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83as well as a symbol to the right illustrating all the symmtry elements present in the corresponding
symmetry group (can you find all these symmetries in the paintings?):1

In the left picture, we have reflection axes, and points of 3-fold symmetry. All the rotation centers
are on mirror axes, so we are dealing with p3m1 according to the table above. The symmetry
elements on the right hand side of the left picture show the three-fold rotation centers (triangles),
as well as several mirror axes (double lines), and glide axes (dashed lines). In the right painting
we have reflections and 4-fold symmetry, but nomirrors at the diagonal. Thus we have p4mg. The
symmetry elements on the right of the painting show 4-fold rotation centers (squares), two-fold
rotation centers (rhombs), as well as mirror and glide-mirror axes. Some of these glide axes are
shown as thin dashed lines in the painting.

Both pictures have no mirrors or glide reflections. In the left picture, we will determine the group
for two cases: not ignoring the colors, and ignoring the colors. In the first case, we have only 2-
fold rotation centres. In the second case we have 6-fold, 3-fold, and 2-fold rotation centres. The
right picture has 4-fold symmetry. Two more examples with lower symmetry:

The two-dimensional space groups are also called wallpaper groups.
Crystal classes are grouped into crystal systems according to certain point group symmetry

operations (there is 1 crystal system in one dimension, there are 4 in two dimensions, and 7 in
three dimensions). Each space group belongs to a certain crystal class and to a certain Bravais
lattice. However, the classification of Bravais lattices into lattice systems and of crystal classes
into crystal systems is not entirely compatible. There are space groups grouped into one crystal
systembelonging to different lattice systems, and space groups grouped in the same lattice system
1Picture source: http://www.wikiart.org/en/m-c-escher/symmetry-drawing
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singlet-triplet mixing due to interface: 
Tokuyasu, Sauls, Rainer 1988 Spintronics with Superconductors 9
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Figure 1.7 Singlet-triplet pair mixing mechanism at an interface between a superconduc-
tor and a ferromagnetic insulator. Spin mixing leads to spin-dependent scattering phases
 ± #/2, which are indicated for spin-up and spin-down quasiparticles. This leads to a
dephasing of f"# pair amplitudes with respect to f#" pair amplitudes.

spin-polarized materials, this scattering matrix will be spin-dependent as well.
For a superconductor in contact with a ferromagnetic insulator, the interface scat-
tering matrix has only a reflection amplitude, which is a 2 ⇥ 2 spin matrix. For
collinear spin arrangements this matrix can be chosen diagonal (by choosing the
spin quantization axis appropriately). The diagonal elements have in this case unit
modulus (as the scattering matrix must be unitary), and the scattering is entirely
described by the (spin-dependent) scattering phases. It can be parameterized by a
scalar phase  and a “spin-mixing angle” #,
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For small pair amplitudes the reflected amplitudes at such an interface have the
form fout = f0R(i�2)R⇤. Thus, the f"# amplitude acquires a scattering phase factor
ei#, whereas the f#" component acquires a scattering phase factor e�i#, see Fig. 1.7.
As a result, the scattered pair amplitude takes the form

f̂out = f0 [cos(#) + i sin(#)�z] i�2. (1.19)

Thus, a spin-triplet component ft0 = if0 sin(#) is induced by the spin-dependent
scattering phase shifts. This e↵ect was first described by Tokuyasu, Sauls,
and Rainer [9]. Spin-dependent scattering phases have been employed exten-
sively in various models of interfaces between a superconductor and a strongly
spin-polarized ferromagnet [10, 11, 12]. The spin-mixing parameter R""R⇤## =
|R""R##|ei# plays also a prominent role in spintronics devices where it governs
the spin-mixing conductance [13].

1.2.4 Spin-polarized Andreev bound states at interfaces

One consequence of spin-dependent scattering at interfaces between a supercon-
ductor and a ferromagnet is the appearance of spin-polarized Andreev bound
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Figure 3. Imaginary part of Andreev reflection amplitudes for spin-up Bogoliubov quasiparticle to spin-down Bogoliubov

quasihole, Im(r

e"!h#), at normal impact, for an S-N-FI structure with a normal region of thickness d, as function of

energy ", and of d (in units of ⇠0 = ~v
F,z

/� with v

F,z

the projection of the Fermi velocity on the surface normal). The

reflection amplitude at the N-FI interface is for spin-up e

i#" and for spin-down e

i## . The spin-mixing angle is defined as

#= #" � ##. It has the values (a) #= 0, (b) #= ⇡/2, (c) #= ⇡. In (d)-(f) the thickness of the normal layer is fixed to

(d) d= 0, (e) d= ⇠0, (f) d= 2⇠0, and the spin-mixing angle # varied. The negative reflection amplitude for spin-down

quasiparticle to spin-up quasihole, �Im(r

e#!h"), is obtained by inverting the energy axis, "$�".

one needs a variation exceeding 2⇡ (up to multiple times) until the branch crosses the entire gap.
The figure shows results for normal impact, kk = 0. In general, an integration over kk will lead
to Andreev bands instead of sharp bound states, similar as in the case of de Gennes-Saint-James
bound states in S-N-I structures.

Finally, note that with the reflection matrix (2.1) the resulting coherence function develops a
spin-triplet component from a singlet component �in = �
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(2.12)

which implies that a singlet pair is scattered into a superposition of a singlet and a triplet pair:

("# � #")! ("# ei#� #" e�i#

) = cos(#)("# � #") + i sin(#)("#+ #"). (2.13)

(c) Andreev bound states in an S-FI-N structure
As the next example I summarize some results from Refs. [75,76] and section IV of Ref. [78] for an
S-FI-N junction, consisting of a bulk superconductor coupled via a thin ferromagnetic insulator
(such as EuO) of thickness d

I

to a normal layer of thickness d

N

. I assume here the ballistic case,
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Figure 1.8 Spin-polarized Andreev bound states at an interface between a superconduc-
tor and a ferromagnetic insulator as function of energy " and spin-mixing angle #. On the
left the density of states at the interface for spin-up, on the right for spin-down.

states [14]. If a superconductor is in contact with a ferromagnetic insulator, An-
dreev bound states appear below the gap, that show complete spin polarization.
Accompanied with this is a suppression of the singlet superconducting order pa-
rameter near the interface due to the appearance of the Andreev bound states. This
suppression is complete for # = ⇡, when the bound states for spin-up and spin-
down are degenerate and appear at zero energy. Neglecting this order parameter
suppression (as one can for example if one considers a point contact between a su-
perconductor and a ferromagnetic insulator), the density of states can be obtained
analytically, and is [14]

N"(",#) =
" cos(#/2) +⌦ sin(#/2)
⌦ cos(#/2)� " sin(#/2)

, N#(",#) =
" cos(#/2)�⌦ sin(#/2)
⌦ cos(#/2) + " sin(#/2)

, (1.20)

where ⌦ =
p|�|2 � "2. It is plotted in Fig. 1.8 for both spin projections, showing

the complete spin polarization of the bound states for |"| < |�| (the states above the
gap are unpolarized). The Andreev bound states are obtained as

"" = |�|cos(#/2) · sign[sin(#/2)] , "# = �"". (1.21)

The Fermi-surface averaged pair amplitudes are obtained for z = i"n within the
same approximation as

fs("n,#) =
⇡⌦n�cos(#/2)2

⌦2
n � |�|2 sin(#/2)2

, ft0("n,#) =
1
2

i⇡"n�sin(#/2)
⌦2

n � |�|2 sin(#/2)2
, (1.22)

where ⌦n =
p

|�|2 + "2
n. The triplet component is an odd-frequency amplitude [15].

There are also odd-parity amplitudes, e.g. an even-frequency odd-parity spin-
triplet proportional to sin(#) and an odd-frequency odd-parity spin-singlet pro-
portional to sin(#/2)2 [16, 17].
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58, 59, 60, 61]. In particular, the phenomenon of re-entrant superconductivity
with increasing dF has attracted attention [62, 63], where even double extinction
has been demonstrated [64].

1.4 Equal spin pair amplitudes

In Eqs. (1.10)-(1.11) and (1.15)-(1.16) two of the spin-triplet solutions were equal-
spin pairing amplitudes with spins aligned parallel or antiparallel with J . These
solutions have a large penetration lengthscale into the ferromagnet, governed only
by temperature, mean free path, and Fermi velocity, however not by the exchange
splitting of the electronic bands J . In order to induce these components in a ferro-
magnet coupled by proximity e↵ect to a superconductor, the spin rotational sym-
metry around J must be broken. This means, one needs a non-collinear spin ar-
rangement.

For this it is useful to consider the spinor coordinate transformation from one
quantization axis (the z-axis) to another one, the direction of which is given by . po-
lar and azimuthal angles, ↵ and �, respectively, measured from the z-axis in spin
space. Let us define the unit vector n = (nx,ny,nz) = (sin↵ cos�,sin↵ sin�,cos↵).
Then the eigenvectors of n ·S for eigenvalues ±~2 , where S = ~

2�, define the spin-up
and spin-down states with respect to the new quantization axis n. The well-known
transformation formulas for basis vectors quantized along the direction n(↵,�) in
terms of basis vectors quantized along the z-axis read

"
n

= cos
↵
2
"z +sin

↵
2
ei� #z, #

n

= �sin
↵
2
e�i� "z +cos

↵
2
#z . (1.37)

We note here that if R defined in Eq. (1.18) is applied to a spin state "
n

or #
n

, it
leads to a spin state that di↵ers from the original one (apart from a scalar phase) by
the replacement n(↵,�)! n(↵,��#). Thus, the spin will after reflection be rotated
by an angle # around the z-axis. The spin-mixing angle # has consequently also
the interpretation of a spin precession angle around the spin quantization axis of
the interface.

Using Eqs. (1.37), one can express a Cooper pair amplitude with respect to the
new quantization axis, which leads to

("# � #")
n

= ("# � #")z (1.38)

("# + #")
n

= �sin↵
h

e�i�("")z � ei�(##)z
i

+ cos↵("# + #")z (1.39)

Two conclusions arise from this formula. First, once triplet pair amplitudes of the
form ("# + #")

n

with respect to some axis n are created in some spatial region,
they can give rise to long-range equal-spin pair amplitudes ("")z and (##)z that
can penetrate into a ferromagnet with J aligned with the z-axis. And second, these
equal-spin pair amplitudes carry a relative phase of ±(⇡+2�) with respect to each
other.
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Two conclusions arise from this formula. First, once triplet pair amplitudes of the
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with respect to some axis n are created in some spatial region,
they can give rise to long-range equal-spin pair amplitudes ("")z and (##)z that
can penetrate into a ferromagnet with J aligned with the z-axis. And second, these
equal-spin pair amplitudes carry a relative phase of ±(⇡+2�) with respect to each
other.
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Figure 1.14 (a) Mechanism for creation of long-range pair amplitudes in a proximity
structure. The spin-mixing e↵ect provides mixing between spin-singlet and spin-triplet
pair amplitudes, creating a short-range triplet amplitude with Sz = 0. If a non-collinear
spin arrangement is present in the system, e.g. by inserting a ferromagnetic insulating (FI)
thin layer between the superconductor (SC) and the metallic ferromagnet (FM), then long-
range amplitudes with Sz = ±1 are generated in FM. The structure is shown in (c), with the
spheric angles defined in (b).

equal-spin pair amplitudes carry a relative phase of ±(⇡+2�) with respect to each
other.

In Fig. 1.14 the mechanism for generating long-range equal-spin components
in a superconductor/ferromagnet heterostructure is shown [68]. The crucial step
is to insert a region between the superconductor and the ferromagnet in which
the spin alignment is non-collinear. This can be achieved by various methods.
Either a region of spiral magnetism is present next to the interface [15, 69], as
shown in Fig. 1.15(a). Or an insulating barrier with misaligned spin magnetic mo-
ment is present at the interface (e.g. a thin layer of a ferromagnetic insulator)
[10, 78, 70], as in Fig. 1.15(b). Or, alternatively, thin layers of metallic ferromag-
nets that are misaligned with respect to the central ferromagnet can be used [71],
see Fig. 1.15(c).

Experimental evidence for this generation mechanism of long-range equal-
spin amplitudes has been provided by several di↵erent techniques. Long-range
proximity coupling as well as spin-triplet supercurrents through half-metallic fer-
romagnets, where one spin band is metallic and the other spin band not, were
observed various times [72, 73, 74, 75, 76, 77]. Other experiments used layers of
spiral magnets (e.g. holmium) on either side of a bulk ferromagnet (e.g. cobalt)
in order to generate a non-collinear spin-order, and found long-range proximity
e↵ects [79] and spin-triplet supercurrents across a cobalt layer [80]. Yet other ex-
perimental designs are based on fabricating multi-layer structures, with control
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Figure 1.20 Spin-valve Josephson junction geometries: (a) S/F1/N/F2/S; (b)
F2/S/F1/S/F2. Here, F1 and F2 should be dissimilar ferromagnets, such that they
have di↵erent magnetization curves, allowing for control by an external magnetic field.
For the thin normal-conducting layer N between F1 and F2 in (a) often the same material
is used as for the superconductor S, in which case the thickness of N is chosen such that it
is below the critical thickness for superconductivity.

a direction parallel to the interface. If the spiral pitch of such a cycloidal spiral
is comparable to the superconducting coherence length then 0-⇡ transitions can
be induced depending on the spiral wave length [114]. In such a structure only
short-range triplet components are present. In a more general case, with magnetic
domains separated by Néel walls, long-range triplet components are present and
arise at the domain walls, decaying inside the domains [115, 116].

A new type of spin-valve constitutes the re-orientation spin-valve, in which a
spiral magnetic wave vector can switch between two orientations, using e.g. mag-
nets from the B20-family of itinerant cubic helimagnets, with potentially giant
spin-valve behavior [117].

1.6 Phase batteries

An interesting aspect of combining superconducting phase coherence with fer-
romagnetic spin-selectivity is the possibility to modify and control the current-
phase relation in a ferromagnetic Josephson junction via the spin-magnetization.
Consider an S/FI1/F/FI2/S junction, with two ferromagnetic insulating barriers
FI1 and FI2, and an itinerant ferromagnet F. The barriers are characterized by
magnetic moments m1 and m2, whereas the ferromagnet has magnetization M.

Geometric properties of the magnetization profile across a device are ex-
pressed in terms of collinearity and coplanarity. The role of non-collinearity has
already been discussed in the previous sections in detail, and it is necessary in
order to induce long-range superconducting components in a ferromagnet. Two
vectors m1 and m2 are called non-collinear if m1 ⇥m2 , 0. The magnetization pro-
file of a device is called non-collinear if it contains at least two non-collinear mag-
netic moment directions. Similarly, three vectors m1, m2, and M are non-coplanar
if (m1 ⇥m2) ·M , 0. In this case, there is an important geometric phase associ-
ated with the relative orientation of the projections of m1 and m2 onto the plane
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Superconductor (SC)/ferromagnet (FM) hybrid struc-
tures have triggered considerable research activities in
recent years [1–11]. In particular, FM Josephson junctions
are promising spintronics devices as they allow for tuning
the critical current via the electron spin. However, due to
the competition between the uniform spin alignment in the
FM and spin-singlet pairing in the SC, singlet supercon-
ducting correlations decay in the FM on a much shorter
length scale than in a normal metal [12]. Although this
results in a rapidly decaying Josephson current for long
junctions, the proximity effect leads to interesting physics
in short and/or weakly polarized junctions, e.g., oscilla-
tions of the supercurrent as a function of the thickness of
the interlayer that can give rise to !-junction behavior
[12,13]. Recently, however, in contradiction with these
expectations, long-range supercurrents have been reported
through strongly spin-polarized materials [6]. Theoretical
calculations have shown that for strongly polarized ferro-
magnets (SFMs) spin scattering at SC/FM interfaces [14]
leads to a transformation of singlet correlations in the SC
into triplet correlations [3] (the ‘‘triplet reservoirs’’ of
Ref. [9]), which can carry a long-range supercurrent
through the SFM [3,7–11].

So far, transport calculations in SC/FM hybrids have
mostly concentrated on either fully polarized FMs, so-
called half metals, or on the opposite limit of weakly
polarized systems. However, most FMs have an intermedi-
ate exchange splitting of the energy bands of the order of
0.2–0.8 times the Fermi energy EF. For this intermediate
range, one could naively expect a behavior similar to two
shunted half metallic junctions. We will show, using a
microscopic interface model, that this picture is inade-
quate, and point out the crucial role played by the inter-
faces in coupling the SFM spin bands.

