stokes

Elastically 
scattered light

Magnon
frequency
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Frequency resolution

Wavenumber resolution

Wavenumber
resolution

Max wavenumber 2.36×105 rad/cm

Wavenumber resolution 0.02×105 rad/cm

 magnon Laser2 sinq q 

D.A. Bozhko, PhD thesis (2017)
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Bose-Einstein magnon condensate

Narrow pumping area 50 µm

22

pumping pulse

A.A. Serga et al., Nat. Commun. 5, 3452 (2014)

BEC
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D.A. Bozhko et al., Phys. Rev. Lett. 
118, 237201 (2017)

Condensation scenarios and phonons

Wide pumping area 500 µm

pumping pulse

Pumping power 40 W

???

BEC
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Condensation scenarios and phonons

Wide pumping area 500 µm

pumping pulse

Why and how quasi-particles 
accumulate in 

the magneto-elastic mode (MEM)?

MEM

Pumping power 40 W

???

BEC
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Intercoupling of BEC and MEM in 

a parametrically populated magnon gas

(G
H

z)

MEM

MEM peak 
appears below 
the threshold of 
magnon BEC
formation

0

p

1710 Oe

6810 MHz
2

H

f





Magnon spectrum
population at different 
pumping powers

Population of the 
low energy states 
at different pumping 
powers

Calculated magnon 
spectrum
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magnon BEC
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BEC

Intercoupling of BEC and MEM in 

a parametrically populated magnon gas

(G
H

z)

MEM

Formation of 
the magnon BEC 
is accompanied 
by saturation

of the MEM peak 

MEM peak 
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magnon BEC
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Magnon bottleneck and accumulation of 

magnon-phonon hybrid particles

Pure phonon states -
no non-linear scattering and thus

no connection with upper 
magnon states

Accumulation of the 
hybridized magneto-elastic bosons

at the bottom of the magnon spectrum

Magnon-phonon hybridization area Ratio of magnetic Em and elastic Eel energies 
in the magneto-elastic magnon mode

Bottleneck
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Magnon bottleneck and accumulation of 

magnon-phonon hybrid particles

Pure phonon states -
no non-linear scattering and thus

no connection with upper 
magnon states

Accumulation of the 
hybridized magneto-elastic bosons

at the bottom of the magnon spectrum

Barrier

BEC

Magnon-phonon hybridization area Ratio of magnetic Em and elastic Eel energies 
in the magneto-elastic magnon mode

Magnon “highway” - current of magnons 
in a phase space to the BEC state

Bottleneck
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Hamiltonian approach 

to magnon-phonon hybridization

Hamiltonian equation of motion: 

Magnon – phonon hybridization Hamiltonian

Interaction Hamiltonian of 2     2 magnon scattering

hybridization

T
12,34 - interaction amplitudes

1 2 3 4

* *

4

1

4
T a a a a
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 
q q q q

12,34 1 2 3 4
H

 * * * *

2 ,
2

m pa a b b a b a b
 

    
 

  
q q q q q q q q q q

q

H

2 4 H H H

*

a

t a

 
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q

q

H
i =

*

b

t b

 

 

q

q

H
i =

magnons phonons  - coupling amplitude

m

p





q

q

- magnon dispersion law

- phonon dispersion law
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Magnon-phonon hybridization

Transition to hybridized MEM modes      using linear canonical Bogolyubov
transformation (rotation by the angle      in the (aq , bq) plane)

Diagonal quadratic Hamiltonian
for the upper and lower MEM modes

c

q

   
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cos sin
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* *
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q

H

2
21

2

m p m p     
         

 
q q q q q


q

 

2

2

1
cos 1 ,

2 1

q

q

 
  
 
 





q

p m
q q

q






 


q q 

    


q


q

,
2



 
 
 




q



Vitaliy Vasyuchka       SPICE Young Research Leaders Workshop Mainz, 2 August 2017

Interaction amplitudes T12,34 

of the upper and lower MEMs 

Upper-Upper interaction Lower-Lower interaction
Cross Upper-Lower
MEMs interaction
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12 34
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12 34
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
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
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,T 

qq qq

,T 

qq qq,T 

qq qq

Wavenumber dependence of interaction amplitudes
,

2


 
 
 




q

Dimensionless distance to crossover
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Statistical description


q


q

,
2



 
 
 




q

 

 

32

22

q

q

q

q

q

q q

T

F T

 





  





N

N N

- flux of         towards the hybridization region  N
-

- transition rate in the hybridization region  N
- ®N +

q

N
q

N

q

q

q d
F

t dq









 


N - balance equation for the lower MEM mode 
occupation numbers  N

-

BEC
N



N

5 5

,

q q

q

q

q

q

NN

NN




















NN

The dimensionless lower-MEM
and upper-MEM densities: 
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Statistical description
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Bottleneck accumulation 


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Dimensionless distance to crossover
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Solution of the kinetic equation
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Bottleneck accumulation


q


q

Increase in the magnon BEC population 
decreases bottleneck effect and explains 
the MEM saturation phenomenon
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D.A. Bozhko et al., Phys. Rev. Lett. 
118, 237201 (2017)
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Transport measurements


q


q

Experimental time-space diagram for BEC and MEM 

BEC

Group velocities of magnon-phonon
bosons in hybridization area

Position of the 
maximum of a 
travelling packet of 
hybridized bosons

200gr1 m/sv 

1

1
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Transport measurements


q


q

Experimental time-space diagram for BEC and MEMGroup velocities of magnon-phonon
bosons in hybridization area

Position of the 
maximum of a 
travelling packet of 
hybridized bosons

200gr1 m/sv 

1100gr2 m/sv 

BEC

1

2

1
2
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 Observed effects evidence the bottleneck
accumulation of hybridized magneto-elastic bosons 
at the bottom of the magnon spectrum

 Developed minimal model qualitatively describes 
the observed phenomena 

 Transport measurements give an information about 
spectral positions of accumulated quasi-particles

 Accumulated hybridized bosons with non-zero 
group velocity can be used for spin transport

 Bottleneck accumulation can occur in any 
multicomponent gas-mixture of interacting 
quasiparticles with different scattering amplitudes

Summary
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)

200 ns long pumping pulse

Position of the 
maximum of a 
travelling packet 
of hybridized 
bosons
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