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Superconducting	proximity	effect	in:

• Strongly	confined	(0-D)	quantum	dot
• Quasi-ballistic	(quasi	1D)	junction
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Proximity	effect	versus	Coulomb	blockade
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Proximity	effect	versus	Coulomb	blockade

Lowest-energy	states	and	phase	diagram

Possible	ground	states	(large	D limit):
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with a wave vector k! in the lead i, and the Pauli matrices !̂"
have been introduced. Transforming the sum over wave vec-
tors k! into an integral over energies yields the k!-summed
“quasiclassical” Green’s function,
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In the limit #n (%, the Green’s function in Eq. "4#be-
comes purely static and reduces to
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Note that the low-frequency limit we consider here yields a
Green’s function that indeed depends on the finite bandwidth
D and this shows that the limit %→) shall not be taken for
the proximity effect to survive. In what follows, we will
therefore keep both D and % finite. Plugging Eq. "5#into the
Green’s function Ĝd ,d"i#n#leads to the same result as would
have been obtained with the effective local Hamiltonian
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where the local-pairing amplitude induced by the leads on
the dot reads as
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which explicitly depends on the ratio D /%. By an appropri-
ate gauge transformation for the operators d!, it is always
possible to choose +'ei"'L+'R#/2= '+'', as shall be done from
now on. The complete local effective Hamiltonian is ob-
tained when the Coulomb interaction is taken into account
again. Defining -d =*d + U

2 , the energy level of the dot is
shifted such that the Hamiltonian clearly exhibits particle-
hole symmetry for -d =0,
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The physical interpretation of this effective local Hamil-
tonian is simple. For finite gap, the quantum dot is coupled to
both the Cooper pairs and the quasiparticles in the leads. The
Cooper pairs, which lie at the Fermi level, are responsible for
the proximity effect. The quasiparticles give rise to conduc-
tion electrons excitations with energies higher than the gap
%. In the limit #n (%, the quasiparticles are far in energy
and the coupling between them and the dot vanishes, which
greatly simplifies the physics and makes an exact solution
possible. Yet, as the dot is still coupled to the Cooper pairs at
the Fermi level, the proximity effect survives with a local
pairing term proportional to the hybridization + between dot
and leads.

C. Spectrum of the effective local Hamiltonian

As the Coulomb interaction simply yields an extra energy
shift of U /2 for both empty and doubly occupied dot, the
eigenvectors and eigenvalues of the local effective Hamil-
tonian in Eq. "8# are readily obtained by a Bogoliubov
transformation,2 in perfect analogy with solution of the BCS
Hamiltonian. Heff has thus four eigenstates, the singly occu-
pied spin 1/2 states '↑ ( and '↓ ( with energy E↑

0=E↓
0=-d, and

two BCS-like states given by

'+ ( = u '↑↓( + v!'0( ,

'− ( = − v!'↑↓( + u '0( , "9#

where '0( denotes the empty dot and '↑↓( the doubly
occupied dot. The amplitudes u and v can always be
chosen to be real with u =1 /2%1+-d /%-d

2++'
2 and v

=1 /2%1−-d /%-d
2++'

2 . The energies corresponding to these
BCS-type states are E.

0 =U /2. %-d
2++'

2 +-d.
As E+

0 is always larger than E−
0, the effective local Hamil-

tonian has two possible ground states: the low-energy BCS-
type state '−( or the degenerate spin 1/2 doublet )'↑ ( , '↓ (*. In
the '−( state, the energy is minimized for '=0. Thus, the
spin-singlet phase corresponds to a zero junction "a result
well known from the weak-coupling limit16#. The transition
between the singlet phase and the spin 1/2 doublet takes
place at -d

2++'
2 =U2 /4 and Fig. 1 shows the corresponding

phase diagram for variable -d, +', and U. The state adopted
by the quantum dot in the large-gap limit therefore results
from a competition between the local pairing "induced by the
proximity effect and characterized by the hybridization +#
and the Coulomb interaction.

D. Andreev bound states

As outlined in Sec.I, the coupling to superconducting
leads induces a gap in the spectral function of the dot inside
which discrete Andreev bound states can form. The spectral
function of the dot shows therefore sharp peaks, which could
be measured by STM "Ref. 6#or microwave-optical7,8 ex-
periments as proposed recently. These peaks indicate addi-
tion energies at which an electron may enter "or leave#the
dot and correspond therefore to transitions between states
with n and n . 1 electrons. Hence, the ABS peaks in the

FIG. 1. Phase diagram of a simple dot with Coulomb interaction
U, energy level -d and hybridization + to superconducting elec-
trodes in the effective local limit. The transition line corresponds to
E!

