

Magnetic control over spin-triplet supercurrents Jan Aarts Huygens - Kamerlingh Onnes Laboratory, Leiden.

- Long-range spin-triplet supercurrents exist, generated by magnetic inhomogeneities
- Control **supercurrent** = control **generator**
- 1. **CrO₂** (HFM) : devices based on **wires** with *Amrita Singh*

and on good interfaces

2. Co (FM) : device based on a disk with *Kaveh Lahabi* (Leiden), *Paul Alkemade* (Delft), and *Morten Amundsen*, *Ali Ouassou*, *Jacob Linder* (Trondheim)

From normal current to supercurrent : Andreev reflections

So, singlet pairs in $F: E_{ex} \approx 1 \ eV(Ni) \rightarrow \xi_F \approx 1 \ nm$

The Long Range effects: odd-frequency triplets

SPICE17

Symmetry of the pair correlation function $F(r_1 - r_2; s_1; s_2; t_1 - t_2)$:F is odd under exchange of space, spin, time(Berezinskii, 1974)

⇒ 'Pauli' can be circumvented with negative **time**/ **frequency**

Spin			(Orbit		occurs		
odd,	↑↓-	- ↓↑	even,		even	N	b, YBCO	
even,	$\uparrow\uparrow$	$\downarrow\downarrow$	odd,		even	3	He, Sr ₂ RuO	4
even,	$\uparrow\uparrow$	$\downarrow\downarrow$	even,	s	odd,	s-wa in F	ave triplet is possible !	
Triplet pair in F not broken by exchange : $\xi_F^{triplet} \propto \sqrt{D_F / k_B T}$								
How to Wit		With	'spin-active' interface				(Bergeret, 200 Kadigrobov, 20)1 01)

шаке п.

Make triplets; requires inhomogeneous magnetization

Spin mixing by spindependent scattering **Rotation of the quantization axis**

SPICE17

 $\begin{array}{ccc} \text{singlet} & \text{m=0 triplet} & \text{m=1 triplet} \\ |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle & \longrightarrow & |\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle & \longrightarrow & |\uparrow\uparrow\rangle, |\downarrow\downarrow\rangle\rangle \end{array}$

- Bergeret (2001) : mix / rotate in domain wall
- Houzet / Buzdin : mix / rotate with different F's ; 0- or π -junction

Implement the inhomogeneity : triplets in Co

SPICE17

'Leiden triplets' Material of choice : CrO_2 P = 100 %

- CrO_2 , $Cr^{4+}: 4d^2$, S = 1
- $T_C \approx 390$ K,
- $M_S = 2 \mu_B / Cr$

Metastable oxide

fabricate : only CVD, best on TiO₂

• S contacts are **not** grown in-situ

tetragonal rutile structure

$$\xi_{F,singlet} \approx 1 \ nm$$

Full films of CrO₂ is a (device) hindrance

Solution : *selective area growth*

grow in different directions

Growth = 'overgrowth': gives very clean surfaces

SPICE17

A wire-based device :

- wire along easy axis
- built-in perpendicular magnetizations between wire and contacts.
- π junction ?

Singh et al, PR X6, 2016

1 μm wide, gap : 600 nm contacts Cu/Ni/MoGe

 $J_c > 10^{9} \text{ A/m}^2 @ 4 \text{ K}$ record-large (over 600 nm) Magnetic control

transverse junction on a hard-axis (010) wire; stack is CrO₂ / Cu / MoGe

No Ni !

 1μ - sized domains

The supercurrent is generated and switched by the domain structure

A Co-based planar triplet device

Stacks

Planar devices

Kaveh Lahabi

Sr₂RuO₄

Difficult to have F-layer control

So far limited to CrO₂

General problem : stray field coupling

Use a multilayer disk

Non-collinearity : Micromagnetic simulations (OOMMF)

Device by FIB

Characterize R(T), j_c

A triplet junction

Field out-of-plane

Compare "shallow" gap

Not Fraunhofer

Fraunhofer

central lobe $2\Phi_0$

Supercurrent distribution: Fourier transform

PHYSICAL REVIEW B

VOLUME 3, NUMBER 9

Supercurrent Density Distribution in Josephson Junctions

R. C. Dynes and T. A. Fulton Bell Telephone Laboratories, Murray Hill, New Jersey 07974 (Received 19 November 1970)

Supercurrent simulations (Amundsen, Ouassou, Linder)

Use μ magnetics + Usadel on a mesh

In-plane field : change in I_c by pushing the vortex along the trench

Field reversal - hysteresis

-85 mT

-60 mT

-45 mT

-20 mT

Behavior can be explained micromagnetics

pushing the vortex \perp the trench

very different - vortex reconstitutes differently

Do without Ni ?

In-plane field : very different

Triplets from exchange field gradients

Kalenkov-Zaikin-Petrashov, PRL '11

Co/Cu/Nb

Interference pattern similar

$_{\text{\tiny{60}}}$ 150 \rightarrow -150 mT

Conclusion

- Demonstrated a CrO₂ wire where triplet supercurrents are switched by domain walls
- Demonstrated a lateral disk-shaped Co-junction, which carries a triplet supercurrent,
- A magnetic vortex determines the current distribution which can be changed with an in-plane field
- Micromagnetic and supercurrent **simulations** are beginning to allow for accurate **device design**