In this Letter, we study Josephson junctions with a
strongly polarized interlayer, and find fundamental differ-
ences compared to both half metallic and weakly polarized
interlayers. In particular, we see that, although correlations
between " and # electrons are suppressed due to the strong

exchange field, spin-active interfaces generate interactions
between long-range triplet supercurrents in the two spin
bands. We find that the long-range critical Josephson cur-
rent varies nonmonotonically with spin polarization P,
showing a maximum around P ¼ 0:3. Furthermore, spe-
cifically when the exchange splitting is strong, additional
phases arising from the interfaces [14] lead to different
current-phase relations for the spin-resolved currents I" and
I# through the junction. We show how this gives rise to (i) a
relative phase between single pair and ‘‘crossed’’ two-pair
transmission [the latter process is illustrated in Fig. 1(a),
with equal numbers of pairs transferred in the spin " and
spin # band], (ii) different critical Josephson currents for
opposite bias, (iii) equilibrium shifts in the current-phase
relation, in contrast to previous predictions [9], and (iv) a
tunable spin supercurrent in a FM brought into contact with
a single SC electrode (we propose an experiment to mea-
sure this remarkable effect).
Quasiclassical Green’s functions (QCGFs) [15,16] are a

powerful tool to describe hybrid structures of supercon-
ductors and nonsuperconducting materials. Consider, e.g.,
the interface between a SC and a SFM shown in Fig. 1(b).
For trajectories on the SC side, labeled 1, and character-

FIG. 1 (color online). (a) The coherent transfer of singlet pairs
via a SFM (top) is not possible. However, the ‘‘crossed’’ pair
transmissions process (bottom) is possible and leads to intriguing
effects in high transmission junctions. (b) SC/SFM interface,
showing the Fermi surfaces on either side (thick lines). Assum-

ing momentum conservation parallel to the interface ( ~kk), a qua-
siparticle incident from the SC can either scatter into two (dotted
arrows) or into only one (dashed arrows) spin band of the FM.
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Figure 20. Schematic drawing of the crossed pair transmission process. Cooper pairs
with opposite spin projection on the magnetization vector do not contribute to the
spin supercurrent in strongly spin-polarized ferromagnets (top panel). However, due
to magnetic inhomogeneity across the interfaces singlet-triplet conversion processes
generate out of two singlet pairs two equal-spin triplet pairs with opposite spin
polarization. These two equal-spin pairs are transmitted simultaneously in a crossed
pair transmission process (bottom panel). Their phases correspond to �� ± ��. A
geometric phase shift 2�� appears between the two types of Cooper pairs. Copyright
(2009) by the American Physical Society [172].

provided that �� �= 0. An example of such a case was discussed in [172], where one of
the superconductors was replaced by an insulator, and a pure spin supercurrent remains,
giving rise to a spin-Josephson effect. In this case only terms with m+n = 0 remain, with
a pure spin supercurrents Is = �

�
m 2mIm,�m sin(2m��). On the other hand, crossed

pair transmission processes in equal direction have zero spin current and correspond to
m = n, leading to a contribution to charge current of the form 2e

�
m 2mImm sin(2m��).

For illustrative purposes we consider the example of only first order terms and leading
order crossed pair transmission terms, i.e. only terms associated with I01,I10, I11, and
I1,�1. Then

I/2e = � I10 sin(�� + ��) � I01 sin(�� � ��) + 2I11 sin(2��) (99a)
Is/� = � I10 sin(�� + ��) + I01 sin(�� � ��) + 2I1,�1 sin(2��). (99b)

The last term in each of these equations corresponds to the crossed pair transmission
process (in equal and opposite direction, correspondingly). The critical current density
for positive and negative current bias differs for this case, similar as shown in Fig. 19 (b).
Furthermore, for sufficiently large I11 multiple minima of the free energy as function of
�� appear, leading to the characteristic jump at a certain value of �� as illustrated
in Fig. 19 (c). If �� were continuously varied, a hysteresis would occur, typical for a
first order phase transition. Finally, when one of the superconductors is replaced by an
insulating material then I = 0 and the spin-Josephson current is Is = 2�I1,�1 sin(2��)

[172].
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Figure 1.15 (a)-(c) Various geometries appropriate for the generation of long-range spin-
triplet pair amplitudes in a ferromagnet (FM, e.g. Co) when used in a Josephson junction
with a conventional singlet superconductor (SC, e.g. Nb). In (a) two layers of a conical
ferromagnet (CFM, e.g. Ho) are used as singlet-triplet converters. In (b) insulating spin-
polarized barriers (or thin layers of a ferromagnetic insulator FI) function as converter,
with misaligned moments e.g. due to spin-orbit coupling. In (c) two misaligned ferromag-
nets (FM0 , e.g. Cu-Ni or Pd-Ni alloys) are used instead. (d) shows the indirect nature of the
Josephson e↵ect, involving a conversion from opposite-spin pairs to equal-spin pairs on
either side of the junction [82].

over the magnetization profile across the layers, demonstrating long-range spin-
triplet supercurrents as well [81].

Fig. 1.15(d) shows the indirect nature of the Josephson e↵ect in such
superconductor-ferromagnet structures if the central ferromagnet is strongly
spin-polarized [82]. In this case, a singlet-triplet conversion takes place at ei-
ther interface between the superconductor and the ferromagnet (with spin-
noncollinearity either artificially engineered or intrinsic), and the coupling be-
tween the superconducting electrodes is provided by the equal-spin amplitudes
only. This mechanism works also if the central ferromagnet is a half-metal [10].

The slow-decay of long-range equal-spin pair amplitudes in a ferromagnet al-
lows to use rather thick ferromagnetic layers. In this case, the properties of the
long-range pair amplitudes are typically governed by di↵usive transport, as the
mean free path, although it may exceed the penetration depth of the short-range
components, is typically much shorter then the penetration depth of the long-
range components. As di↵usive pair amplitudes are Fermi-surface averaged quan-
tities, they are even in parity. Thus, long-range triplet pairs are odd-frequency
[15]. The possibility to spatially separate such odd-frequency components from
the generating superconductor due to the superconducting proximity e↵ect allows
to study and utilize them. Odd-frequency pair amplitudes have a paramagnetic
Meissner response [83], and their experimental observation has important con-
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Superconductor (SC)/ferromagnet (FM) hybrid struc-
tures have triggered considerable research activities in
recent years [1–11]. In particular, FM Josephson junctions
are promising spintronics devices as they allow for tuning
the critical current via the electron spin. However, due to
the competition between the uniform spin alignment in the
FM and spin-singlet pairing in the SC, singlet supercon-
ducting correlations decay in the FM on a much shorter
length scale than in a normal metal [12]. Although this
results in a rapidly decaying Josephson current for long
junctions, the proximity effect leads to interesting physics
in short and/or weakly polarized junctions, e.g., oscilla-
tions of the supercurrent as a function of the thickness of
the interlayer that can give rise to !-junction behavior
[12,13]. Recently, however, in contradiction with these
expectations, long-range supercurrents have been reported
through strongly spin-polarized materials [6]. Theoretical
calculations have shown that for strongly polarized ferro-
magnets (SFMs) spin scattering at SC/FM interfaces [14]
leads to a transformation of singlet correlations in the SC
into triplet correlations [3] (the ‘‘triplet reservoirs’’ of
Ref. [9]), which can carry a long-range supercurrent
through the SFM [3,7–11].

So far, transport calculations in SC/FM hybrids have
mostly concentrated on either fully polarized FMs, so-
called half metals, or on the opposite limit of weakly
polarized systems. However, most FMs have an intermedi-
ate exchange splitting of the energy bands of the order of
0.2–0.8 times the Fermi energy EF. For this intermediate
range, one could naively expect a behavior similar to two
shunted half metallic junctions. We will show, using a
microscopic interface model, that this picture is inade-
quate, and point out the crucial role played by the inter-
faces in coupling the SFM spin bands.

In this Letter, we study Josephson junctions with a
strongly polarized interlayer, and find fundamental differ-
ences compared to both half metallic and weakly polarized
interlayers. In particular, we see that, although correlations
between " and # electrons are suppressed due to the strong

exchange field, spin-active interfaces generate interactions
between long-range triplet supercurrents in the two spin
bands. We find that the long-range critical Josephson cur-
rent varies nonmonotonically with spin polarization P,
showing a maximum around P ¼ 0:3. Furthermore, spe-
cifically when the exchange splitting is strong, additional
phases arising from the interfaces [14] lead to different
current-phase relations for the spin-resolved currents I" and
I# through the junction. We show how this gives rise to (i) a
relative phase between single pair and ‘‘crossed’’ two-pair
transmission [the latter process is illustrated in Fig. 1(a),
with equal numbers of pairs transferred in the spin " and
spin # band], (ii) different critical Josephson currents for
opposite bias, (iii) equilibrium shifts in the current-phase
relation, in contrast to previous predictions [9], and (iv) a
tunable spin supercurrent in a FM brought into contact with
a single SC electrode (we propose an experiment to mea-
sure this remarkable effect).
Quasiclassical Green’s functions (QCGFs) [15,16] are a

powerful tool to describe hybrid structures of supercon-
ductors and nonsuperconducting materials. Consider, e.g.,
the interface between a SC and a SFM shown in Fig. 1(b).
For trajectories on the SC side, labeled 1, and character-

FIG. 1 (color online). (a) The coherent transfer of singlet pairs
via a SFM (top) is not possible. However, the ‘‘crossed’’ pair
transmissions process (bottom) is possible and leads to intriguing
effects in high transmission junctions. (b) SC/SFM interface,
showing the Fermi surfaces on either side (thick lines). Assum-

ing momentum conservation parallel to the interface ( ~kk), a qua-
siparticle incident from the SC can either scatter into two (dotted
arrows) or into only one (dashed arrows) spin band of the FM.
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Figure 20. Schematic drawing of the crossed pair transmission process. Cooper pairs
with opposite spin projection on the magnetization vector do not contribute to the
spin supercurrent in strongly spin-polarized ferromagnets (top panel). However, due
to magnetic inhomogeneity across the interfaces singlet-triplet conversion processes
generate out of two singlet pairs two equal-spin triplet pairs with opposite spin
polarization. These two equal-spin pairs are transmitted simultaneously in a crossed
pair transmission process (bottom panel). Their phases correspond to �� ± ��. A
geometric phase shift 2�� appears between the two types of Cooper pairs. Copyright
(2009) by the American Physical Society [172].

provided that �� �= 0. An example of such a case was discussed in [172], where one of
the superconductors was replaced by an insulator, and a pure spin supercurrent remains,
giving rise to a spin-Josephson effect. In this case only terms with m+n = 0 remain, with
a pure spin supercurrents Is = �

�
m 2mIm,�m sin(2m��). On the other hand, crossed

pair transmission processes in equal direction have zero spin current and correspond to
m = n, leading to a contribution to charge current of the form 2e

�
m 2mImm sin(2m��).

For illustrative purposes we consider the example of only first order terms and leading
order crossed pair transmission terms, i.e. only terms associated with I01,I10, I11, and
I1,�1. Then

I/2e = � I10 sin(�� + ��) � I01 sin(�� � ��) + 2I11 sin(2��) (99a)
Is/� = � I10 sin(�� + ��) + I01 sin(�� � ��) + 2I1,�1 sin(2��). (99b)

The last term in each of these equations corresponds to the crossed pair transmission
process (in equal and opposite direction, correspondingly). The critical current density
for positive and negative current bias differs for this case, similar as shown in Fig. 19 (b).
Furthermore, for sufficiently large I11 multiple minima of the free energy as function of
�� appear, leading to the characteristic jump at a certain value of �� as illustrated
in Fig. 19 (c). If �� were continuously varied, a hysteresis would occur, typical for a
first order phase transition. Finally, when one of the superconductors is replaced by an
insulating material then I = 0 and the spin-Josephson current is Is = 2�I1,�1 sin(2��)

[172].
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Figure 1.15 (a)-(c) Various geometries appropriate for the generation of long-range spin-
triplet pair amplitudes in a ferromagnet (FM, e.g. Co) when used in a Josephson junction
with a conventional singlet superconductor (SC, e.g. Nb). In (a) two layers of a conical
ferromagnet (CFM, e.g. Ho) are used as singlet-triplet converters. In (b) insulating spin-
polarized barriers (or thin layers of a ferromagnetic insulator FI) function as converter,
with misaligned moments e.g. due to spin-orbit coupling. In (c) two misaligned ferromag-
nets (FM0 , e.g. Cu-Ni or Pd-Ni alloys) are used instead. (d) shows the indirect nature of the
Josephson e↵ect, involving a conversion from opposite-spin pairs to equal-spin pairs on
either side of the junction [82].

over the magnetization profile across the layers, demonstrating long-range spin-
triplet supercurrents as well [81].

Fig. 1.15(d) shows the indirect nature of the Josephson e↵ect in such
superconductor-ferromagnet structures if the central ferromagnet is strongly
spin-polarized [82]. In this case, a singlet-triplet conversion takes place at ei-
ther interface between the superconductor and the ferromagnet (with spin-
noncollinearity either artificially engineered or intrinsic), and the coupling be-
tween the superconducting electrodes is provided by the equal-spin amplitudes
only. This mechanism works also if the central ferromagnet is a half-metal [10].

The slow-decay of long-range equal-spin pair amplitudes in a ferromagnet al-
lows to use rather thick ferromagnetic layers. In this case, the properties of the
long-range pair amplitudes are typically governed by di↵usive transport, as the
mean free path, although it may exceed the penetration depth of the short-range
components, is typically much shorter then the penetration depth of the long-
range components. As di↵usive pair amplitudes are Fermi-surface averaged quan-
tities, they are even in parity. Thus, long-range triplet pairs are odd-frequency
[15]. The possibility to spatially separate such odd-frequency components from
the generating superconductor due to the superconducting proximity e↵ect allows
to study and utilize them. Odd-frequency pair amplitudes have a paramagnetic
Meissner response [83], and their experimental observation has important con-
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Figure 1.20 Spin-valve Josephson junction geometries: (a) S/F1/N/F2/S; (b)
F2/S/F1/S/F2. Here, F1 and F2 should be dissimilar ferromagnets, such that they
have di↵erent magnetization curves, allowing for control by an external magnetic field.
For the thin normal-conducting layer N between F1 and F2 in (a) often the same material
is used as for the superconductor S, in which case the thickness of N is chosen such that it
is below the critical thickness for superconductivity.

a direction parallel to the interface. If the spiral pitch of such a cycloidal spiral
is comparable to the superconducting coherence length then 0-⇡ transitions can
be induced depending on the spiral wave length [114]. In such a structure only
short-range triplet components are present. In a more general case, with magnetic
domains separated by Néel walls, long-range triplet components are present and
arise at the domain walls, decaying inside the domains [115, 116].

A new type of spin-valve constitutes the re-orientation spin-valve, in which a
spiral magnetic wave vector can switch between two orientations, using e.g. mag-
nets from the B20-family of itinerant cubic helimagnets, with potentially giant
spin-valve behavior [117].

1.6 Phase batteries

An interesting aspect of combining superconducting phase coherence with fer-
romagnetic spin-selectivity is the possibility to modify and control the current-
phase relation in a ferromagnetic Josephson junction via the spin-magnetization.
Consider an S/FI1/F/FI2/S junction, with two ferromagnetic insulating barriers
FI1 and FI2, and an itinerant ferromagnet F. The barriers are characterized by
magnetic moments m1 and m2, whereas the ferromagnet has magnetization M.