0 =E−
0.
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Note that the low-frequency limit we consider here yields a
Green’s function that indeed depends on the finite bandwidth
D and this shows that the limit %→) shall not be taken for
the proximity effect to survive. In what follows, we will
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which explicitly depends on the ratio D /%. By an appropri-
ate gauge transformation for the operators d!, it is always
possible to choose +'ei"'L+'R#/2= '+'', as shall be done from
now on. The complete local effective Hamiltonian is ob-
tained when the Coulomb interaction is taken into account
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The physical interpretation of this effective local Hamil-
tonian is simple. For finite gap, the quantum dot is coupled to
both the Cooper pairs and the quasiparticles in the leads. The
Cooper pairs, which lie at the Fermi level, are responsible for
the proximity effect. The quasiparticles give rise to conduc-
tion electrons excitations with energies higher than the gap
%. In the limit #n (%, the quasiparticles are far in energy
and the coupling between them and the dot vanishes, which
greatly simplifies the physics and makes an exact solution
possible. Yet, as the dot is still coupled to the Cooper pairs at
the Fermi level, the proximity effect survives with a local
pairing term proportional to the hybridization + between dot
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As outlined in Sec.I, the coupling to superconducting
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function of the dot shows therefore sharp peaks, which could
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have been introduced. Transforming the sum over wave vec-
tors k! into an integral over energies yields the k!-summed
“quasiclassical” Green’s function,
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Note that the low-frequency limit we consider here yields a
Green’s function that indeed depends on the finite bandwidth
D and this shows that the limit %→) shall not be taken for
the proximity effect to survive. In what follows, we will
therefore keep both D and % finite. Plugging Eq. "5#into the
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which explicitly depends on the ratio D /%. By an appropri-
ate gauge transformation for the operators d!, it is always
possible to choose +'ei"'L+'R#/2= '+'', as shall be done from
now on. The complete local effective Hamiltonian is ob-
tained when the Coulomb interaction is taken into account
again. Defining -d =*d + U
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The physical interpretation of this effective local Hamil-
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the Fermi level, the proximity effect survives with a local
pairing term proportional to the hybridization + between dot
and leads.

C. Spectrum of the effective local Hamiltonian

As the Coulomb interaction simply yields an extra energy
shift of U /2 for both empty and doubly occupied dot, the
eigenvectors and eigenvalues of the local effective Hamil-
tonian in Eq. "8# are readily obtained by a Bogoliubov
transformation,2 in perfect analogy with solution of the BCS
Hamiltonian. Heff has thus four eigenstates, the singly occu-
pied spin 1/2 states '↑ ( and '↓ ( with energy E↑

0=E↓
0=-d, and

two BCS-like states given by

'+ ( = u '↑↓( + v!'0( ,

'− ( = − v!'↑↓( + u '0( , "9#

where '0( denotes the empty dot and '↑↓( the doubly
occupied dot. The amplitudes u and v can always be
chosen to be real with u =1 /2%1+-d /%-d

2++'
2 and v

=1 /2%1−-d /%-d
2++'

2 . The energies corresponding to these
BCS-type states are E.

0 =U /2. %-d
2++'

2 +-d.
As E+

0 is always larger than E−
0, the effective local Hamil-
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the '−( state, the energy is minimized for '=0. Thus, the
spin-singlet phase corresponds to a zero junction "a result
well known from the weak-coupling limit16#. The transition
between the singlet phase and the spin 1/2 doublet takes
place at -d
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by the quantum dot in the large-gap limit therefore results
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proximity effect and characterized by the hybridization +#
and the Coulomb interaction.

D. Andreev bound states

As outlined in Sec.I, the coupling to superconducting
leads induces a gap in the spectral function of the dot inside
which discrete Andreev bound states can form. The spectral
function of the dot shows therefore sharp peaks, which could
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with a wave vector k! in the lead i, and the Pauli matrices !̂"
have been introduced. Transforming the sum over wave vec-
tors k! into an integral over energies yields the k!-summed
“quasiclassical” Green’s function,

!
k!
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Note that the low-frequency limit we consider here yields a
Green’s function that indeed depends on the finite bandwidth
D and this shows that the limit %→) shall not be taken for
the proximity effect to survive. In what follows, we will
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ate gauge transformation for the operators d!, it is always
possible to choose +'ei"'L+'R#/2= '+'', as shall be done from
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tained when the Coulomb interaction is taken into account
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Cooper pairs, which lie at the Fermi level, are responsible for
the proximity effect. The quasiparticles give rise to conduc-
tion electrons excitations with energies higher than the gap
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the Fermi level, the proximity effect survives with a local
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tonian has two possible ground states: the low-energy BCS-
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the '−( state, the energy is minimized for '=0. Thus, the
spin-singlet phase corresponds to a zero junction "a result
well known from the weak-coupling limit16#. The transition
between the singlet phase and the spin 1/2 doublet takes
place at -d
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2 =U2 /4 and Fig. 1 shows the corresponding

phase diagram for variable -d, +', and U. The state adopted
by the quantum dot in the large-gap limit therefore results
from a competition between the local pairing "induced by the
proximity effect and characterized by the hybridization +#
and the Coulomb interaction.

