

Technische Universität München

Non-collinear spin dynamics in magnetic insulators

Mathias Weiler

Walther-Meißner-Institut | Physik-Department, TU München

Acknowledgements

WMI

- Stefan Klingler
- Hannes Maier-Flaig
- Lukas Liensberger
- Clemens Mühlenhoff
- Matthias Althammer
- Matthias Opel
- Stephan Geprägs
- Hans Hübl
- Rudolf Gross

TU Dresden

Sebastian Gönnenwein

University of Groningen

- Aisha Aqeel
- Maxim Mostovoy
- Tom Palstra
- Hiroshima University
- Andrey Leonov

Innovent

- Carsten Dubs
- Oleksii Surzhenko

university of

groningen

HIROSHIMA UNIVERSITY

More than Moore

The chips are down for Moore's law

The semiconductor industry will soon abandon its pursuit of Moore's law. Now things could get a lot more interesting.

Nature 530, 144 (2016)

M. Mitchell Waldrop

Heat limit

Size and cost limit

More than Moore

Possible alternatives: "...Spintronic materials that would compute by flipping electron spins rather than by moving electrons."

Nature 530, 144 (2016)

Can we use these concepts for non-collinear magnetic insulators?

Towards insulating Skyrmionics

VMI

Metallic Skyrmions: Nat Mater **15**, 501 (2016).

Insulating SOTs: Nature Materials **16**, 309 (2017).

Physical mechanisms: Magnetization dynamics spin orbit interaction

Spin orbit interaction:

- Electronic configuration
- Magnetic anisotropy
- Magnetoresistance
- Magnetoelasticity
- Skyrmions

Zayets (AIST), Tsukuba, Japan

TU Kaiserslautern

M-Dynamics at WMI

(inverse) Spin-orbit torques

MW et al., PRL **113**, 157204 (2014) Nembach, MW, et al., Nat Phys **11**, 825 (2015) Berger, MW et al.

arXiv:1611.05798 (2016)

⊗ H_P

Oshima, MW, et al., Nat Mat (2017)

MW et al., arXiv: 1705.02874 (2017)

Maier-Flaig, MW et al., APL **110**, 132401 (2017).

Cavity magnetic resonance

Broadband magnetic resonance

50mK - 300K, up to 17T, up to 50 GHz

Spatial resolution < $1\mu m$

Brillouin light scattering

Frequency-resolved MOKE

Hybrid systems

MW et al., PRL **106**, 117601 (2011)

Klingler, MW, et al. APL **109**, 072402 (2016)

Materials for **M**-dynamics

PLD, Evap, Sputter, E-beam lithography

Magnetization dynamics and broadband magnetic resonance spectroscopy

Magnetostatic modes and spinwave damping in YIG

Cu₂OSeO₃ as a natural helimagnonic crystal

Magnetization dynamics

Polder susceptibility (tensor)

Landau-Lifshitz-Gilbert equation:

Broadband magnetic resonance spectroscopy

Microwave susceptibility measurement

$$\widetilde{L} = \mu_0 \frac{l\delta}{4W_{CPW}}$$

 $Z_0 = 50\Omega$

Anisotropy and Damping

Magnetization dynamics and broadband magnetic resonance spectroscopy

Magnetostatic modes and spinwave damping in YIG

Cu₂OSeO₃ as a natural helimagnonic crystal

Magnetostatic modes: Theory

- Long-ranged dipolar interaction
- Sample-shape dependend
- Complicated

We are intersted in dynamics with dipolar interactions!

Start with LL equation (no damping):

 $\partial m / \partial t = -\gamma \mu \downarrow 0 \ \mathbf{m} \times \mathbf{H} \downarrow \text{eff}$

Linearized LL equation for a spherical sample:

 $i\omega m = -\gamma \mu \downarrow 0 \left[1 \times (M \downarrow s \mathbf{h} - (H \downarrow 0 + M \downarrow s N \downarrow z) \mathbf{m}) \right]$ $N \downarrow z = 1/3$

Solve with:

$$n + 1 + \xi_0 \frac{dP_n^m(\xi_0)/d\xi_0}{P_n^m(\xi_0)} \pm m\nu = 0,$$

L. R. Walker, Phys. Rev. 105, 390 (1957).

Magnetostatic modes: Theory

P. Röschmann and H. Dötsch, Phys. Stat. Sol. (B) 82, 11 (1977).

300μm YIG sphere grown by Innovent 300μm center conductor

Non-uniform driving field required for excitation of MSMs

Mode identification

Klingler, MW et al., APL **110**, 092409 (2017).

Mode intensity: overlap integral of driving field and MSM

DPPH is used for absolute field calibration

Linewidth and damping

Inhomogeneous broadening from surface pit scattering

Klingler, MW et al., APL **110**, 092409 (2017).

 $f_{res}^{(nmr)} - f_{DPPH}$ (MHz)

Temperature-dependent damping in YIG

Maier-Flaig, MW et al., PRB 95, 214423 (2017).

Thin film damping vs temperature: M. Haidar et al., JAP **117**, 17D119 (2015) C. L. Jermain et al., Phys. Rev. B **95**, 174411 (2017).

Same sample: now mounted in magnet cryostat

Resonance frequency

Linewidth

110 mode:

Maier-Flaig, MW et al., PRB **95**, 214423 (2017).

Magnetization dynamics and broadband magnetic resonance spectroscopy

Magnetostatic modes and spinwave damping in YIG

Cu₂OSeO₃ as a natural helimagnonic crystal

Heisenberg exchange

$$H_{H} = -J_{ex} \mathbf{S}_{1} \cdot \mathbf{S}_{2}$$
$$J_{ex} \propto A$$

Dzyaloshinskii-Moriya exchange

$$H_{DM} = -\mathbf{D}_{DMI} \cdot (\mathbf{S}_1 \times \mathbf{S}_2)$$

Broken inversion symmetry Spin-orbit interaction

Orthogonal (counterclockwise)

Orthogonal (clockwise)

Non-collinear equilibrium spin ordering!

Lengthscale about 10nm-100nm

Dynamics of the chiral magnet Cu₂OSeO₃

Image: K. Everschorr-Sitte

See also: Schwarze et al., Nat. Mat. 14, 478 (2015)

Skyrmion resonance at T=57K

Chiral magnetic excitations

Chiral magnetic excitations

An intrinsic, chiral magnonic crystal

Conventional Magnonic Crystal: Bandstructure from extrinsic, periodic modulation

Chumak, et al., Nat Phys 11, 453 (2015).

Kugler et al., PRL **115**, 097203 (2015).

Spin Helix:

Intrinsic, 60-nm periodicity

Analytical model

Fits to the conical resonance frequencies

 $) = \frac{C_0}{f_{\rm res}^2 - f^2 - if\Delta f}$

$$\alpha = \frac{\Delta f}{2f} \le 0.003$$

In ferrimagnetic phase at T=5K: α =0.001

arXiv:1705.03416 (2017).

Lowest magnetic damping for helimagnons reported so far

Summary

Non-collinear magnetization dynamics

Magnetostatic Modes

Broadband spectroscopy

Helimagnons

- Uniform equilibrium spin alignment
- Long-ranged dipolar interaction
- Very small damping in • YIG spheres, independent of MSM mode number
- Damping decreases for low T

- Spiral equilibrium spin alignment
- Exchange and DMI
- Low damping at T=5 K
- Natural magnonic crystals