Geometric properties of the magnetization profile across a device are ex-
pressed in terms of collinearity and coplanarity. The role of non-collinearity has
already been discussed in the previous sections in detail, and it is necessary in
order to induce long-range superconducting components in a ferromagnet. Two
vectors m1 and m2 are called non-collinear if m1 ⇥m2 , 0. The magnetization pro-
file of a device is called non-collinear if it contains at least two non-collinear mag-
netic moment directions. Similarly, three vectors m1, m2, and M are non-coplanar
if (m1 ⇥m2) ·M , 0. In this case, there is an important geometric phase associ-
ated with the relative orientation of the projections of m1 and m2 onto the plane

Slab of Superfluid 3He B with spin-active interfaces: 

SEPnet & Hubbard Theory Consortium, Department of Physics, 
 Royal Holloway, University of London 

Spintronics with Superconductors 25

(a) 

SC SC 

F1 

N 

F2 
(b) 

SC 

F1 F2 F2 

SC 

Figure 1.20 Spin-valve Josephson junction geometries: (a) S/F1/N/F2/S; (b)
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is below the critical thickness for superconductivity.

a direction parallel to the interface. If the spiral pitch of such a cycloidal spiral
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be induced depending on the spiral wave length [114]. In such a structure only
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domains separated by Néel walls, long-range triplet components are present and
arise at the domain walls, decaying inside the domains [115, 116].
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a direction parallel to the interface. If the spiral pitch of such a cycloidal spiral
is comparable to the superconducting coherence length then 0-⇡ transitions can
be induced depending on the spiral wave length [114]. In such a structure only
short-range triplet components are present. In a more general case, with magnetic
domains separated by Néel walls, long-range triplet components are present and
arise at the domain walls, decaying inside the domains [115, 116].
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a direction parallel to the interface. If the spiral pitch of such a cycloidal spiral
is comparable to the superconducting coherence length then 0-⇡ transitions can
be induced depending on the spiral wave length [114]. In such a structure only
short-range triplet components are present. In a more general case, with magnetic
domains separated by Néel walls, long-range triplet components are present and
arise at the domain walls, decaying inside the domains [115, 116].

A new type of spin-valve constitutes the re-orientation spin-valve, in which a
spiral magnetic wave vector can switch between two orientations, using e.g. mag-
nets from the B20-family of itinerant cubic helimagnets, with potentially giant
spin-valve behavior [117].

1.6 Phase batteries

An interesting aspect of combining superconducting phase coherence with fer-
romagnetic spin-selectivity is the possibility to modify and control the current-
phase relation in a ferromagnetic Josephson junction via the spin-magnetization.
Consider an S/FI1/F/FI2/S junction, with two ferromagnetic insulating barriers
FI1 and FI2, and an itinerant ferromagnet F. The barriers are characterized by
magnetic moments m1 and m2, whereas the ferromagnet has magnetization M.

Geometric properties of the magnetization profile across a device are ex-
pressed in terms of collinearity and coplanarity. The role of non-collinearity has
already been discussed in the previous sections in detail, and it is necessary in
order to induce long-range superconducting components in a ferromagnet. Two
vectors m1 and m2 are called non-collinear if m1 ⇥m2 , 0. The magnetization pro-
file of a device is called non-collinear if it contains at least two non-collinear mag-
netic moment directions. Similarly, three vectors m1, m2, and M are non-coplanar
if (m1 ⇥m2) ·M , 0. In this case, there is an important geometric phase associ-
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is comparable to the superconducting coherence length then 0-⇡ transitions can
be induced depending on the spiral wave length [114]. In such a structure only
short-range triplet components are present. In a more general case, with magnetic
domains separated by Néel walls, long-range triplet components are present and
arise at the domain walls, decaying inside the domains [115, 116].
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is used as for the superconductor S, in which case the thickness of N is chosen such that it
is below the critical thickness for superconductivity.

a direction parallel to the interface. If the spiral pitch of such a cycloidal spiral
is comparable to the superconducting coherence length then 0-⇡ transitions can
be induced depending on the spiral wave length [114]. In such a structure only
short-range triplet components are present. In a more general case, with magnetic
domains separated by Néel walls, long-range triplet components are present and
arise at the domain walls, decaying inside the domains [115, 116].

A new type of spin-valve constitutes the re-orientation spin-valve, in which a
spiral magnetic wave vector can switch between two orientations, using e.g. mag-
nets from the B20-family of itinerant cubic helimagnets, with potentially giant
spin-valve behavior [117].

1.6 Phase batteries

An interesting aspect of combining superconducting phase coherence with fer-
romagnetic spin-selectivity is the possibility to modify and control the current-
phase relation in a ferromagnetic Josephson junction via the spin-magnetization.
Consider an S/FI1/F/FI2/S junction, with two ferromagnetic insulating barriers
FI1 and FI2, and an itinerant ferromagnet F. The barriers are characterized by
magnetic moments m1 and m2, whereas the ferromagnet has magnetization M.

Geometric properties of the magnetization profile across a device are ex-
pressed in terms of collinearity and coplanarity. The role of non-collinearity has
already been discussed in the previous sections in detail, and it is necessary in
order to induce long-range superconducting components in a ferromagnet. Two
vectors m1 and m2 are called non-collinear if m1 ⇥m2 , 0. The magnetization pro-
file of a device is called non-collinear if it contains at least two non-collinear mag-
netic moment directions. Similarly, three vectors m1, m2, and M are non-coplanar
if (m1 ⇥m2) ·M , 0. In this case, there is an important geometric phase associ-
ated with the relative orientation of the projections of m1 and m2 onto the plane
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Superconductor (SC)/ferromagnet (FM) hybrid struc-
tures have triggered considerable research activities in
recent years [1–11]. In particular, FM Josephson junctions
are promising spintronics devices as they allow for tuning
the critical current via the electron spin. However, due to
the competition between the uniform spin alignment in the
FM and spin-singlet pairing in the SC, singlet supercon-
ducting correlations decay in the FM on a much shorter
length scale than in a normal metal [12]. Although this
results in a rapidly decaying Josephson current for long
junctions, the proximity effect leads to interesting physics
in short and/or weakly polarized junctions, e.g., oscilla-
tions of the supercurrent as a function of the thickness of
the interlayer that can give rise to !-junction behavior
[12,13]. Recently, however, in contradiction with these
expectations, long-range supercurrents have been reported
through strongly spin-polarized materials [6]. Theoretical
calculations have shown that for strongly polarized ferro-
magnets (SFMs) spin scattering at SC/FM interfaces [14]
leads to a transformation of singlet correlations in the SC
into triplet correlations [3] (the ‘‘triplet reservoirs’’ of
Ref. [9]), which can carry a long-range supercurrent
through the SFM [3,7–11].

So far, transport calculations in SC/FM hybrids have
mostly concentrated on either fully polarized FMs, so-
called half metals, or on the opposite limit of weakly
polarized systems. However, most FMs have an intermedi-
ate exchange splitting of the energy bands of the order of
0.2–0.8 times the Fermi energy EF. For this intermediate
range, one could naively expect a behavior similar to two
shunted half metallic junctions. We will show, using a
microscopic interface model, that this picture is inade-
quate, and point out the crucial role played by the inter-
faces in coupling the SFM spin bands.

In this Letter, we study Josephson junctions with a
strongly polarized interlayer, and find fundamental differ-
ences compared to both half metallic and weakly polarized
interlayers. In particular, we see that, although correlations
between " and # electrons are suppressed due to the strong

exchange field, spin-active interfaces generate interactions
between long-range triplet supercurrents in the two spin
bands. We find that the long-range critical Josephson cur-
rent varies nonmonotonically with spin polarization P,
showing a maximum around P ¼ 0:3. Furthermore, spe-
cifically when the exchange splitting is strong, additional
phases arising from the interfaces [14] lead to different
current-phase relations for the spin-resolved currents I" and
I# through the junction. We show how this gives rise to (i) a
relative phase between single pair and ‘‘crossed’’ two-pair
transmission [the latter process is illustrated in Fig. 1(a),
with equal numbers of pairs transferred in the spin " and
spin # band], (ii) different critical Josephson currents for
opposite bias, (iii) equilibrium shifts in the current-phase
relation, in contrast to previous predictions [9], and (iv) a
tunable spin supercurrent in a FM brought into contact with
a single SC electrode (we propose an experiment to mea-
sure this remarkable effect).
Quasiclassical Green’s functions (QCGFs) [15,16] are a

powerful tool to describe hybrid structures of supercon-
ductors and nonsuperconducting materials. Consider, e.g.,
the interface between a SC and a SFM shown in Fig. 1(b).
For trajectories on the SC side, labeled 1, and character-

FIG. 1 (color online). (a) The coherent transfer of singlet pairs
via a SFM (top) is not possible. However, the ‘‘crossed’’ pair
transmissions process (bottom) is possible and leads to intriguing
effects in high transmission junctions. (b) SC/SFM interface,
showing the Fermi surfaces on either side (thick lines). Assum-

ing momentum conservation parallel to the interface ( ~kk), a qua-
siparticle incident from the SC can either scatter into two (dotted
arrows) or into only one (dashed arrows) spin band of the FM.
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Superconductor (SC)/ferromagnet (FM) hybrid struc-
tures have triggered considerable research activities in
recent years [1–11]. In particular, FM Josephson junctions
are promising spintronics devices as they allow for tuning
the critical current via the electron spin. However, due to
the competition between the uniform spin alignment in the
FM and spin-singlet pairing in the SC, singlet supercon-
ducting correlations decay in the FM on a much shorter
length scale than in a normal metal [12]. Although this
results in a rapidly decaying Josephson current for long
junctions, the proximity effect leads to interesting physics
in short and/or weakly polarized junctions, e.g., oscilla-
tions of the supercurrent as a function of the thickness of
the interlayer that can give rise to !-junction behavior
[12,13]. Recently, however, in contradiction with these
expectations, long-range supercurrents have been reported
through strongly spin-polarized materials [6]. Theoretical
calculations have shown that for strongly polarized ferro-
magnets (SFMs) spin scattering at SC/FM interfaces [14]
leads to a transformation of singlet correlations in the SC
into triplet correlations [3] (the ‘‘triplet reservoirs’’ of
Ref. [9]), which can carry a long-range supercurrent
through the SFM [3,7–11].

So far, transport calculations in SC/FM hybrids have
mostly concentrated on either fully polarized FMs, so-
called half metals, or on the opposite limit of weakly
polarized systems. However, most FMs have an intermedi-
ate exchange splitting of the energy bands of the order of
0.2–0.8 times the Fermi energy EF. For this intermediate
range, one could naively expect a behavior similar to two
shunted half metallic junctions. We will show, using a
microscopic interface model, that this picture is inade-
quate, and point out the crucial role played by the inter-
faces in coupling the SFM spin bands.

In this Letter, we study Josephson junctions with a
strongly polarized interlayer, and find fundamental differ-
ences compared to both half metallic and weakly polarized
interlayers. In particular, we see that, although correlations
between " and # electrons are suppressed due to the strong

exchange field, spin-active interfaces generate interactions
between long-range triplet supercurrents in the two spin
bands. We find that the long-range critical Josephson cur-
rent varies nonmonotonically with spin polarization P,
showing a maximum around P ¼ 0:3. Furthermore, spe-
cifically when the exchange splitting is strong, additional
phases arising from the interfaces [14] lead to different
current-phase relations for the spin-resolved currents I" and
I# through the junction. We show how this gives rise to (i) a
relative phase between single pair and ‘‘crossed’’ two-pair
transmission [the latter process is illustrated in Fig. 1(a),
with equal numbers of pairs transferred in the spin " and
spin # band], (ii) different critical Josephson currents for
opposite bias, (iii) equilibrium shifts in the current-phase
relation, in contrast to previous predictions [9], and (iv) a
tunable spin supercurrent in a FM brought into contact with
a single SC electrode (we propose an experiment to mea-
sure this remarkable effect).
Quasiclassical Green’s functions (QCGFs) [15,16] are a

powerful tool to describe hybrid structures of supercon-
ductors and nonsuperconducting materials. Consider, e.g.,
the interface between a SC and a SFM shown in Fig. 1(b).
For trajectories on the SC side, labeled 1, and character-

FIG. 1 (color online). (a) The coherent transfer of singlet pairs
via a SFM (top) is not possible. However, the ‘‘crossed’’ pair
transmissions process (bottom) is possible and leads to intriguing
effects in high transmission junctions. (b) SC/SFM interface,
showing the Fermi surfaces on either side (thick lines). Assum-

ing momentum conservation parallel to the interface ( ~kk), a qua-
siparticle incident from the SC can either scatter into two (dotted
arrows) or into only one (dashed arrows) spin band of the FM.
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Figure 20. Schematic drawing of the crossed pair transmission process. Cooper pairs
with opposite spin projection on the magnetization vector do not contribute to the
spin supercurrent in strongly spin-polarized ferromagnets (top panel). However, due
to magnetic inhomogeneity across the interfaces singlet-triplet conversion processes
generate out of two singlet pairs two equal-spin triplet pairs with opposite spin
polarization. These two equal-spin pairs are transmitted simultaneously in a crossed
pair transmission process (bottom panel). Their phases correspond to �� ± ��. A
geometric phase shift 2�� appears between the two types of Cooper pairs. Copyright
(2009) by the American Physical Society [172].

provided that �� �= 0. An example of such a case was discussed in [172], where one of
the superconductors was replaced by an insulator, and a pure spin supercurrent remains,
giving rise to a spin-Josephson effect. In this case only terms with m+n = 0 remain, with
a pure spin supercurrents Is = �

�
m 2mIm,�m sin(2m��). On the other hand, crossed

pair transmission processes in equal direction have zero spin current and correspond to
m = n, leading to a contribution to charge current of the form 2e

�
m 2mImm sin(2m��).

For illustrative purposes we consider the example of only first order terms and leading
order crossed pair transmission terms, i.e. only terms associated with I01,I10, I11, and
I1,�1. Then

I/2e = � I10 sin(�� + ��) � I01 sin(�� � ��) + 2I11 sin(2��) (99a)
Is/� = � I10 sin(�� + ��) + I01 sin(�� � ��) + 2I1,�1 sin(2��). (99b)

The last term in each of these equations corresponds to the crossed pair transmission
process (in equal and opposite direction, correspondingly). The critical current density
for positive and negative current bias differs for this case, similar as shown in Fig. 19 (b).
Furthermore, for sufficiently large I11 multiple minima of the free energy as function of
�� appear, leading to the characteristic jump at a certain value of �� as illustrated
in Fig. 19 (c). If �� were continuously varied, a hysteresis would occur, typical for a
first order phase transition. Finally, when one of the superconductors is replaced by an
insulating material then I = 0 and the spin-Josephson current is Is = 2�I1,�1 sin(2��)

[172].
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Figure 1.15 (a)-(c) Various geometries appropriate for the generation of long-range spin-
triplet pair amplitudes in a ferromagnet (FM, e.g. Co) when used in a Josephson junction
with a conventional singlet superconductor (SC, e.g. Nb). In (a) two layers of a conical
ferromagnet (CFM, e.g. Ho) are used as singlet-triplet converters. In (b) insulating spin-
polarized barriers (or thin layers of a ferromagnetic insulator FI) function as converter,
with misaligned moments e.g. due to spin-orbit coupling. In (c) two misaligned ferromag-
nets (FM0 , e.g. Cu-Ni or Pd-Ni alloys) are used instead. (d) shows the indirect nature of the
Josephson e↵ect, involving a conversion from opposite-spin pairs to equal-spin pairs on
either side of the junction [82].

over the magnetization profile across the layers, demonstrating long-range spin-
triplet supercurrents as well [81].

Fig. 1.15(d) shows the indirect nature of the Josephson e↵ect in such
superconductor-ferromagnet structures if the central ferromagnet is strongly
spin-polarized [82]. In this case, a singlet-triplet conversion takes place at ei-
ther interface between the superconductor and the ferromagnet (with spin-
noncollinearity either artificially engineered or intrinsic), and the coupling be-
tween the superconducting electrodes is provided by the equal-spin amplitudes
only. This mechanism works also if the central ferromagnet is a half-metal [10].