D. Andreev bound states

As outlined in Sec.I, the coupling to superconducting
leads induces a gap in the spectral function of the dot inside
which discrete Andreev bound states can form. The spectral
function of the dot shows therefore sharp peaks, which could
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Tunnel	spectroscopy	of	the	
Andreev	levels	

Related	works	on	Andreev	level	spectroscopy:

Deacon	et	al.,	PRL	(2010)
Pillet et	al.,	Nature	Phys.	(2010),	PRB	(2013)
Dirks	et	al.,	Nature	Phys.	(2011)
Chang	et	al.,	PRL	(2013)

Proximity	effect	versus	Coulomb	blockade

Andreev	levels	as	elementary	sub-gap	excitations
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Tunnel	spectroscopy	of	the	
Andreev	levels	

(or	Yu-Shiba-Rusinov states)_

Andreev	levels	as	elementary	sub-gap	excitations
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Pb,Nb…         
Mn,Gd,Fe,…           

Yazdani et	al.	(1997),	...,	Franke et	al. (2011),	…
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T	~	20	mK
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S-QD-N	geometry	and	Andreev	level	spectroscopy
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Tunnel	spectroscopy	of	sub-gap	states	in	the	“weak”	coupling	regime
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Let’s	increase	the	S-QD	coupling….
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Increasing	S-QD	coupling	induces	a	doublet-to-singlet	quantum	phase	transition

Back-gate voltage	used to	tune	S-QD	coupling
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Corresponding	normal-state	Kondo	regime
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NRG	fitting	of	the	normal-state	linear	conductance

with	



NRG	fitting	of	the	normal-state	linear	conductance
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Superconducting	regime:	experimental	data	vs NRG	(dashed	lines)
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Is=Ic sin[Dj]

Is= Ic sin[Dj+ p]

Van	Dam	et	al.,	Nature	(2006)
Maurand et	al,	PRX	(2012)	
Delagrange et	al.,	PRB	(2016)

QD-S	phase	digram:	experimental	vs NRG	(dashed	lines)



Satori	et	al.,	J.	Phys.	Soc.	Japan	(1992)
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Observation	of	Zeeman	splitting	in	the	singlet	regime	(Al/InAs/V	device)	 3

FIG. 2. Andreev levels in different coupling regimes and their magnetic-field dependence. (a) Experimental plots
of dI/dV vs. (Vpg, V ) for different QD-S couplings, ΓS (increasing from top to bottom), and different B values (increasing
from left to right). Top-left panel: along the Vpg range, the system GS changes from singlet (|S⟩) to doublet (|D⟩) and back
to singlet, following the green trajectory in the qualitative diagram on the right side of the same row. We find that increasing
Vbg results in larger ΓS , thereby leading to an upward shift in the phase diagram. Eventually, the green trajectory is pushed
into the singlet region (mid and bottom diagrams). Experimentally, this results in the disappearance of the doublet GS loop
structure, as shown in the mid-left and bottom-left panels. The middle and right columns show the B-evolution of the Andreev
levels in the three coupling regimes. For relatively weak coupling (top row), the Andreev levels for a singlet GS split due to
the Zeeman effect, whereas those for a doublet GS simply move apart. At intermediate coupling (middle row), B induces a
quantum-phase transition from a singlet to a spin-polarized GS, as denoted by the appearance of a loop structure (right panel).
At the largest coupling (bottom row), the Zeeman splitting of the Andreev levels is clearly visible all over the Vpg range. The
splitting is gate-dependent with a maximum in the central region.

We now turn to the effect of B on the Andreev lev-
els (middle and right columns in Fig. 2a). Starting
from the weak coupling case (top row), a field-induced
splitting of the sub-gap resonances appears, yet only in
correspondence of a singlet GS. This is due to the fact
that these resonances involve excitations between states
of different parity. For a singlet GS, the spin degeneracy
of the doublet ES is lifted by the Zeeman effect resulting
in two distinct excitations (see Fig. 1b). By contrast,
for a doublet GS, no sub-gap resonance stems from the
| ↑⟩ → | ↓⟩ excitation, because these two states have
the same (odd) number of electrons. The energy of the
only visible Andreev level, associated with the | ↑⟩ → |S⟩
transition, increases with B. The formation of a loop
structure in the rightmost panel of the middle row shows

that a QPT from a singlet to a spin-polarized GS can be
induced by B when the starting ζ is sufficiently small.
In the bottom row, Zeeman-split Andreev levels can be
seen all over the spanned Vpg range. At Bx = 0.4 T,
the inner levels overlap at the Fermi level, indicating a
degeneracy between the | ↑⟩ and |S⟩ states. The full phe-
nomenology explained above is qualitatively reproduced
by a self-consistent Hartree-Fock treatment of a S-QD-N
Anderson model (see Suppl. Information), thus support-
ing our interpretation in terms of spin-resolved Andreev
levels and a QPT.