The slow-decay of long-range equal-spin pair amplitudes in a ferromagnet al-
lows to use rather thick ferromagnetic layers. In this case, the properties of the
long-range pair amplitudes are typically governed by di↵usive transport, as the
mean free path, although it may exceed the penetration depth of the short-range
components, is typically much shorter then the penetration depth of the long-
range components. As di↵usive pair amplitudes are Fermi-surface averaged quan-
tities, they are even in parity. Thus, long-range triplet pairs are odd-frequency
[15]. The possibility to spatially separate such odd-frequency components from
the generating superconductor due to the superconducting proximity e↵ect allows
to study and utilize them. Odd-frequency pair amplitudes have a paramagnetic
Meissner response [83], and their experimental observation has important con-
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Superconductor (SC)/ferromagnet (FM) hybrid struc-
tures have triggered considerable research activities in
recent years [1–11]. In particular, FM Josephson junctions
are promising spintronics devices as they allow for tuning
the critical current via the electron spin. However, due to
the competition between the uniform spin alignment in the
FM and spin-singlet pairing in the SC, singlet supercon-
ducting correlations decay in the FM on a much shorter
length scale than in a normal metal [12]. Although this
results in a rapidly decaying Josephson current for long
junctions, the proximity effect leads to interesting physics
in short and/or weakly polarized junctions, e.g., oscilla-
tions of the supercurrent as a function of the thickness of
the interlayer that can give rise to !-junction behavior
[12,13]. Recently, however, in contradiction with these
expectations, long-range supercurrents have been reported
through strongly spin-polarized materials [6]. Theoretical
calculations have shown that for strongly polarized ferro-
magnets (SFMs) spin scattering at SC/FM interfaces [14]
leads to a transformation of singlet correlations in the SC
into triplet correlations [3] (the ‘‘triplet reservoirs’’ of
Ref. [9]), which can carry a long-range supercurrent
through the SFM [3,7–11].

So far, transport calculations in SC/FM hybrids have
mostly concentrated on either fully polarized FMs, so-
called half metals, or on the opposite limit of weakly
polarized systems. However, most FMs have an intermedi-
ate exchange splitting of the energy bands of the order of
0.2–0.8 times the Fermi energy EF. For this intermediate
range, one could naively expect a behavior similar to two
shunted half metallic junctions. We will show, using a
microscopic interface model, that this picture is inade-
quate, and point out the crucial role played by the inter-
faces in coupling the SFM spin bands.

In this Letter, we study Josephson junctions with a
strongly polarized interlayer, and find fundamental differ-
ences compared to both half metallic and weakly polarized
interlayers. In particular, we see that, although correlations
between " and # electrons are suppressed due to the strong

exchange field, spin-active interfaces generate interactions
between long-range triplet supercurrents in the two spin
bands. We find that the long-range critical Josephson cur-
rent varies nonmonotonically with spin polarization P,
showing a maximum around P ¼ 0:3. Furthermore, spe-
cifically when the exchange splitting is strong, additional
phases arising from the interfaces [14] lead to different
current-phase relations for the spin-resolved currents I" and
I# through the junction. We show how this gives rise to (i) a
relative phase between single pair and ‘‘crossed’’ two-pair
transmission [the latter process is illustrated in Fig. 1(a),
with equal numbers of pairs transferred in the spin " and
spin # band], (ii) different critical Josephson currents for
opposite bias, (iii) equilibrium shifts in the current-phase
relation, in contrast to previous predictions [9], and (iv) a
tunable spin supercurrent in a FM brought into contact with
a single SC electrode (we propose an experiment to mea-
sure this remarkable effect).
Quasiclassical Green’s functions (QCGFs) [15,16] are a

powerful tool to describe hybrid structures of supercon-
ductors and nonsuperconducting materials. Consider, e.g.,
the interface between a SC and a SFM shown in Fig. 1(b).
For trajectories on the SC side, labeled 1, and character-

FIG. 1 (color online). (a) The coherent transfer of singlet pairs
via a SFM (top) is not possible. However, the ‘‘crossed’’ pair
transmissions process (bottom) is possible and leads to intriguing
effects in high transmission junctions. (b) SC/SFM interface,
showing the Fermi surfaces on either side (thick lines). Assum-

ing momentum conservation parallel to the interface ( ~kk), a qua-
siparticle incident from the SC can either scatter into two (dotted
arrows) or into only one (dashed arrows) spin band of the FM.
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Superconductor (SC)/ferromagnet (FM) hybrid struc-
tures have triggered considerable research activities in
recent years [1–11]. In particular, FM Josephson junctions
are promising spintronics devices as they allow for tuning
the critical current via the electron spin. However, due to
the competition between the uniform spin alignment in the
FM and spin-singlet pairing in the SC, singlet supercon-
ducting correlations decay in the FM on a much shorter
length scale than in a normal metal [12]. Although this
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through the SFM [3,7–11].
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mostly concentrated on either fully polarized FMs, so-
called half metals, or on the opposite limit of weakly
polarized systems. However, most FMs have an intermedi-
ate exchange splitting of the energy bands of the order of
0.2–0.8 times the Fermi energy EF. For this intermediate
range, one could naively expect a behavior similar to two
shunted half metallic junctions. We will show, using a
microscopic interface model, that this picture is inade-
quate, and point out the crucial role played by the inter-
faces in coupling the SFM spin bands.

In this Letter, we study Josephson junctions with a
strongly polarized interlayer, and find fundamental differ-
ences compared to both half metallic and weakly polarized
interlayers. In particular, we see that, although correlations
between " and # electrons are suppressed due to the strong

exchange field, spin-active interfaces generate interactions
between long-range triplet supercurrents in the two spin
bands. We find that the long-range critical Josephson cur-
rent varies nonmonotonically with spin polarization P,
showing a maximum around P ¼ 0:3. Furthermore, spe-
cifically when the exchange splitting is strong, additional
phases arising from the interfaces [14] lead to different
current-phase relations for the spin-resolved currents I" and
I# through the junction. We show how this gives rise to (i) a
relative phase between single pair and ‘‘crossed’’ two-pair
transmission [the latter process is illustrated in Fig. 1(a),
with equal numbers of pairs transferred in the spin " and
spin # band], (ii) different critical Josephson currents for
opposite bias, (iii) equilibrium shifts in the current-phase
relation, in contrast to previous predictions [9], and (iv) a
tunable spin supercurrent in a FM brought into contact with
a single SC electrode (we propose an experiment to mea-
sure this remarkable effect).
Quasiclassical Green’s functions (QCGFs) [15,16] are a

powerful tool to describe hybrid structures of supercon-
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FIG. 1 (color online). (a) The coherent transfer of singlet pairs
via a SFM (top) is not possible. However, the ‘‘crossed’’ pair
transmissions process (bottom) is possible and leads to intriguing
effects in high transmission junctions. (b) SC/SFM interface,
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siparticle incident from the SC can either scatter into two (dotted
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Figure 20. Schematic drawing of the crossed pair transmission process. Cooper pairs
with opposite spin projection on the magnetization vector do not contribute to the
spin supercurrent in strongly spin-polarized ferromagnets (top panel). However, due
to magnetic inhomogeneity across the interfaces singlet-triplet conversion processes
generate out of two singlet pairs two equal-spin triplet pairs with opposite spin
polarization. These two equal-spin pairs are transmitted simultaneously in a crossed
pair transmission process (bottom panel). Their phases correspond to �� ± ��. A
geometric phase shift 2�� appears between the two types of Cooper pairs. Copyright
(2009) by the American Physical Society [172].

provided that �� �= 0. An example of such a case was discussed in [172], where one of
the superconductors was replaced by an insulator, and a pure spin supercurrent remains,
giving rise to a spin-Josephson effect. In this case only terms with m+n = 0 remain, with
a pure spin supercurrents Is = �

�
m 2mIm,�m sin(2m��). On the other hand, crossed

pair transmission processes in equal direction have zero spin current and correspond to
m = n, leading to a contribution to charge current of the form 2e

�
m 2mImm sin(2m��).

For illustrative purposes we consider the example of only first order terms and leading
order crossed pair transmission terms, i.e. only terms associated with I01,I10, I11, and
I1,�1. Then

I/2e = � I10 sin(�� + ��) � I01 sin(�� � ��) + 2I11 sin(2��) (99a)
Is/� = � I10 sin(�� + ��) + I01 sin(�� � ��) + 2I1,�1 sin(2��). (99b)

The last term in each of these equations corresponds to the crossed pair transmission
process (in equal and opposite direction, correspondingly). The critical current density
for positive and negative current bias differs for this case, similar as shown in Fig. 19 (b).
Furthermore, for sufficiently large I11 multiple minima of the free energy as function of
�� appear, leading to the characteristic jump at a certain value of �� as illustrated
in Fig. 19 (c). If �� were continuously varied, a hysteresis would occur, typical for a
first order phase transition. Finally, when one of the superconductors is replaced by an
insulating material then I = 0 and the spin-Josephson current is Is = 2�I1,�1 sin(2��)

[172].
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Figure 1.15 (a)-(c) Various geometries appropriate for the generation of long-range spin-
triplet pair amplitudes in a ferromagnet (FM, e.g. Co) when used in a Josephson junction
with a conventional singlet superconductor (SC, e.g. Nb). In (a) two layers of a conical
ferromagnet (CFM, e.g. Ho) are used as singlet-triplet converters. In (b) insulating spin-
polarized barriers (or thin layers of a ferromagnetic insulator FI) function as converter,
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the generating superconductor due to the superconducting proximity e↵ect allows
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Meissner response [83], and their experimental observation has important con-
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values of 100 μV/K easily reachable!The spin-polarized contacts are quantified by a conductance parameter
= −↑ ↓( )G G G(1/2)P , where ↑ ↓G ( ) is the conductance for spin-up (spin-down) particles (the

quantization axis in the contact is given by its interface magnetic moment), and = +↑ ↓G G G .
The spin-polarized interfaces are described by complex transmission and reflection amplitudes,
which are spin-dependent. This necessarily leads to the appearance of spin-dependent scattering
phases, also called spin-mixing angles [25]. The importance of these spin-mixing phases for
singlet–triplet conversion in superconductor–ferromagnet heterostructures gives rise to a
mechanism for transport through ferromagnets with strong exchange splitting of their bands
[29]. The necessity to include these effects into quasiclassical theory led to recent formulations
of new sets of boundary conditions for the Eilenberger equation [75] and the Usadel equation
[62, 76]. An alternative way to arrive at analogous boundary conditions is to introduce a
ferromagnetic layer close to the boundary [77]. The spin-dependent phase shifts are the crucial
input for obtaining the new type of thermoelectric effects discussed in [62].

The spin-dependent scattering phases at the interface give rise to an induced exchange field
in the node which is proximity coupled to the superconductor. This effect is quantified by a
conductance parameter ϕG c, arising from spin-dependent phase shifts in the reflection
amplitudes at the ferromagnetic contacts of the node. For a relation of the conductance

Figure 1. (a), (b) show sketches of possible devices to measure the mesoscopic
thermopower we predict. The yellow layers are normal metals (N) and the green
substrate is the superconductor with gap Δ. The spin-dependent effects are induced by a
thin ferromagnetic insulator (FI) film shown in blue. The contact between the
superconductor and the central normal layer (c) is shown in gray and assumed to be spin
inactive. To measure the two-terminal effects, the simple layered structure (a) suffices
and only the upper normal layer and the superconducting substrate have to be contacted.
In (b) an effective two-terminal setup is suggested, where the two normal layers have to
be contacted and the superconductor only induces the superconducting correlations but
does not need to carry electric current. (c) shows the circuit diagram used to model the
setups (a) and (b). The colors are chosen in correspondence to (a) and (b). The normal
layer between the superconductor and the ferromagnetic insulating layers is denoted by
c and will be called ‘node’ in the main text. The normal N-terminals with FI interfaces
could be replaced by ferromagnetic terminals as well, since we choose all energy scales
to be small enough, that solely interface effects contribute to the resulting currents. The
two-terminal situation is achieved for e.g. = = =ϕG G G 02 2 2

P .

4

New J. Phys. 16 (2014) 073002 P Machon et al

SC!

FI!

N!Nonlocal Thermoelectric Effects and Nonlocal Onsager relations in a Three-Terminal
Proximity-Coupled Superconductor-Ferromagnet Device

P. Machon,1 M. Eschrig,2 and W. Belzig1

1Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
2SEPnet and Hubbard Theory Consortium, Department of Physics, Royal Holloway, University of London,

Egham, Surrey TW20 0EX, United Kingdom
(Received 11 May 2012; published 23 January 2013)

We study thermal and charge transport in a three-terminal setup consisting of one superconducting and

two ferromagnetic contacts. We predict that the simultaneous presence of spin filtering and of spin-

dependent scattering phase shifts at each of the two interfaces will lead to very large nonlocal thermo-

electric effects both in clean and in disordered systems. The symmetries of thermal and electric transport

coefficients are related to fundamental thermodynamic principles by the Onsager reciprocity. Our results

show that a nonlocal version of the Onsager relations for thermoelectric currents holds in a three-terminal

quantum coherent ferromagnet-superconductor heterostructure including a spin-dependent crossed

Andreev reflection and coherent electron transfer processes.

DOI: 10.1103/PhysRevLett.110.047002 PACS numbers: 74.25.fg, 72.25.!b, 74.45.+c

Heterostructures of ferromagnets (F) and superconduc-
tors (S) are presently a subject of intense study since they
show interesting phenomena based on the singlet-triplet
conversion of pairing amplitudes at the interfaces and the
resulting spin-dependent proximity effect. Spectacular
examples are long-range triplet Josephson currents due
to inhomogeneous magnetic order [1] or due to the spin
dependence of the interface reflection and transmission
amplitudes [2] that were confirmed in a set of pivotal
experiments [3–6]. A multitude of coherence phenomena
is understood in terms of spin-dependent Andreev bound
states [2,7–17], intimately related to spin-mixing [18] and
spin-filtering effects at interfaces [19].

A three-terminal superconductor-ferromagnet proximity
system also allows us to access nonlocal effects. For ex-
ample, in Fig. 1, incoming electrons (current II) can be
reflected from the interface (IR) or enter the superconduc-
tor, where each builds a Cooper pair with another electron,
leaving a hole behind that is retroreflected (a so-called
Andreev reflection). These holes can be transmitted back
through the same interface (IAR) or reflected to the other
interface, where they are either transmitted directly as
holes (ICAR) or as electrons via the same conversion
process as at the other interface in reversed order (ICET)
(part of these electrons can also be reflected back to the first
interface, contributing to higher order processes). Nonlocal
transport has attracted considerable interest due to the
latter two processes, called crossed Andreev reflection
(CAR; an electron enters at one terminal, and a hole leaves
the other terminal, or vice versa) and coherent electron
transfer (CET, sometimes called ‘‘elastic cotunneling’’; an
electron enters one terminal, and an electron leaves the
other terminal, or the same for holes) [20–22]. These
processes test the internal structure of Cooper pairs and

lead to new interesting physics that can be and has been
tested experimentally [23–27].
In this Letter, we develop a theory for the hitherto less

explored nonlocal thermal transport in ferromagnet-
superconductor devices and show that a nonlocal version
of Onsager relations [28] holds in both the normal and
superconducting states. In the superconducting state, we
find a strongly enhanced local thermopower and a nonlocal
Seebeck effect. These effects do not require noncollinear
inhomogeneities in the ferromagnetic regions or at the
interfaces (a ubiquitous problem for creating triplet super-
currents [1,2,4–6,29]). Thus, our results should be readily
observable in experiments and offer a way to access the
microscopic spin-dependent parameters.
In linear response, the transport coefficients relating

charge (energy) currents Iq (I") to an applied voltage
!Vj ¼ Vj ! VS or temperature difference !Tj ¼
Tj ! TS (throughout this Letter, j 2 f1; 2g labels the

FIG. 1 (color online). (a) The device consisting of two ferro-
magnets (regions to the left and right in blue) and a supercon-
ductor (the green region in the center). Trajectories for electrons
(black) and holes (red) illustrate possible transport processes in
the ballistic case, as discussed in the text (white arrows denote
the spin). (b) Equivalent circuit diagram of the setup shown in (a)
for the diffusive limit including the coherence leakage [41]. The
interface parameters are discussed in detail beneath Eq. (3).
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58, 59, 60, 61]. In particular, the phenomenon of re-entrant superconductivity
with increasing dF has attracted attention [62, 63], where even double extinction
has been demonstrated [64].

1.4 Equal spin pair amplitudes

In Eqs. (1.10)-(1.11) and (1.15)-(1.16) two of the spin-triplet solutions were equal-
spin pairing amplitudes with spins aligned parallel or antiparallel with J . These
solutions have a large penetration lengthscale into the ferromagnet, governed only
by temperature, mean free path, and Fermi velocity, however not by the exchange
splitting of the electronic bands J . In order to induce these components in a ferro-
magnet coupled by proximity e↵ect to a superconductor, the spin rotational sym-
metry around J must be broken. This means, one needs a non-collinear spin ar-
rangement.

For this it is useful to consider the spinor coordinate transformation from one
quantization axis (the z-axis) to another one, the direction of which is given by . po-
lar and azimuthal angles, ↵ and �, respectively, measured from the z-axis in spin
space. Let us define the unit vector n = (nx,ny,nz) = (sin↵ cos�,sin↵ sin�,cos↵).
Then the eigenvectors of n ·S for eigenvalues ±~2 , where S = ~

2�, define the spin-up
and spin-down states with respect to the new quantization axis n. The well-known
transformation formulas for basis vectors quantized along the direction n(↵,�) in
terms of basis vectors quantized along the z-axis read

"
n

= cos
↵
2
"z +sin

↵
2
ei� #z, #

n

= �sin
↵
2
e�i� "z +cos

↵
2
#z . (1.37)

We note here that if R defined in Eq. (1.18) is applied to a spin state "
n

or #
n

, it
leads to a spin state that di↵ers from the original one (apart from a scalar phase) by
the replacement n(↵,�)! n(↵,��#). Thus, the spin will after reflection be rotated
by an angle # around the z-axis. The spin-mixing angle # has consequently also
the interpretation of a spin precession angle around the spin quantization axis of
the interface.

Using Eqs. (1.37), one can express a Cooper pair amplitude with respect to the
new quantization axis, which leads to

("# � #")
n

= ("# � #")z (1.38)

("# + #")
n

= �sin↵
h

e�i�("")z � ei�(##)z
i

+ cos↵("# + #")z (1.39)

Two conclusions arise from this formula. First, once triplet pair amplitudes of the
form ("# + #")

n

with respect to some axis n are created in some spatial region,
they can give rise to long-range equal-spin pair amplitudes ("")z and (##)z that
can penetrate into a ferromagnet with J aligned with the z-axis. And second, these
equal-spin pair amplitudes carry a relative phase of ±(⇡+2�) with respect to each
other.
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the interpretation of a spin precession angle around the spin quantization axis of
the interface.

Using Eqs. (1.37), one can express a Cooper pair amplitude with respect to the
new quantization axis, which leads to

("# � #")
n

= ("# � #")z (1.38)

("# + #")
n

= �sin↵
h

e�i�("")z � ei�(##)z
i

+ cos↵("# + #")z (1.39)

Two conclusions arise from this formula. First, once triplet pair amplitudes of the
form ("# + #")

n

with respect to some axis n are created in some spatial region,
they can give rise to long-range equal-spin pair amplitudes ("")z and (##)z that
can penetrate into a ferromagnet with J aligned with the z-axis. And second, these
equal-spin pair amplitudes carry a relative phase of ±(⇡+2�) with respect to each
other.
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Figure 1.14 (a) Mechanism for creation of long-range pair amplitudes in a proximity
structure. The spin-mixing e↵ect provides mixing between spin-singlet and spin-triplet
pair amplitudes, creating a short-range triplet amplitude with Sz = 0. If a non-collinear
spin arrangement is present in the system, e.g. by inserting a ferromagnetic insulating (FI)
thin layer between the superconductor (SC) and the metallic ferromagnet (FM), then long-
range amplitudes with Sz = ±1 are generated in FM. The structure is shown in (c), with the
spheric angles defined in (b).

equal-spin pair amplitudes carry a relative phase of ±(⇡+2�) with respect to each
other.

In Fig. 1.14 the mechanism for generating long-range equal-spin components
in a superconductor/ferromagnet heterostructure is shown [68]. The crucial step
is to insert a region between the superconductor and the ferromagnet in which
the spin alignment is non-collinear. This can be achieved by various methods.
Either a region of spiral magnetism is present next to the interface [15, 69], as
shown in Fig. 1.15(a). Or an insulating barrier with misaligned spin magnetic mo-
ment is present at the interface (e.g. a thin layer of a ferromagnetic insulator)
[10, 78, 70], as in Fig. 1.15(b). Or, alternatively, thin layers of metallic ferromag-
nets that are misaligned with respect to the central ferromagnet can be used [71],
see Fig. 1.15(c).

Experimental evidence for this generation mechanism of long-range equal-
spin amplitudes has been provided by several di↵erent techniques. Long-range
proximity coupling as well as spin-triplet supercurrents through half-metallic fer-
romagnets, where one spin band is metallic and the other spin band not, were
observed various times [72, 73, 74, 75, 76, 77]. Other experiments used layers of
spiral magnets (e.g. holmium) on either side of a bulk ferromagnet (e.g. cobalt)
in order to generate a non-collinear spin-order, and found long-range proximity
e↵ects [79] and spin-triplet supercurrents across a cobalt layer [80]. Yet other ex-
perimental designs are based on fabricating multi-layer structures, with control
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Introduction.—The interplay between superconductiv-
ity and spin-polarized materials has potential applica-
tions in the emerging field of spin electronics. For this
purpose, a high degree of spin polarization of the mate-
rials in contact with superconducting regions is desirable.
The recently discovered half metals are ideal materials in
this respect [1]. In half metals, electronic bands exhibit
insulating behavior for one spin direction and metallic
behavior for the other. They are thus completely spin-
polarized magnets. Half-metallic behavior has been
found experimentally in the manganese perovskite
La0:7Sr0:3MnO3 [2,3] and in CrO2 [4]. The perovskite is
particularly interesting because of its ability to form
high-quality heterostructures with high-Tc cuprate super-
conductors [5].

The superconducting proximity effect in spin-
polarized materials has attracted considerable attention
recently in the context of superconductor/ferromagnet
heterostructures [6–11]. The singlet pairing amplitude
shows oscillations with a wave vector matching the spin
splitting of the Fermi wave vectors in the ferromag-
net [11,12]. The magnitude of this proximity effect de-
creases with increasing spin polarization. In the extreme
case of a completely spin-polarized material, the singlet
proximity effect is absent. Consequently, the Joseph-
son current between two singlet superconductors sepa-
rated by a half metal is expected to be exactly zero. In
this Letter, we show that this is not necessarily the case.
We propose a mechanism which leads to a nonvanish-
ing superconductor/half-metal/superconductor (S/HM/S)
Josephson effect.

The indirect Josephson effect requires the interplay of
two separate interface effects: spin mixing (or spin
rotation) and spin-flip scattering. The former, represented
by the phase difference ! between waves of opposite
spin orientations reflected from a spin-active interface,
introduces triplet correlations at the superconducting
side of the S/HM boundary. The latter mediates these
correlations to the half-metallic side. To illustrate the
spin-mixing effect, consider the reflection of two quasi-

particles, j"ik and j#ik, from a half-metallic material
(which defines the spin quantization axis). The re-
flected amplitudes for opposite spins differ in phase,

j"i!k " ei!=2j"ik, j#i!k " e!i!=2j#ik [13]. In a superconduc-
tor, incoming quasiparticles (k) near the interface form
pairs with outgoing quasiparticles (!k). As j"ikj#i!k
!j#ikj"i!k transforms under reflection into ei!j"ikj#i!k!
e!i!j#ikj"i!k, pairing states near such interfaces are
singlet-triplet mixtures. This property of spin mixing is
intrinsic to any spin-active interface. If, additionally,
spin-flip scattering is present at the S/HM interface, the
resulting triplet amplitudes induce equal-spin pairing
correlations in the half metal, leading to an S/HM/S
Josephson effect. Spin-flip scattering is expected to be
enhanced, e.g., due to local variations of the spin quanti-
zation axis [7], or diffusion of magnetic moments. The
importance of these processes was pointed out by recent
experiments [14].

The indirect proximity effect introduced above can
also be relevant for strong ferromagnets. In the conven-
tional description, the dispersions for spin-up and spin-
down bands in ferromagnets are assumed to be identical
apart from an energy splitting, given by an effective
exchange field h [6,7]. The range of the spin-singlet
proximity effect is drastically reduced by a strong ex-
change field. In contrast, no such suppression occurs in the
case of the indirect proximity effect.

Theory.—Our treatment is based on the quasiclassical
theory of superconductivity [15]. This theory is formu-
lated in terms of Green’s functions (propagators) which
are matrices in Nambu-Gor’kov particle-hole space and
in spin space. The quasiclassical propagator, ĝg#k̂k;R; "$
depends on energy ", position R, and the direction k̂k of
the momentum on the Fermi surface. Its particle-hole
diagonal and off-diagonal elements are denoted by spin
matrices g and f. The quasiclassical propagator satisfies
the Eilenberger equation [15]

%"#̂#3 ! !̂!; ĝg& ' ivf (rRĝg " 0; (1)

with the Fermi velocity, vf#k̂k$, and the singlet order
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We study heterostructures of singlet superconductors and strongly spin-polarized ferromagnets and

show that a relative phase arises between the superconducting proximity amplitudes in the two

ferromagnetic spin bands. We find a tunable pure spin supercurrent in a spin-polarized ferromagnet

contacted with only one superconductor electrode. We show that Josephson junctions are most effective

for a spin polarization P! 0:3, and that critical currents for positive and negative bias differ for a high

transmission Josephson junction, due to a relative phase between single and double pair transmission.
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Superconductor (SC)/ferromagnet (FM) hybrid struc-
tures have triggered considerable research activities in
recent years [1–11]. In particular, FM Josephson junctions
are promising spintronics devices as they allow for tuning
the critical current via the electron spin. However, due to
the competition between the uniform spin alignment in the
FM and spin-singlet pairing in the SC, singlet supercon-
ducting correlations decay in the FM on a much shorter
length scale than in a normal metal [12]. Although this
results in a rapidly decaying Josephson current for long
junctions, the proximity effect leads to interesting physics
in short and/or weakly polarized junctions, e.g., oscilla-
tions of the supercurrent as a function of the thickness of
the interlayer that can give rise to !-junction behavior
[12,13]. Recently, however, in contradiction with these
expectations, long-range supercurrents have been reported
through strongly spin-polarized materials [6]. Theoretical
calculations have shown that for strongly polarized ferro-
magnets (SFMs) spin scattering at SC/FM interfaces [14]
leads to a transformation of singlet correlations in the SC
into triplet correlations [3] (the ‘‘triplet reservoirs’’ of
Ref. [9]), which can carry a long-range supercurrent
through the SFM [3,7–11].

So far, transport calculations in SC/FM hybrids have
mostly concentrated on either fully polarized FMs, so-
called half metals, or on the opposite limit of weakly
polarized systems. However, most FMs have an intermedi-
ate exchange splitting of the energy bands of the order of
0.2–0.8 times the Fermi energy EF. For this intermediate
range, one could naively expect a behavior similar to two
shunted half metallic junctions. We will show, using a
microscopic interface model, that this picture is inade-
quate, and point out the crucial role played by the inter-
faces in coupling the SFM spin bands.

In this Letter, we study Josephson junctions with a
strongly polarized interlayer, and find fundamental differ-
ences compared to both half metallic and weakly polarized
interlayers. In particular, we see that, although correlations
between " and # electrons are suppressed due to the strong

exchange field, spin-active interfaces generate interactions
between long-range triplet supercurrents in the two spin
bands. We find that the long-range critical Josephson cur-
rent varies nonmonotonically with spin polarization P,
showing a maximum around P ¼ 0:3. Furthermore, spe-
cifically when the exchange splitting is strong, additional
phases arising from the interfaces [14] lead to different
current-phase relations for the spin-resolved currents I" and
I# through the junction. We show how this gives rise to (i) a
relative phase between single pair and ‘‘crossed’’ two-pair
transmission [the latter process is illustrated in Fig. 1(a),
with equal numbers of pairs transferred in the spin " and
spin # band], (ii) different critical Josephson currents for
opposite bias, (iii) equilibrium shifts in the current-phase
relation, in contrast to previous predictions [9], and (iv) a
tunable spin supercurrent in a FM brought into contact with
a single SC electrode (we propose an experiment to mea-
sure this remarkable effect).
Quasiclassical Green’s functions (QCGFs) [15,16] are a

powerful tool to describe hybrid structures of supercon-
ductors and nonsuperconducting materials. Consider, e.g.,
the interface between a SC and a SFM shown in Fig. 1(b).
For trajectories on the SC side, labeled 1, and character-

FIG. 1 (color online). (a) The coherent transfer of singlet pairs
via a SFM (top) is not possible. However, the ‘‘crossed’’ pair
transmissions process (bottom) is possible and leads to intriguing
effects in high transmission junctions. (b) SC/SFM interface,
showing the Fermi surfaces on either side (thick lines). Assum-

ing momentum conservation parallel to the interface ( ~kk), a qua-
siparticle incident from the SC can either scatter into two (dotted
arrows) or into only one (dashed arrows) spin band of the FM.
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Figure 20. Schematic drawing of the crossed pair transmission process. Cooper pairs
with opposite spin projection on the magnetization vector do not contribute to the
spin supercurrent in strongly spin-polarized ferromagnets (top panel). However, due
to magnetic inhomogeneity across the interfaces singlet-triplet conversion processes
generate out of two singlet pairs two equal-spin triplet pairs with opposite spin
polarization. These two equal-spin pairs are transmitted simultaneously in a crossed
pair transmission process (bottom panel). Their phases correspond to �� ± ��. A
geometric phase shift 2�� appears between the two types of Cooper pairs. Copyright
(2009) by the American Physical Society [172].

provided that �� �= 0. An example of such a case was discussed in [172], where one of
the superconductors was replaced by an insulator, and a pure spin supercurrent remains,
giving rise to a spin-Josephson effect. In this case only terms with m+n = 0 remain, with
a pure spin supercurrents Is = �

�
m 2mIm,�m sin(2m��). On the other hand, crossed

pair transmission processes in equal direction have zero spin current and correspond to
m = n, leading to a contribution to charge current of the form 2e

�
m 2mImm sin(2m��).

For illustrative purposes we consider the example of only first order terms and leading
order crossed pair transmission terms, i.e. only terms associated with I01,I10, I11, and
I1,�1. Then

I/2e = � I10 sin(�� + ��) � I01 sin(�� � ��) + 2I11 sin(2��) (99a)
Is/� = � I10 sin(�� + ��) + I01 sin(�� � ��) + 2I1,�1 sin(2��). (99b)

The last term in each of these equations corresponds to the crossed pair transmission
process (in equal and opposite direction, correspondingly). The critical current density
for positive and negative current bias differs for this case, similar as shown in Fig. 19 (b).
Furthermore, for sufficiently large I11 multiple minima of the free energy as function of
�� appear, leading to the characteristic jump at a certain value of �� as illustrated
in Fig. 19 (c). If �� were continuously varied, a hysteresis would occur, typical for a
first order phase transition. Finally, when one of the superconductors is replaced by an
insulating material then I = 0 and the spin-Josephson current is Is = 2�I1,�1 sin(2��)

[172].
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Figure 1.15 (a)-(c) Various geometries appropriate for the generation of long-range spin-
triplet pair amplitudes in a ferromagnet (FM, e.g. Co) when used in a Josephson junction
with a conventional singlet superconductor (SC, e.g. Nb). In (a) two layers of a conical
ferromagnet (CFM, e.g. Ho) are used as singlet-triplet converters. In (b) insulating spin-
polarized barriers (or thin layers of a ferromagnetic insulator FI) function as converter,
with misaligned moments e.g. due to spin-orbit coupling. In (c) two misaligned ferromag-
nets (FM0 , e.g. Cu-Ni or Pd-Ni alloys) are used instead. (d) shows the indirect nature of the
Josephson e↵ect, involving a conversion from opposite-spin pairs to equal-spin pairs on
either side of the junction [82].

over the magnetization profile across the layers, demonstrating long-range spin-
triplet supercurrents as well [81].

Fig. 1.15(d) shows the indirect nature of the Josephson e↵ect in such
superconductor-ferromagnet structures if the central ferromagnet is strongly
spin-polarized [82]. In this case, a singlet-triplet conversion takes place at ei-
ther interface between the superconductor and the ferromagnet (with spin-
noncollinearity either artificially engineered or intrinsic), and the coupling be-
tween the superconducting electrodes is provided by the equal-spin amplitudes
only. This mechanism works also if the central ferromagnet is a half-metal [10].