Interestingly, the splitting of Andreev levels appears
to be gate dependent. It tends to vanish when the sys-
tem is pushed deep into the singlet GS, and it is max-
imal near the phase boundaries. To further investigate

Vpg (mV)

V s
d
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V) SDS
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Tunnel-spectroscopy	experiments	in	S-nanowire-N	devices	

Au/InAs NW/V	device
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FIG. 3: (Color online) Low energy BdG spectrum as function of
the Zeeman field for finite wires of different lengths. In the limit
Lx ! 1 a Majorana zero mode appears above a critical field
�c ⇡ 0.1meV. In finite wires, the mode acquires a finite energy due
to the overlap of the states localized at ends of the wire. In very short
wires (e.g., Lx = 0.2µm) the lowest energy state depends almost
linearly on the Zeeman field. States characterized by different values
of nx are coupled by the Rashba interaction and, consequently, the
dependence of their energy on � is nonlinear. The chemical potential
is µ = 18meV (bottom of the third band in Fig 1).

havior can be observed when the chemical potential is in the
vicinity of other band minima, e.g., µ = 18meV +�µ for
the band with (ny, nz) = (2, 1), plus extra contributions from
the lower energy bands. In the presence of a Zeeman field,
the energy of the lowest-energy state decreases and eventu-
ally vanishes at a certain µ-dependent value of �. Note that,
as a result of spin-orbit coupling, states with low nx depend
strongly on �, while high nx states are weakly �-dependent.

III. NUMERICAL RESULTS AND PHYSICAL
INTERPRETATION

In the remainder of the paper, we focus on the
experimentally–relevant parameter regime Lx ⇠ ⇠ > lso

and contrast the properties of the system in this limit with
the ones for a long nanowire (L � ⇠). The dependence
of the quasiparticle spectrum on the applied magnetic field
for several values of Lx is shown in Fig.3. The lowest en-
ergy mode (red lines) is characterized by discrete zero–energy
crossings that are robust against disorder, which we checked
explicitly. In spinless superconductors, such isolated cross-
ings are quite robust against perturbations due to the particle-
hole symmetry. Indeed, consider k · p perturbation theory
near a crossing point. The two zero-energy solutions  0 and
 1 are related by particle–hole symmetry,  1 = ⌧x ⇤

0
. In

order to open a gap at the crossing point, the off–diagonal
matrix element has to be non–zero, h 0|V | 1i 6= 0, where
V is a generic perturbation that satisfies particle-hole sym-
metry ⌧xV ⌧x = �V

T . However, using particle-hole sym-
metry we have V01 = h 0|V | 1i =

R
dx ⇤

0
V 1 =

�
R
dx ⇤

0
⌧xV

T ⇤
0
= �

R
dx 1V

T ⇤
0
= 0. Thus, particle-

hole symmetry ensures the robustness of isolated zero-energy
crossings. Another way of understanding the robustness of

FIG. 4: (Color online) Profiles of the lowest–energy states in
nanowires of different lengths. Top panel: Majorana bound state
localized near the end of a long wire (Lx � ⇠). In the other panels
the red (dark gray) lines correspond to � = 0.05meV and the yellow
(light gray) lines are for � = 0.18meV (see Fig. 3). Increasing the
Zeeman field mixes states with different values of nx and generates
modes that become localized near the end of the wire. This mecha-
nism is absent in very short wires (bottom panel, (Lx ⌧ ⇠)) due to
the wide energy separation between the quantized levels (see Fig 2).

an isolated zero-energy crossing invokes fermion parity - one
can show that the two zero-energy states  0 and  1 actually
correspond to a different fermion parity3. However, the po-
sition of the zero-energy crossing point is non-universal and
changes with the perturbation, since the diagonal matrix ele-
ments are non-zero h 0|V | 0i = �h 1|V | 1i. In order to
get rid of the zero-energy crossings one has to bring another
pair of zero-energy states to the same point in the parame-
ter space. Then, four states would hybridize with each other
since two of them will now have the same fermion parity and
eventually result in the avoided level crossings. This is illus-
trated in Fig. 3 for Lx ⇡ 0.4µm. In this case, small variations
of the chemical potential will result in either two close zero-
energy crossings (�µ < 0), or an avoided crossing (�µ > 0).
However, these avoided level crossings would still be near-
zero-energy states and may produce ZBCPs in experimental
systems, which invariably have finite energy resolutions.