The slow-decay of long-range equal-spin pair amplitudes in a ferromagnet al-
lows to use rather thick ferromagnetic layers. In this case, the properties of the
long-range pair amplitudes are typically governed by di↵usive transport, as the
mean free path, although it may exceed the penetration depth of the short-range
components, is typically much shorter then the penetration depth of the long-
range components. As di↵usive pair amplitudes are Fermi-surface averaged quan-
tities, they are even in parity. Thus, long-range triplet pairs are odd-frequency
[15]. The possibility to spatially separate such odd-frequency components from
the generating superconductor due to the superconducting proximity e↵ect allows
to study and utilize them. Odd-frequency pair amplitudes have a paramagnetic
Meissner response [83], and their experimental observation has important con-
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Superconductor (SC)/ferromagnet (FM) hybrid struc-
tures have triggered considerable research activities in
recent years [1–11]. In particular, FM Josephson junctions
are promising spintronics devices as they allow for tuning
the critical current via the electron spin. However, due to
the competition between the uniform spin alignment in the
FM and spin-singlet pairing in the SC, singlet supercon-
ducting correlations decay in the FM on a much shorter
length scale than in a normal metal [12]. Although this
results in a rapidly decaying Josephson current for long
junctions, the proximity effect leads to interesting physics
in short and/or weakly polarized junctions, e.g., oscilla-
tions of the supercurrent as a function of the thickness of
the interlayer that can give rise to !-junction behavior
[12,13]. Recently, however, in contradiction with these
expectations, long-range supercurrents have been reported
through strongly spin-polarized materials [6]. Theoretical
calculations have shown that for strongly polarized ferro-
magnets (SFMs) spin scattering at SC/FM interfaces [14]
leads to a transformation of singlet correlations in the SC
into triplet correlations [3] (the ‘‘triplet reservoirs’’ of
Ref. [9]), which can carry a long-range supercurrent
through the SFM [3,7–11].

So far, transport calculations in SC/FM hybrids have
mostly concentrated on either fully polarized FMs, so-
called half metals, or on the opposite limit of weakly
polarized systems. However, most FMs have an intermedi-
ate exchange splitting of the energy bands of the order of
0.2–0.8 times the Fermi energy EF. For this intermediate
range, one could naively expect a behavior similar to two
shunted half metallic junctions. We will show, using a
microscopic interface model, that this picture is inade-
quate, and point out the crucial role played by the inter-
faces in coupling the SFM spin bands.

In this Letter, we study Josephson junctions with a
strongly polarized interlayer, and find fundamental differ-
ences compared to both half metallic and weakly polarized
interlayers. In particular, we see that, although correlations
between " and # electrons are suppressed due to the strong

exchange field, spin-active interfaces generate interactions
between long-range triplet supercurrents in the two spin
bands. We find that the long-range critical Josephson cur-
rent varies nonmonotonically with spin polarization P,
showing a maximum around P ¼ 0:3. Furthermore, spe-
cifically when the exchange splitting is strong, additional
phases arising from the interfaces [14] lead to different
current-phase relations for the spin-resolved currents I" and
I# through the junction. We show how this gives rise to (i) a
relative phase between single pair and ‘‘crossed’’ two-pair
transmission [the latter process is illustrated in Fig. 1(a),
with equal numbers of pairs transferred in the spin " and
spin # band], (ii) different critical Josephson currents for
opposite bias, (iii) equilibrium shifts in the current-phase
relation, in contrast to previous predictions [9], and (iv) a
tunable spin supercurrent in a FM brought into contact with
a single SC electrode (we propose an experiment to mea-
sure this remarkable effect).
Quasiclassical Green’s functions (QCGFs) [15,16] are a

powerful tool to describe hybrid structures of supercon-
ductors and nonsuperconducting materials. Consider, e.g.,
the interface between a SC and a SFM shown in Fig. 1(b).
For trajectories on the SC side, labeled 1, and character-

FIG. 1 (color online). (a) The coherent transfer of singlet pairs
via a SFM (top) is not possible. However, the ‘‘crossed’’ pair
transmissions process (bottom) is possible and leads to intriguing
effects in high transmission junctions. (b) SC/SFM interface,
showing the Fermi surfaces on either side (thick lines). Assum-

ing momentum conservation parallel to the interface ( ~kk), a qua-
siparticle incident from the SC can either scatter into two (dotted
arrows) or into only one (dashed arrows) spin band of the FM.
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Superconductor (SC)/ferromagnet (FM) hybrid struc-
tures have triggered considerable research activities in
recent years [1–11]. In particular, FM Josephson junctions
are promising spintronics devices as they allow for tuning
the critical current via the electron spin. However, due to
the competition between the uniform spin alignment in the
FM and spin-singlet pairing in the SC, singlet supercon-
ducting correlations decay in the FM on a much shorter
length scale than in a normal metal [12]. Although this
results in a rapidly decaying Josephson current for long
junctions, the proximity effect leads to interesting physics
in short and/or weakly polarized junctions, e.g., oscilla-
tions of the supercurrent as a function of the thickness of
the interlayer that can give rise to !-junction behavior
[12,13]. Recently, however, in contradiction with these
expectations, long-range supercurrents have been reported
through strongly spin-polarized materials [6]. Theoretical
calculations have shown that for strongly polarized ferro-
magnets (SFMs) spin scattering at SC/FM interfaces [14]
leads to a transformation of singlet correlations in the SC
into triplet correlations [3] (the ‘‘triplet reservoirs’’ of
Ref. [9]), which can carry a long-range supercurrent
through the SFM [3,7–11].

So far, transport calculations in SC/FM hybrids have
mostly concentrated on either fully polarized FMs, so-
called half metals, or on the opposite limit of weakly
polarized systems. However, most FMs have an intermedi-
ate exchange splitting of the energy bands of the order of
0.2–0.8 times the Fermi energy EF. For this intermediate
range, one could naively expect a behavior similar to two
shunted half metallic junctions. We will show, using a
microscopic interface model, that this picture is inade-
quate, and point out the crucial role played by the inter-
faces in coupling the SFM spin bands.

In this Letter, we study Josephson junctions with a
strongly polarized interlayer, and find fundamental differ-
ences compared to both half metallic and weakly polarized
interlayers. In particular, we see that, although correlations
between " and # electrons are suppressed due to the strong

exchange field, spin-active interfaces generate interactions
between long-range triplet supercurrents in the two spin
bands. We find that the long-range critical Josephson cur-
rent varies nonmonotonically with spin polarization P,
showing a maximum around P ¼ 0:3. Furthermore, spe-
cifically when the exchange splitting is strong, additional
phases arising from the interfaces [14] lead to different
current-phase relations for the spin-resolved currents I" and
I# through the junction. We show how this gives rise to (i) a
relative phase between single pair and ‘‘crossed’’ two-pair
transmission [the latter process is illustrated in Fig. 1(a),
with equal numbers of pairs transferred in the spin " and
spin # band], (ii) different critical Josephson currents for
opposite bias, (iii) equilibrium shifts in the current-phase
relation, in contrast to previous predictions [9], and (iv) a
tunable spin supercurrent in a FM brought into contact with
a single SC electrode (we propose an experiment to mea-
sure this remarkable effect).
Quasiclassical Green’s functions (QCGFs) [15,16] are a

powerful tool to describe hybrid structures of supercon-
ductors and nonsuperconducting materials. Consider, e.g.,
the interface between a SC and a SFM shown in Fig. 1(b).
For trajectories on the SC side, labeled 1, and character-

FIG. 1 (color online). (a) The coherent transfer of singlet pairs
via a SFM (top) is not possible. However, the ‘‘crossed’’ pair
transmissions process (bottom) is possible and leads to intriguing
effects in high transmission junctions. (b) SC/SFM interface,
showing the Fermi surfaces on either side (thick lines). Assum-

ing momentum conservation parallel to the interface ( ~kk), a qua-
siparticle incident from the SC can either scatter into two (dotted
arrows) or into only one (dashed arrows) spin band of the FM.
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Figure 20. Schematic drawing of the crossed pair transmission process. Cooper pairs
with opposite spin projection on the magnetization vector do not contribute to the
spin supercurrent in strongly spin-polarized ferromagnets (top panel). However, due
to magnetic inhomogeneity across the interfaces singlet-triplet conversion processes
generate out of two singlet pairs two equal-spin triplet pairs with opposite spin
polarization. These two equal-spin pairs are transmitted simultaneously in a crossed
pair transmission process (bottom panel). Their phases correspond to �� ± ��. A
geometric phase shift 2�� appears between the two types of Cooper pairs. Copyright
(2009) by the American Physical Society [172].

provided that �� �= 0. An example of such a case was discussed in [172], where one of
the superconductors was replaced by an insulator, and a pure spin supercurrent remains,
giving rise to a spin-Josephson effect. In this case only terms with m+n = 0 remain, with
a pure spin supercurrents Is = �

�
m 2mIm,�m sin(2m��). On the other hand, crossed

pair transmission processes in equal direction have zero spin current and correspond to
m = n, leading to a contribution to charge current of the form 2e

�
m 2mImm sin(2m��).

For illustrative purposes we consider the example of only first order terms and leading
order crossed pair transmission terms, i.e. only terms associated with I01,I10, I11, and
I1,�1. Then

I/2e = � I10 sin(�� + ��) � I01 sin(�� � ��) + 2I11 sin(2��) (99a)
Is/� = � I10 sin(�� + ��) + I01 sin(�� � ��) + 2I1,�1 sin(2��). (99b)

The last term in each of these equations corresponds to the crossed pair transmission
process (in equal and opposite direction, correspondingly). The critical current density
for positive and negative current bias differs for this case, similar as shown in Fig. 19 (b).
Furthermore, for sufficiently large I11 multiple minima of the free energy as function of
�� appear, leading to the characteristic jump at a certain value of �� as illustrated
in Fig. 19 (c). If �� were continuously varied, a hysteresis would occur, typical for a
first order phase transition. Finally, when one of the superconductors is replaced by an
insulating material then I = 0 and the spin-Josephson current is Is = 2�I1,�1 sin(2��)

[172].
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Figure 1.15 (a)-(c) Various geometries appropriate for the generation of long-range spin-
triplet pair amplitudes in a ferromagnet (FM, e.g. Co) when used in a Josephson junction
with a conventional singlet superconductor (SC, e.g. Nb). In (a) two layers of a conical
ferromagnet (CFM, e.g. Ho) are used as singlet-triplet converters. In (b) insulating spin-
polarized barriers (or thin layers of a ferromagnetic insulator FI) function as converter,
with misaligned moments e.g. due to spin-orbit coupling. In (c) two misaligned ferromag-
nets (FM0 , e.g. Cu-Ni or Pd-Ni alloys) are used instead. (d) shows the indirect nature of the
Josephson e↵ect, involving a conversion from opposite-spin pairs to equal-spin pairs on
either side of the junction [82].

over the magnetization profile across the layers, demonstrating long-range spin-
triplet supercurrents as well [81].

Fig. 1.15(d) shows the indirect nature of the Josephson e↵ect in such
superconductor-ferromagnet structures if the central ferromagnet is strongly
spin-polarized [82]. In this case, a singlet-triplet conversion takes place at ei-
ther interface between the superconductor and the ferromagnet (with spin-
noncollinearity either artificially engineered or intrinsic), and the coupling be-
tween the superconducting electrodes is provided by the equal-spin amplitudes
only. This mechanism works also if the central ferromagnet is a half-metal [10].

The slow-decay of long-range equal-spin pair amplitudes in a ferromagnet al-
lows to use rather thick ferromagnetic layers. In this case, the properties of the
long-range pair amplitudes are typically governed by di↵usive transport, as the
mean free path, although it may exceed the penetration depth of the short-range
components, is typically much shorter then the penetration depth of the long-
range components. As di↵usive pair amplitudes are Fermi-surface averaged quan-
tities, they are even in parity. Thus, long-range triplet pairs are odd-frequency
[15]. The possibility to spatially separate such odd-frequency components from
the generating superconductor due to the superconducting proximity e↵ect allows
to study and utilize them. Odd-frequency pair amplitudes have a paramagnetic
Meissner response [83], and their experimental observation has important con-
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Superconductor (SC)/ferromagnet (FM) hybrid struc-
tures have triggered considerable research activities in
recent years [1–11]. In particular, FM Josephson junctions
are promising spintronics devices as they allow for tuning
the critical current via the electron spin. However, due to
the competition between the uniform spin alignment in the
FM and spin-singlet pairing in the SC, singlet supercon-
ducting correlations decay in the FM on a much shorter
length scale than in a normal metal [12]. Although this
results in a rapidly decaying Josephson current for long
junctions, the proximity effect leads to interesting physics
in short and/or weakly polarized junctions, e.g., oscilla-
tions of the supercurrent as a function of the thickness of
the interlayer that can give rise to !-junction behavior
[12,13]. Recently, however, in contradiction with these
expectations, long-range supercurrents have been reported
through strongly spin-polarized materials [6]. Theoretical
calculations have shown that for strongly polarized ferro-
magnets (SFMs) spin scattering at SC/FM interfaces [14]
leads to a transformation of singlet correlations in the SC
into triplet correlations [3] (the ‘‘triplet reservoirs’’ of
Ref. [9]), which can carry a long-range supercurrent
through the SFM [3,7–11].

So far, transport calculations in SC/FM hybrids have
mostly concentrated on either fully polarized FMs, so-
called half metals, or on the opposite limit of weakly
polarized systems. However, most FMs have an intermedi-
ate exchange splitting of the energy bands of the order of
0.2–0.8 times the Fermi energy EF. For this intermediate
range, one could naively expect a behavior similar to two
shunted half metallic junctions. We will show, using a
microscopic interface model, that this picture is inade-
quate, and point out the crucial role played by the inter-
faces in coupling the SFM spin bands.

In this Letter, we study Josephson junctions with a
strongly polarized interlayer, and find fundamental differ-
ences compared to both half metallic and weakly polarized
interlayers. In particular, we see that, although correlations
between " and # electrons are suppressed due to the strong

exchange field, spin-active interfaces generate interactions
between long-range triplet supercurrents in the two spin
bands. We find that the long-range critical Josephson cur-
rent varies nonmonotonically with spin polarization P,
showing a maximum around P ¼ 0:3. Furthermore, spe-
cifically when the exchange splitting is strong, additional
phases arising from the interfaces [14] lead to different
current-phase relations for the spin-resolved currents I" and
I# through the junction. We show how this gives rise to (i) a
relative phase between single pair and ‘‘crossed’’ two-pair
transmission [the latter process is illustrated in Fig. 1(a),
with equal numbers of pairs transferred in the spin " and
spin # band], (ii) different critical Josephson currents for
opposite bias, (iii) equilibrium shifts in the current-phase
relation, in contrast to previous predictions [9], and (iv) a
tunable spin supercurrent in a FM brought into contact with
a single SC electrode (we propose an experiment to mea-
sure this remarkable effect).
Quasiclassical Green’s functions (QCGFs) [15,16] are a

powerful tool to describe hybrid structures of supercon-
ductors and nonsuperconducting materials. Consider, e.g.,
the interface between a SC and a SFM shown in Fig. 1(b).
For trajectories on the SC side, labeled 1, and character-

FIG. 1 (color online). (a) The coherent transfer of singlet pairs
via a SFM (top) is not possible. However, the ‘‘crossed’’ pair
transmissions process (bottom) is possible and leads to intriguing
effects in high transmission junctions. (b) SC/SFM interface,
showing the Fermi surfaces on either side (thick lines). Assum-

ing momentum conservation parallel to the interface ( ~kk), a qua-
siparticle incident from the SC can either scatter into two (dotted
arrows) or into only one (dashed arrows) spin band of the FM.
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Superconductor (SC)/ferromagnet (FM) hybrid struc-
tures have triggered considerable research activities in
recent years [1–11]. In particular, FM Josephson junctions
are promising spintronics devices as they allow for tuning
the critical current via the electron spin. However, due to
the competition between the uniform spin alignment in the
FM and spin-singlet pairing in the SC, singlet supercon-
ducting correlations decay in the FM on a much shorter
length scale than in a normal metal [12]. Although this
results in a rapidly decaying Josephson current for long
junctions, the proximity effect leads to interesting physics
in short and/or weakly polarized junctions, e.g., oscilla-
tions of the supercurrent as a function of the thickness of
the interlayer that can give rise to !-junction behavior
[12,13]. Recently, however, in contradiction with these
expectations, long-range supercurrents have been reported
through strongly spin-polarized materials [6]. Theoretical
calculations have shown that for strongly polarized ferro-
magnets (SFMs) spin scattering at SC/FM interfaces [14]
leads to a transformation of singlet correlations in the SC
into triplet correlations [3] (the ‘‘triplet reservoirs’’ of
Ref. [9]), which can carry a long-range supercurrent
through the SFM [3,7–11].

So far, transport calculations in SC/FM hybrids have
mostly concentrated on either fully polarized FMs, so-
called half metals, or on the opposite limit of weakly
polarized systems. However, most FMs have an intermedi-
ate exchange splitting of the energy bands of the order of
0.2–0.8 times the Fermi energy EF. For this intermediate
range, one could naively expect a behavior similar to two
shunted half metallic junctions. We will show, using a
microscopic interface model, that this picture is inade-
quate, and point out the crucial role played by the inter-
faces in coupling the SFM spin bands.

In this Letter, we study Josephson junctions with a
strongly polarized interlayer, and find fundamental differ-
ences compared to both half metallic and weakly polarized
interlayers. In particular, we see that, although correlations
between " and # electrons are suppressed due to the strong

exchange field, spin-active interfaces generate interactions
between long-range triplet supercurrents in the two spin
bands. We find that the long-range critical Josephson cur-
rent varies nonmonotonically with spin polarization P,
showing a maximum around P ¼ 0:3. Furthermore, spe-
cifically when the exchange splitting is strong, additional
phases arising from the interfaces [14] lead to different
current-phase relations for the spin-resolved currents I" and
I# through the junction. We show how this gives rise to (i) a
relative phase between single pair and ‘‘crossed’’ two-pair
transmission [the latter process is illustrated in Fig. 1(a),
with equal numbers of pairs transferred in the spin " and
spin # band], (ii) different critical Josephson currents for
opposite bias, (iii) equilibrium shifts in the current-phase
relation, in contrast to previous predictions [9], and (iv) a
tunable spin supercurrent in a FM brought into contact with
a single SC electrode (we propose an experiment to mea-
sure this remarkable effect).
Quasiclassical Green’s functions (QCGFs) [15,16] are a

powerful tool to describe hybrid structures of supercon-
ductors and nonsuperconducting materials. Consider, e.g.,
the interface between a SC and a SFM shown in Fig. 1(b).
For trajectories on the SC side, labeled 1, and character-

FIG. 1 (color online). (a) The coherent transfer of singlet pairs
via a SFM (top) is not possible. However, the ‘‘crossed’’ pair
transmissions process (bottom) is possible and leads to intriguing
effects in high transmission junctions. (b) SC/SFM interface,
showing the Fermi surfaces on either side (thick lines). Assum-

ing momentum conservation parallel to the interface ( ~kk), a qua-
siparticle incident from the SC can either scatter into two (dotted
arrows) or into only one (dashed arrows) spin band of the FM.
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Figure 20. Schematic drawing of the crossed pair transmission process. Cooper pairs
with opposite spin projection on the magnetization vector do not contribute to the
spin supercurrent in strongly spin-polarized ferromagnets (top panel). However, due
to magnetic inhomogeneity across the interfaces singlet-triplet conversion processes
generate out of two singlet pairs two equal-spin triplet pairs with opposite spin
polarization. These two equal-spin pairs are transmitted simultaneously in a crossed
pair transmission process (bottom panel). Their phases correspond to �� ± ��. A
geometric phase shift 2�� appears between the two types of Cooper pairs. Copyright
(2009) by the American Physical Society [172].

provided that �� �= 0. An example of such a case was discussed in [172], where one of
the superconductors was replaced by an insulator, and a pure spin supercurrent remains,
giving rise to a spin-Josephson effect. In this case only terms with m+n = 0 remain, with
a pure spin supercurrents Is = �

�
m 2mIm,�m sin(2m��). On the other hand, crossed

pair transmission processes in equal direction have zero spin current and correspond to
m = n, leading to a contribution to charge current of the form 2e

�
m 2mImm sin(2m��).

For illustrative purposes we consider the example of only first order terms and leading
order crossed pair transmission terms, i.e. only terms associated with I01,I10, I11, and
I1,�1. Then

I/2e = � I10 sin(�� + ��) � I01 sin(�� � ��) + 2I11 sin(2��) (99a)
Is/� = � I10 sin(�� + ��) + I01 sin(�� � ��) + 2I1,�1 sin(2��). (99b)

The last term in each of these equations corresponds to the crossed pair transmission
process (in equal and opposite direction, correspondingly). The critical current density
for positive and negative current bias differs for this case, similar as shown in Fig. 19 (b).
Furthermore, for sufficiently large I11 multiple minima of the free energy as function of
�� appear, leading to the characteristic jump at a certain value of �� as illustrated
in Fig. 19 (c). If �� were continuously varied, a hysteresis would occur, typical for a
first order phase transition. Finally, when one of the superconductors is replaced by an
insulating material then I = 0 and the spin-Josephson current is Is = 2�I1,�1 sin(2��)

[172].
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Figure 1.15 (a)-(c) Various geometries appropriate for the generation of long-range spin-
triplet pair amplitudes in a ferromagnet (FM, e.g. Co) when used in a Josephson junction
with a conventional singlet superconductor (SC, e.g. Nb). In (a) two layers of a conical
ferromagnet (CFM, e.g. Ho) are used as singlet-triplet converters. In (b) insulating spin-
polarized barriers (or thin layers of a ferromagnetic insulator FI) function as converter,
with misaligned moments e.g. due to spin-orbit coupling. In (c) two misaligned ferromag-
nets (FM0 , e.g. Cu-Ni or Pd-Ni alloys) are used instead. (d) shows the indirect nature of the
Josephson e↵ect, involving a conversion from opposite-spin pairs to equal-spin pairs on
either side of the junction [82].

over the magnetization profile across the layers, demonstrating long-range spin-
triplet supercurrents as well [81].

Fig. 1.15(d) shows the indirect nature of the Josephson e↵ect in such
superconductor-ferromagnet structures if the central ferromagnet is strongly
spin-polarized [82]. In this case, a singlet-triplet conversion takes place at ei-
ther interface between the superconductor and the ferromagnet (with spin-
noncollinearity either artificially engineered or intrinsic), and the coupling be-
tween the superconducting electrodes is provided by the equal-spin amplitudes
only. This mechanism works also if the central ferromagnet is a half-metal [10].

The slow-decay of long-range equal-spin pair amplitudes in a ferromagnet al-
lows to use rather thick ferromagnetic layers. In this case, the properties of the
long-range pair amplitudes are typically governed by di↵usive transport, as the
mean free path, although it may exceed the penetration depth of the short-range
components, is typically much shorter then the penetration depth of the long-
range components. As di↵usive pair amplitudes are Fermi-surface averaged quan-
tities, they are even in parity. Thus, long-range triplet pairs are odd-frequency
[15]. The possibility to spatially separate such odd-frequency components from
the generating superconductor due to the superconducting proximity e↵ect allows
to study and utilize them. Odd-frequency pair amplitudes have a paramagnetic
Meissner response [83], and their experimental observation has important con-

Various geometries appropriate for the generation of long-range spin-triplet supercurrents  
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Abstract
During the past 15 years a new field has emerged, which combines superconductivity and 
spintronics, with the goal to pave a way for new types of devices for applications combining 
the virtues of both by offering the possibility of long-range spin-polarized supercurrents. Such 
supercurrents constitute a fruitful basis for the study of fundamental physics as they combine 
macroscopic quantum coherence with microscopic exchange interactions, spin selectivity, and spin 
transport. This report follows recent developments in the controlled creation of long-range equal-
spin triplet supercurrents in ferromagnets and its contribution to spintronics. The mutual proximity-
induced modification of order in superconductor-ferromagnet hybrid structures introduces in a 
natural way such evasive phenomena as triplet superconductivity, odd-frequency pairing, Fulde–
Ferrell–Larkin–Ovchinnikov pairing, long-range equal-spin supercurrents, π-Josephson junctions, 
as well as long-range magnetic proximity effects. All these effects were rather exotic before 2000, 
when improvements in nanofabrication and materials control allowed for a new quality of hybrid 
structures. Guided by pioneering theoretical studies, experimental progress evolved rapidly, and 
since 2010 triplet supercurrents are routinely produced and observed. We have entered a new stage 
of studying new phases of matter previously out of our reach, and of merging the hitherto disparate 
fields of superconductivity and spintronics to a new research direction: super-spintronics.

Keywords: spintronics, superconductor-ferromagnet heterostructures, proximity effect, 
Josephson effect
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Figure 1.21 S/FI1/F/FI2/S Josephson junction that can act as a phase battery. Equal-spin
Cooper pairs are transmitted through the ferromagnet F, which has magnetization M. The
triple of vectors (m1,m2,M) is non-coplanar, as seen in the picture to the right. The di-
rections of m1 and m2 are described by spherical angles (↵1,'1) and (↵2,'2), respectively,
where the z-axis is in the direction of M. The equilibrium phase di↵erence between the
superconductors can take on a non-zero value depending on the angle �' = '2 �'1.

perpendicular to M. Denoting e

M

the unit vector M/ |M| in direction of M, these
projections can be expressed as µ1 ⌘ e

M

⇥ (m1 ⇥ e

M

) and µ2 ⌘ e

M

⇥ (m2 ⇥ e

M

).*.
Taking the z-axis along e

M

, one can introduce spherical coordinates ↵1, '1 for m1,
and ↵2, '2 for m2 (see Fig. 1.21), such that µ1 = |m1|sin↵1 · (cos�1,sin�1,0), and
similarly for m2. Then,

(m1 ⇥m2) ·M = |M| µ1 ⇥µ2 = |M| |m1| |m2|sin(↵1)sin(↵2)sin('2 �'1). (1.42)

The three angles ↵1, ↵2, and '2 � '1 fix the relative orientation of the triple
of vectors (m

1

,m
2

,M); all three angles must be non-zero in order for the spin-
arrangement to be non-coplanar. In particular, these angles do not depend on the
coordinate system (i.e. they are independent of the choice of the global spin quan-
tization axis), as they are expressed solely in terms of scalar and vector products.

The di↵erence �' = '2�'1 is of similar fundamental importance as the phase
di↵erence �� = �2 � �1 of the superconducting pair potentials �1 = |�1|ei�1 and
�2 = |�2|ei�2 on the two sides of a Josephson junction. In fact, the geometric angle
�' enters the current-phase relation of an S/FI1/F/FI2/S Josephson junction for
each spin band, and precisely with opposite sign for the two spin projections: the
transmission of an ""-pair involves a Josephson phase of �� � �' + ⇡, whereas

⇤In the coplanar but non-collinear case there still can be an important geometric phase of ⇡
introduced by the triple of magnetic vectors if (m1 ⇥M) · (m

2

⇥M) < 0.
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Figure 1.22 Examples for �-Josephson-junctions resulting from Eqs. (1.47)-(1.48). For
these plots, I1,0 = 0.7, I0,1 = 0.3, and (a) I1,1 = 0.05, (b) I1,1 = 0.25, (c) I1,1 = 0.4. The full lines
correspond to the equilibrium solution ��eq with lowest free energy for given �'. Dashed
lines indicate metastable solutions (local, but not global minima in the free energy). The
shaded regions correspond to a positive, the white regions to a negative Josephson current.

the transmission of a ##-pair involves a Josephson phase of �� + �' + ⇡. The
Cooper-pair current for a phase-coherent process that involves the transmission
of m ""-pairs and n ##-pairs involves a phase m(����'+⇡)+n(��+�'+⇡). The
corresponding Josephson current for each spin projection can be written as a sum
over all transmission processes as [70]

I"" =
1
2

X

mn

m (�1)m+nImn sin[(m+n)�� � (m�n)�'] (1.43)

I## =
1
2

X

mn

n (�1)m+nImn sin[(m+n)�� � (m�n)�']. (1.44)

The coe�cients fulfill the relation I�m,�n = Imn. The charge current Ic and the spin
current Is result then from

Ic = 2e (I"" + I##) (1.45)
Is = ~ (I"" � I##). (1.46)

The current-phase relation fulfills the symmetry Ic/s(���,��) = �Ic/s(��,���)
following from the behavior of the current density under time reversal.

A symmetric high-transmissive junction involves typically only processes with
m�n = 0,±1. For this case, one obtains up to |m+n|  2 the terms

I"" = I1,1 sin(2��)� I1,0 sin(�� ���) (1.47)
I## = I1,1 sin(2��)� I0,1 sin(�� +��). (1.48)

As shown in Fig. 1.22, the equilibrium superconducting phase ��eq is neither
zero nor ⇡, however takes a value in between, depending on the value of �'. For
su�ciently small I1,1 the variation of ��eq with �' is continuous, allowing to
tune ��eq in the full range between zero to ⇡. Thus, the system can act as a phase
battery. The first terms involving I1,1 are crossed pair transmission processes [82],
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Spin-Dependent Cooper Pair Phase and Pure Spin Supercurrents
in Strongly Polarized Ferromagnets
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We study heterostructures of singlet superconductors and strongly spin-polarized ferromagnets and

show that a relative phase arises between the superconducting proximity amplitudes in the two

ferromagnetic spin bands. We find a tunable pure spin supercurrent in a spin-polarized ferromagnet

contacted with only one superconductor electrode. We show that Josephson junctions are most effective

for a spin polarization P! 0:3, and that critical currents for positive and negative bias differ for a high

transmission Josephson junction, due to a relative phase between single and double pair transmission.

DOI: 10.1103/PhysRevLett.102.227005 PACS numbers: 74.50.+r, 72.25.Mk, 74.78.Fk, 85.25.Cp

Superconductor (SC)/ferromagnet (FM) hybrid struc-
tures have triggered considerable research activities in
recent years [1–11]. In particular, FM Josephson junctions
are promising spintronics devices as they allow for tuning
the critical current via the electron spin. However, due to
the competition between the uniform spin alignment in the
FM and spin-singlet pairing in the SC, singlet supercon-
ducting correlations decay in the FM on a much shorter
length scale than in a normal metal [12]. Although this
results in a rapidly decaying Josephson current for long
junctions, the proximity effect leads to interesting physics
in short and/or weakly polarized junctions, e.g., oscilla-
tions of the supercurrent as a function of the thickness of
the interlayer that can give rise to !-junction behavior
[12,13]. Recently, however, in contradiction with these
expectations, long-range supercurrents have been reported
through strongly spin-polarized materials [6]. Theoretical
calculations have shown that for strongly polarized ferro-
magnets (SFMs) spin scattering at SC/FM interfaces [14]
leads to a transformation of singlet correlations in the SC
into triplet correlations [3] (the ‘‘triplet reservoirs’’ of
Ref. [9]), which can carry a long-range supercurrent
through the SFM [3,7–11].

So far, transport calculations in SC/FM hybrids have
mostly concentrated on either fully polarized FMs, so-
called half metals, or on the opposite limit of weakly
polarized systems. However, most FMs have an intermedi-
ate exchange splitting of the energy bands of the order of
0.2–0.8 times the Fermi energy EF. For this intermediate
range, one could naively expect a behavior similar to two
shunted half metallic junctions. We will show, using a
microscopic interface model, that this picture is inade-
quate, and point out the crucial role played by the inter-
faces in coupling the SFM spin bands.