The emergence of zero–energy crossings in short wires
Lx � ⇠ > lso is intriguing and one may ask the question
whether it might be possible to use these zero–energy states
for TQC. Indeed, one of the necessary ingredients for TQC
is ground state degeneracy, which can be achieved hypothet-
ically by fine–tuning. However, another important ingredient
is the ability to manipulate the Majorana quasiparticles inde-

Stanescu,	Lutchyn,	Das Sarma,	PRB	(2013)

Short-channel limit

B

Zero-bias	anomalies



Outline

Superconducting	proximity	effect	in:

• Strongly	confined	(0-D)	quantum	dot
• Quasi-ballistic	(quasi	1D)	junction



One-dimensionality	in	InSb nanowires

(2013)



Ballistic	transport	in	InSb NWs

[Estrada	Saldaña et	al.,	arXiv:1709.02614]

[reproduced from Zhang	et	al.,
Nat.	Comm.	8,	16025	(2017)]



Assessing	1D	character	of	InAs nanowires

Material from Sorba’s group
(Pisa)
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SOURCE
DRAIN

NW

(unpublished)
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Device	description

Bottom finger gates

CBE-grown	InAs NWs	from	
Sorba’s group	(Pisa)
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Localized state:	 U	~	1.3	meV

1 2 3
So

ur
ce Dr

ai
n

NW

200 nm

B

Electron	g-factor:	–11



=>	Lever-arm	parameter a =	0.008	meV/mV



“0.7”- type	anomaly	at	B=0	



“0.7”	anomaly	in	quantum	point	contacts	

[From	Cronenwett et	al.	PRL	2002]

Possible	origin:	
Kondo-effect	associated	with	a	quasi-localized	spin-1/2	state

[Theory:	Meir,	Hirose,	Wingreen,	PRL	2002]



Model:	
Quantum	dot	with	Gamma	

quadratically increasing	with	VG3



EZ = |g µBB|

D

TK
80	µeV @	B=0

5-8	K
(ie 0.42	- 0.67	meV)

1.8	meV @	2.9	T





=>	Lever-arm	parameter a =	0.008	meV/mV



Critical	current	vs gate	voltage:	Experiment	(fit	with	RCSJ	model)	vs Theory	(NRG)	



Critical	current	vs gate	voltage:	Experiment	(fit	with	RCSJ	model)	vs Theory	(NRG)	



Critical	current	vs gate	voltage:	Experiment	(fit	with	RCSJ	model)	vs Theory	(NRG)	



Critical	current	vs gate	voltage:	Experiment	(fit	with	RCSJ	model)	vs Theory	(NRG)	



Conclusions

• Strongly	confined	(0-D)	quantum	dot	coupled	to	a	superconductor	
[Lee	et	al.,	Phys.	Rev.	B	95,	180502(R),	2017]

Ø Accurately	reproduced	by	a	“simple”	Anderson	impurity	model

• Quasi-ballistic	(quasi	1D)	junction	with	superconducting	leads	
[Estrada	Saldaña et	al.,	in	preparation]

Ø Coulomb	interaction	relevant	also	for	short,	quasi-ballistic	one-
dimensional	wires

Ø Demonstrated	B-induced	re-emergence	of	a	proximity	
supercurrent



Tight-binding calculations (Y.M.	Niquet)

z

y

x Bz =	100	mT
Ex =	20	mV/nm

DSO≈50	µeV

Rashba Hamiltonian:
HSO =	a sy Ex

kSO ~	1/lSO ~	1/250	nm



z

y

x Bz =	1	T
Ex =	20	mV/nm

Tight-binding calculations (Y.M.	Niquet)

Rashba Hamiltonian:
HSO =	a sy Ex



Best	1D	conductors:	GaAs/AlGaAs high-mobility	heterostructures

Tarucha et	al.,	Solid	State	Comm.	94,	413	(1995)

Lwire =	2	µm

Lwire =	10	µm

Very	deep	2DEG!



Best	1D	conductor:		GaAs/AlGaAs high-mobility	heterostructures

Yacoby et	al.,	PRL	77,	4612	(1996)

Very	deep	2DEG!



Superconducting	proximity	effect	in	InAs nanowires

Tunable Supercurrent Through
Semiconductor Nanowires

Yong-Joo Doh,1* Jorden A. van Dam,1* Aarnoud L. Roest,1,2

Erik P. A. M. Bakkers,2 Leo P. Kouwenhoven,1

Silvano De Franceschi1.

Nanoscale superconductor/semiconductor hybrid devices are assembled from
indium arsenide semiconductor nanowires individually contacted by aluminum-
based superconductor electrodes. Below 1 kelvin, the high transparency of the
contacts gives rise to proximity-induced superconductivity. The nanowires form
superconducting weak links operating as mesoscopic Josephson junctions with
electrically tunable coupling. The supercurrent can be switched on/off by a gate
voltage acting on the electron density in the nanowire. A variation in gate
voltage induces universal fluctuations in the normal-state conductance, which
are clearly correlated to critical current fluctuations. The alternating-current
Josephson effect gives rise to Shapiro steps in the voltage-current characteristic
under microwave irradiation.

The recent interest in chemically grown semi-
conductor nanowires arises from their versa-
tility, which translates into a wide range of
potential applications. Many important proofs
of concept have already been provided, such as
field-effect transistors, elementary logic cir-
cuits, resonant tunneling diodes, light-emitting
diodes, lasers, and biochemical sensors (1–3).
These achievements, together with the recent
advance in the monolithic integration of III-V
nanowires with standard Si technology (4, 5),
hold great promise for the development of
next-generation (opto)electronics. Simulta-
neously, the high degree of freedom in nano-
wire growth and device engineering creates
new opportunities for the fabrication of con-
trolled one-dimensional systems for low-
temperature applications and fundamental
science. Quantum confinement and single-
electron control have been achieved in a
variety of single-nanowire devices (6–8). In
these experiments, the transport properties
were dominated by Coulomb interactions
among conduction electrons because of the
presence of high-resistance barriers either at
the interface with the metal leads or within
the nanowire itself.

Here we describe an entirely different
regime, in which the nanowires are contacted
by superconducting electrodes with deliber-
ately low contact resistance. While Coulomb
blockade effects are suppressed, the semi-
conductor nanowires acquire superconducting
properties because of the proximity effect, a
well-known phenomenon that can be described
as the leakage of Cooper pairs of electrons

from a superconductor (S) into a normal-type
conductor (N) (9). The proximity effect takes
place only if the S-N interface is highly trans-
parent to electrons. This requirement is partic-
ularly hard to meet when the N element is a
semiconductor, the major obstacle being posed
in most cases by the unavoidable presence of a
Schottky barrier. In this respect, indium arse-
nide (InAs) is an exceptional semiconductor
because it can form Schottky barrier–free con-
tacts with metals (10). This motivated our
choice of this material in the present work.

The InAs nanowires are grown via a cat-
alytic process based on a vapor-liquid-solid

mechanism (11). The nanowires are mono-
crystalline, with diameters ranging from 40 to
130 nm and lengths of 3 to 10 mm. From field-
effect electrical measurements (discussed be-
low), we find n -type conductivity, with an
average electron density n s 0 (2 to 10) ! 1018

cmj3, and an electron mobility m 0 200 to
2000 cm2/VIs. These values correspond to a
mean free path, l 0 10 to 100 nm. Right after
growth, the nanowires are transferred to a pþ

silicon substrate with a 250-nm-thick SiO2

overlayer. The conductive substrate is used as
a back gate to vary the electron density in
the nanowires. Custom metal electrodes are
defined by e-beam lithography followed by
e-beam evaporation of Ti (10 nm)/Al (120
nm). Before metal deposition, the nanowire
surface is deoxidized by a 6-s wet etching in
buffered hydrofluoric acid. No thermal
annealing is performed, in order to minimize
interdiffusion at the contacts. The spacing, L,
between the source and drain electrodes is
varied between 100 and 450 nm. To perform
four-point measurements, both source and
drain electrodes are split in two branches
(Fig. 1A). A representative single-nanowire
device is shown in Fig. 1B.

The nanowire devices exhibit ohmic be-
havior with a normal state resistance, RN, in
the range from 0.4 to 4.5 kilohms. RN is vir-
tually insensitive to temperature all the way
down to the superconducting transition tem-
perature of the Al-based electrodes, TC 0 1.1 K.
Below TC, the proximity effect manifests
itself through the appearance of a dissipation-
less supercurrent, which can be viewed as a

1Kavli Institute of Nanoscience, Delft University of
Technology, Post Office Box 5046, 2600 GA Delft,
Netherlands. 2Philips Research Laboratories, Professor
Holstlaan 4, 5656 AA Eindhoven, Netherlands.

*These authors contributed equally to this work
.Present address: Laboratorio Nazionale TASC-INFM,
I-34012 Trieste, Italy.

Fig. 1. (A) Schematic of a nanowire device. In
four-terminal measurements, current is driven
between Iþ and Ij and the voltage drop is
simultaneously measured between Vþ and Vj.
A gate voltage Vg is applied to the pþ Si
substrate to vary the electron density in the

nanowire. (B) Scanning electron micrograph of a nanowire device. The nanowire diameter is
determined by the size of the gold catalytic particle, which is visible at the upper end of the
nanowire. (C) V(I) characteristics for device no. 1 measured in a four-terminal configuration at T 0
40 mK for both increasing (red) and decreasing (blue) current bias. (Inset) Correlation between IC
and R N (the data points correspond to different devices and Vg 0 0). (D) V(I) characteristics of device
no. 2 at T 0 40 mK for Vg 0 0 (red), –10 (blue), –50 (green), –60 (purple), and –71 V (black). When
Vg is made more negative, the critical current is progressively reduced all the way to zero. When the
supercurrent vanishes, the zero-bias resistance of the device is 70 kilohms. The characteristic
parameters at Vg 0 0 are IC 0 1.2 nA and R N 0 4.5 kilohms.
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Nanoscale superconductor/semiconductor hybrid devices are assembled from
indium arsenide semiconductor nanowires individually contacted by aluminum-
based superconductor electrodes. Below 1 kelvin, the high transparency of the
contacts gives rise to proximity-induced superconductivity. The nanowires form
superconducting weak links operating as mesoscopic Josephson junctions with
electrically tunable coupling. The supercurrent can be switched on/off by a gate
voltage acting on the electron density in the nanowire. A variation in gate
voltage induces universal fluctuations in the normal-state conductance, which
are clearly correlated to critical current fluctuations. The alternating-current
Josephson effect gives rise to Shapiro steps in the voltage-current characteristic
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The recent interest in chemically grown semi-
conductor nanowires arises from their versa-
tility, which translates into a wide range of
potential applications. Many important proofs
of concept have already been provided, such as
field-effect transistors, elementary logic cir-
cuits, resonant tunneling diodes, light-emitting
diodes, lasers, and biochemical sensors (1–3).
These achievements, together with the recent
advance in the monolithic integration of III-V
nanowires with standard Si technology (4, 5),
hold great promise for the development of
next-generation (opto)electronics. Simulta-
neously, the high degree of freedom in nano-
wire growth and device engineering creates
new opportunities for the fabrication of con-
trolled one-dimensional systems for low-
temperature applications and fundamental
science. Quantum confinement and single-
electron control have been achieved in a
variety of single-nanowire devices (6–8). In
these experiments, the transport properties
were dominated by Coulomb interactions
among conduction electrons because of the
presence of high-resistance barriers either at
the interface with the metal leads or within
the nanowire itself.

Here we describe an entirely different
regime, in which the nanowires are contacted
by superconducting electrodes with deliber-
ately low contact resistance. While Coulomb
blockade effects are suppressed, the semi-
conductor nanowires acquire superconducting
properties because of the proximity effect, a
well-known phenomenon that can be described
as the leakage of Cooper pairs of electrons

from a superconductor (S) into a normal-type
conductor (N) (9). The proximity effect takes
place only if the S-N interface is highly trans-
parent to electrons. This requirement is partic-
ularly hard to meet when the N element is a
semiconductor, the major obstacle being posed
in most cases by the unavoidable presence of a
Schottky barrier. In this respect, indium arse-
nide (InAs) is an exceptional semiconductor
because it can form Schottky barrier–free con-
tacts with metals (10). This motivated our
choice of this material in the present work.

The InAs nanowires are grown via a cat-
alytic process based on a vapor-liquid-solid

mechanism (11). The nanowires are mono-
crystalline, with diameters ranging from 40 to
130 nm and lengths of 3 to 10 mm. From field-
effect electrical measurements (discussed be-
low), we find n -type conductivity, with an
average electron density n s 0 (2 to 10) ! 1018

cmj3, and an electron mobility m 0 200 to
2000 cm2/VIs. These values correspond to a
mean free path, l 0 10 to 100 nm. Right after
growth, the nanowires are transferred to a pþ

silicon substrate with a 250-nm-thick SiO2

overlayer. The conductive substrate is used as
a back gate to vary the electron density in
the nanowires. Custom metal electrodes are
defined by e-beam lithography followed by
e-beam evaporation of Ti (10 nm)/Al (120
nm). Before metal deposition, the nanowire
surface is deoxidized by a 6-s wet etching in
buffered hydrofluoric acid. No thermal
annealing is performed, in order to minimize
interdiffusion at the contacts. The spacing, L,
between the source and drain electrodes is
varied between 100 and 450 nm. To perform
four-point measurements, both source and
drain electrodes are split in two branches
(Fig. 1A). A representative single-nanowire
device is shown in Fig. 1B.

The nanowire devices exhibit ohmic be-
havior with a normal state resistance, RN, in
the range from 0.4 to 4.5 kilohms. RN is vir-
tually insensitive to temperature all the way
down to the superconducting transition tem-
perature of the Al-based electrodes, TC 0 1.1 K.
Below TC, the proximity effect manifests
itself through the appearance of a dissipation-
less supercurrent, which can be viewed as a
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Fig. 1. (A) Schematic of a nanowire device. In
four-terminal measurements, current is driven
between Iþ and Ij and the voltage drop is
simultaneously measured between Vþ and Vj.
A gate voltage Vg is applied to the pþ Si
substrate to vary the electron density in the

nanowire. (B) Scanning electron micrograph of a nanowire device. The nanowire diameter is
determined by the size of the gold catalytic particle, which is visible at the upper end of the
nanowire. (C) V(I) characteristics for device no. 1 measured in a four-terminal configuration at T 0
40 mK for both increasing (red) and decreasing (blue) current bias. (Inset) Correlation between IC
and R N (the data points correspond to different devices and Vg 0 0). (D) V(I) characteristics of device
no. 2 at T 0 40 mK for Vg 0 0 (red), –10 (blue), –50 (green), –60 (purple), and –71 V (black). When
Vg is made more negative, the critical current is progressively reduced all the way to zero. When the
supercurrent vanishes, the zero-bias resistance of the device is 70 kilohms. The characteristic
parameters at Vg 0 0 are IC 0 1.2 nA and R N 0 4.5 kilohms.
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Outline

• 1D	transport	in	bottom-up	semiconductor	nanowires
• Localization	effects
• Superconducting	proximity	effect	in	a	quasi-ballistic	channel



[from Kretinin et	al.	Nano	Lett.	2010]

Stacking	faults	in	InAs nanowires

[from Bussone et	al.	J.	Appl.	Crystal	(2013)]





Conductance	quantization	reported	for	Ge/Si	core/shell	nanowires	

5	nm

T	~	4K

Lu	et	al.	PNAS	102,	10036	(2005)

T	~	4K



Conductance	quantization	reported	for	Ge/Si	core/shell	nanowires	

5	nm

T	~	4K

Lu	et	al.	PNAS	102,	10036	(2005)

T	~	4K



One-dimensionality	in	InSb nanowires

(2013)



Assessing	1D	character	of	InAs nanowires

Material from Sorba’s group
(Pisa)

B=8.5T

B	=	0	;	T=	1.9	K

200	nm

SOURCE
DRAIN

NW

(unpublished)



[reproduced from Zhang	et	al.,	arXiv:1603.04069	]

One-dimensionality	in	InSb nanowires



One-dimensionality	in	InAs nanowires	(Heedt et	al.	Nano	Lett.	2016)	



One-dimensionality	in	InAs nanowires	(Heedt et	al.	Nano	Lett.	2016)	





• Stranski-Krastanow growth

• Elongated Ge hut clusters {
• Oriented along [100] and [010] on Si(001)

• Triangular cross section

• L x H x W  ≈  1000 nm x 2 nm x 20 nm

STEM:	A.	Fuhrer	and	M.	Rossell,	IBM	Research	Zürich

Mo	et	al.	PRL	65,	1020	(1990),	
Zhang	et	al.	PRL109,085502(2012)

Watzinger	et	al.,	APL	Materials	(2014)

Ge-based	hut	nanowires	



Device	description

Bottom finger gates

MOVPE-grown	InSb NWs	from	
Bakkers’s group	(Eindhoven)



Underlying	idea
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Same	idea	in
Iqbal et	al	Nature	2013		



Gate	sweeping	configuration



InSb nanowire	with	Al	contacts:	Electrical	tuning	of	subband degeneracy

VG =	4	V VG =	2.5	V VG =	2	V

Tuning comes from
Orbital	& Spin	effect

Note:	
for	g	=	-50	(bulk	InSb)	

gµBB =	2.85	meV @	B=1	T



VG =	2	V

VG =	2.5	V

VG =	4	V



g1 ≈		from	28	to	55	=>	strong	gate	dependence

g2 ≈	50	- 55

Gate-dependent subband spacing:
DE	~		10	meV @	VG=	1.5	V
DE	~		3 meV @	VG=	5.5	V	

Main	conclusions:

Recovery of	subband degeneracy at high B

Degeneracy is robust in	field (sticking effect)

[Estrada	Saldaña et	al.	(next	week	in	cond-mat)]



g1 ≈	30	;		 g2 ≈	50

+	adjustable	orbital	shift	









≈5	meV



[reproduced from Kammhuber et	al.,	arXiv:1701.06878	]