In this Letter, we study Josephson junctions with a
strongly polarized interlayer, and find fundamental differ-
ences compared to both half metallic and weakly polarized
interlayers. In particular, we see that, although correlations
between " and # electrons are suppressed due to the strong

exchange field, spin-active interfaces generate interactions
between long-range triplet supercurrents in the two spin
bands. We find that the long-range critical Josephson cur-
rent varies nonmonotonically with spin polarization P,
showing a maximum around P ¼ 0:3. Furthermore, spe-
cifically when the exchange splitting is strong, additional
phases arising from the interfaces [14] lead to different
current-phase relations for the spin-resolved currents I" and
I# through the junction. We show how this gives rise to (i) a
relative phase between single pair and ‘‘crossed’’ two-pair
transmission [the latter process is illustrated in Fig. 1(a),
with equal numbers of pairs transferred in the spin " and
spin # band], (ii) different critical Josephson currents for
opposite bias, (iii) equilibrium shifts in the current-phase
relation, in contrast to previous predictions [9], and (iv) a
tunable spin supercurrent in a FM brought into contact with
a single SC electrode (we propose an experiment to mea-
sure this remarkable effect).
Quasiclassical Green’s functions (QCGFs) [15,16] are a

powerful tool to describe hybrid structures of supercon-
ductors and nonsuperconducting materials. Consider, e.g.,
the interface between a SC and a SFM shown in Fig. 1(b).
For trajectories on the SC side, labeled 1, and character-

FIG. 1 (color online). (a) The coherent transfer of singlet pairs
via a SFM (top) is not possible. However, the ‘‘crossed’’ pair
transmissions process (bottom) is possible and leads to intriguing
effects in high transmission junctions. (b) SC/SFM interface,
showing the Fermi surfaces on either side (thick lines). Assum-

ing momentum conservation parallel to the interface ( ~kk), a qua-
siparticle incident from the SC can either scatter into two (dotted
arrows) or into only one (dashed arrows) spin band of the FM.
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Δχ+Δφ 

Δχ−Δφ 

Figure 20. Schematic drawing of the crossed pair transmission process. Cooper pairs
with opposite spin projection on the magnetization vector do not contribute to the
spin supercurrent in strongly spin-polarized ferromagnets (top panel). However, due
to magnetic inhomogeneity across the interfaces singlet-triplet conversion processes
generate out of two singlet pairs two equal-spin triplet pairs with opposite spin
polarization. These two equal-spin pairs are transmitted simultaneously in a crossed
pair transmission process (bottom panel). Their phases correspond to �� ± ��. A
geometric phase shift 2�� appears between the two types of Cooper pairs. Copyright
(2009) by the American Physical Society [172].

provided that �� �= 0. An example of such a case was discussed in [172], where one of
the superconductors was replaced by an insulator, and a pure spin supercurrent remains,
giving rise to a spin-Josephson effect. In this case only terms with m+n = 0 remain, with
a pure spin supercurrents Is = �

�
m 2mIm,�m sin(2m��). On the other hand, crossed

pair transmission processes in equal direction have zero spin current and correspond to
m = n, leading to a contribution to charge current of the form 2e

�
m 2mImm sin(2m��).

For illustrative purposes we consider the example of only first order terms and leading
order crossed pair transmission terms, i.e. only terms associated with I01,I10, I11, and
I1,�1. Then

I/2e = � I10 sin(�� + ��) � I01 sin(�� � ��) + 2I11 sin(2��) (99a)
Is/� = � I10 sin(�� + ��) + I01 sin(�� � ��) + 2I1,�1 sin(2��). (99b)

The last term in each of these equations corresponds to the crossed pair transmission
process (in equal and opposite direction, correspondingly). The critical current density
for positive and negative current bias differs for this case, similar as shown in Fig. 19 (b).
Furthermore, for sufficiently large I11 multiple minima of the free energy as function of
�� appear, leading to the characteristic jump at a certain value of �� as illustrated
in Fig. 19 (c). If �� were continuously varied, a hysteresis would occur, typical for a
first order phase transition. Finally, when one of the superconductors is replaced by an
insulating material then I = 0 and the spin-Josephson current is Is = 2�I1,�1 sin(2��)

[172].

Δχ−Δφ 

Δχ+Δφ 

Figure 1.15 (a)-(c) Various geometries appropriate for the generation of long-range spin-
triplet pair amplitudes in a ferromagnet (FM, e.g. Co) when used in a Josephson junction
with a conventional singlet superconductor (SC, e.g. Nb). In (a) two layers of a conical
ferromagnet (CFM, e.g. Ho) are used as singlet-triplet converters. In (b) insulating spin-
polarized barriers (or thin layers of a ferromagnetic insulator FI) function as converter,
with misaligned moments e.g. due to spin-orbit coupling. In (c) two misaligned ferromag-
nets (FM0 , e.g. Cu-Ni or Pd-Ni alloys) are used instead. (d) shows the indirect nature of the
Josephson e↵ect, involving a conversion from opposite-spin pairs to equal-spin pairs on
either side of the junction [82].

over the magnetization profile across the layers, demonstrating long-range spin-
triplet supercurrents as well [81].

Fig. 1.15(d) shows the indirect nature of the Josephson e↵ect in such
superconductor-ferromagnet structures if the central ferromagnet is strongly
spin-polarized [82]. In this case, a singlet-triplet conversion takes place at ei-
ther interface between the superconductor and the ferromagnet (with spin-
noncollinearity either artificially engineered or intrinsic), and the coupling be-
tween the superconducting electrodes is provided by the equal-spin amplitudes
only. This mechanism works also if the central ferromagnet is a half-metal [10].

The slow-decay of long-range equal-spin pair amplitudes in a ferromagnet al-
lows to use rather thick ferromagnetic layers. In this case, the properties of the
long-range pair amplitudes are typically governed by di↵usive transport, as the
mean free path, although it may exceed the penetration depth of the short-range
components, is typically much shorter then the penetration depth of the long-
range components. As di↵usive pair amplitudes are Fermi-surface averaged quan-
tities, they are even in parity. Thus, long-range triplet pairs are odd-frequency
[15]. The possibility to spatially separate such odd-frequency components from
the generating superconductor due to the superconducting proximity e↵ect allows
to study and utilize them. Odd-frequency pair amplitudes have a paramagnetic
Meissner response [83], and their experimental observation has important con-
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Figure 1.22 Examples for �-Josephson-junctions resulting from Eqs. (1.47)-(1.48). For
these plots, I1,0 = 0.7, I0,1 = 0.3, and (a) I1,1 = 0.05, (b) I1,1 = 0.25, (c) I1,1 = 0.4. The full lines
correspond to the equilibrium solution ��eq with lowest free energy for given �'. Dashed
lines indicate metastable solutions (local, but not global minima in the free energy). The
shaded regions correspond to a positive, the white regions to a negative Josephson current.

the transmission of a ##-pair involves a Josephson phase of �� + �' + ⇡. The
Cooper-pair current for a phase-coherent process that involves the transmission
of m ""-pairs and n ##-pairs involves a phase m(����'+⇡)+n(��+�'+⇡). The
corresponding Josephson current for each spin projection can be written as a sum
over all transmission processes as [70]

I"" =
1
2

X

mn

m (�1)m+nImn sin[(m+n)�� � (m�n)�'] (1.43)

I## =
1
2

X

mn

n (�1)m+nImn sin[(m+n)�� � (m�n)�']. (1.44)

The coe�cients fulfill the relation I�m,�n = Imn. The charge current Ic and the spin
current Is result then from

Ic = 2e (I"" + I##) (1.45)
Is = ~ (I"" � I##). (1.46)

The current-phase relation fulfills the symmetry Ic/s(���,��) = �Ic/s(��,���)
following from the behavior of the current density under time reversal.

A symmetric high-transmissive junction involves typically only processes with
m�n = 0,±1. For this case, one obtains up to |m+n|  2 the terms

I"" = I1,1 sin(2��)� I1,0 sin(�� ���) (1.47)
I## = I1,1 sin(2��)� I0,1 sin(�� +��). (1.48)

As shown in Fig. 1.22, the equilibrium superconducting phase ��eq is neither
zero nor ⇡, however takes a value in between, depending on the value of �'. For
su�ciently small I1,1 the variation of ��eq with �' is continuous, allowing to
tune ��eq in the full range between zero to ⇡. Thus, the system can act as a phase
battery. The first terms involving I1,1 are crossed pair transmission processes [82],
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shaded regions correspond to a positive, the white regions to a negative Josephson current.
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corresponding Josephson current for each spin projection can be written as a sum
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zero nor ⇡, however takes a value in between, depending on the value of �'. For
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internal discrete symmetries allow a canonical transformation to purely off-diagonal Hamiltonian: 
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time-reversal symmetry: 
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Atiyah-Patodi-Singer theorem: 

If for a trajectory described by the Andreev Hamiltonion with time-reversal symmetry the  
condition   
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holds, then there will be a topological zero-energy bound state in the eigenvalue spectrum. 

See also M. Stone, Ann. Phys. 155, 56 (1984)   

Similar statement holds for triplet order parameter with spin conserved in one direction. 
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Bulk-surface correspondence: 
Topology can be inferred from bulk Hamiltonian 
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where the expression is evaluated at ✏ = eV , v
F

1

is the
Fermi velocity in the normal metal, h•iout indicates that
the average is only for outgoing trajectories in the normal
metal, B(✏) = S12 (�0 + A2(✏)S22),

A2(✏) =
⇣
�0 � �2(✏)S̃22�̃2(✏)S22

⌘�1

�2(✏)S̃22�̃2(✏) (38)

and || • ||2 ⌘ 1
2Tr

⇥
(•)(•)†⇤. The normal state conduc-

tance, G
N

, is simply obtained by setting the coherence
functions to zero.

G. Topology

We characterize the topology of a system by computing
three topological invariants. The starting point is the
Bogolioubov-de Gennes (BdG) Hamiltonian
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obeying time-reversal symmetry, T , particle-hole sym-
metry, C , as well as the combined ’chiral’ symmetry
S = iT C. The BdG Hamiltonian is thus of the sym-
metry class DIII.53 It anticommutes with S and in the
basis where S is block diagonal H becomes block o↵-
diagonal, H̄ = V HV †. The flat-band block o↵-diagonal
Hamiltonian Q(k) is constructed by projecting all bands
above (below) the gap to +1 (�1)
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where q(k) is a 2 ⇥ 2 matrix in the one-band model (we
set for simplicity Yk = 1)
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� , �2 =
��1

+ + ��1
� , where �± = |A|lk| ± Bk|. Note that Q(k),

and thus q(k), is ill-defined for nodal order parameters.
Fully gapped systems are classified by calculating the

3D winding number which is defined as
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where Einstein summation is implied, "abc is the Levi-
Civita pseudo-tensor, a, b, c 2 {k

x

, k
y

, k
z

}, and the inte-
gral is over the entire first BZ. From the definition of q it
is clear that ⌫ is only well-defined if the order parameter
on the negative helical Fermi surface does not have nodes,
i.e. ��(k�

F

) 6= 0. There are two ways this can be true; ei-
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)|.

We calculate ⌫ numerically using the procedure in ap-
pendix C.

Nodal systems are classified by calculating the 1D
winding number which is defined as
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where l parameterizes the loop L in the BZ, and r
l

is the
directional gradient along this loop. The loop L cannot
pass through nodes of the order parameter, but is other
than that arbitrary. The 1D Hamiltonian for this loop
is in general not time-reversal invariant and is thus of
symmetry class AIII.53 In order to characterize a nodal
phase the loop needs to be constructed in such a way as
to always encircle a line node of ��(k�

F

) for any Fermi
surface geometry.

With increasing singlet to triplet ratio the first nodes
appear at the points where �

s

/�
t

= min |l(k�
F

)|. In-
creasing �

s

/�
t

further the nodal rings continue to be
positioned around these points until they connect with
one another. At this stage the nodal rings become posi-
tioned around the points where they eventually disappear
�

s

/�
t

= max |l(k�
F

)|. Thus a general loop should pass
through the points where the nodal rings appear and dis-
appear. This is accomplished by the loop

L : � ! min |l(k�
F

)| ! @BZ ! max |l(k�
F

)| ! � (44)

where @BZ is the BZ boundary, and the arrows do not
necessarily imply straight lines.

In order to study the topology’s e↵ect on the sur-
face states the 1D winding number is also computed for
straight noncontractible loops, i.e. loops traversing one
or several of the three circles making up the BZ torus
T3 = S1 ⇥S1 ⇥S1, that are perpendicular to the surface.
Writing the momentum k = (kk, k?) and the surface nor-
mal n = (l, m, n) the 1D winding number is written
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Z
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Restricting ourselves to time-reversal invariant non-
contractible loops another topological invariant can be
defined. Namely the Z2 invariant

W(lmn)(Kk) =
Y

K

Pf[i�2qT (K)]p
det[i�2qT (K)]

(46)

where K are time-reversal invariant momenta on the
loop, and Pf[•] denotes the Pfa�an of an antisymmet-
ric matrix •. The 1D Hamiltonian for this loop is of the
symmetry class DIII.53

The singlet (triplet) component is said to be domi-
nant if the inequality �

s

/�
t

> max |l(k�
F

)| is true (false).
With a dominant singlet component the material is fully
gapped. Increasing �

s

and/or decreasing �
t

the mate-
rial becomes nodal and eventually fully gapped again if
min |l(k�

F

)| > 0. As is shown below the dominance of
either component is temperature dependent.

1D winding number along contractable loop within Brillouin zone  
(not T-invariant, class AIII): 

Appendix A

The Topology of d-wave and Polar
p-wave Superconductors

In this thesis non-centrosymmetric superconductors have been extensively discussed. However,
it is illuminating to consider other nodal superconductors in order to highlight the differences
between them. In this appendix the topology of d-wave and polar p-wave superconductors are
investigated by computing the three topological invariants discussed in chapter 4; i.e. the 3D
winding number ⌫, the 1D winding number NL, and the Z

2

invariant WL.

A.1 d-wave Superconductors

The cuprate high-temperature superconductors have been established to have d-wave spin-
singlet pairing [81]. The order parameter is therefore written

�(k) = Y(k)�
0

i�
2

(A.1)

with the basis function Y(k) = cos(kx) � cos(ky) or Y(k) = sin(kx) sin(ky) . There are thus
four line nodes given by |kx| = |ky| in the first case, and kx = 0 or ky = 0 in the second.

The 3D winding number is ill-defined due to the nodes being present for all Fermi surfaces.
But we can analyse the line nodes by computing the 1D winding number NL, eq. (4.23). The
flat-band off-diagonal Hamiltonian, Q(k), for a d-wave superconductor is obtained by setting
↵, lk, and �t to zero in eq. (4.20), yielding simply

qk = ei✓k�
0

, ✓k = tan

�1

✓Yk�0

⇠k

◆

. (A.2)

The result for each node is |NL| = 2 [10, 66]. This configuration is, however, unstable, and
each node will split into two topologically stable line nodes with |NL| = 1 when perturbed by
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In crystals with a center of inversion the band-diagonal elements of the spin-orbit coupling vanish by 
symmetry: Lnn(k)=0. 
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7.5. Spin-orbit coupling and topological materials

Spin-orbit effects play an important role whenever the inversion symmetry is broken,
either in the bulk material (when it is lacking a center of inversion), or at interfaces and
surfaces [392]. A prominent example for spin-orbit effects at surfaces is the Rashba-
Bychkov spin-orbit coupling [393], and in the bulk an example is the Dresselhaus
coupling due to bulk-inversion asymmetry [394].

Whereas in materials with a center of inversion all band-diagonal matrix elements
of the spin-orbit coupling vanish, this is not the case in non-centrosymmetric materials.
Spin-orbit coupling in non-centrosymmetric materials is strongly enhanced due to band-
diagonal contributions, leading to a splitting of the Fermi surface into spin-orbit bands,
sometimes also called ‘helicity bands’ (although a well defined helicity is only in special
cases present). The kinetic part of the Hamiltonian in a one-band model has the form

Hkin =

X

k

X

��02{",#}

["(k) + g(k) · �]��0 a
†
k�ak�0 (100)

with the spin-orbit vector being odd in k: g(�k) = �g(k). In figure 23 various
spin-orbit vector fields compatible with the point group of the crystal are visualized
on a hypothetical spherical Fermi surface. All three cases are relevant for materials:
C4v for CePt3Si [395], CeRhSi3 [396] and CeIrSi3 [397], Td for Y2C3 [398], and O for
Li2(Pd1�xPtx)3B [399]. The kinetic part of the Hamiltonian can be diagonalized, leading
to the above-mentioned helicity bands. The spin-orbit interaction locks the orientation
of the quasiparticle spin with respect to its momentum in each band.

One interesting aspect of a non-centrosymmetric ferromagnetic Josephson junction
is the modification of the Josephson relation from an odd function in the superconducting
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The spatial profiles of s-wave OPs can be seen in Figure 1

for the di�erent point groups and surface orientations.
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In the next section this procedure is carried out for the case of a strong spin-orbit
interaction, e.g. appropriate for some non-centrosymmetric materials.

3.2 Spin-orbit interaction and Helicity representation

As discussed in the introductory chapter of this book, for treating a non-centrosym-
metric material it is convenient to perform a canonical transformation from a spin
basis with fermion annihilation operators akkkα for spin α =",# to the so-called helic-
ity basis with fermion annihilation operators ckkkλ for helicity λ = ±. This canonical
transformation diagonalizes the kinetic part of the Hamiltonian,
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Here, ξ (kkk) is the band dispersion relative to the chemical potential in the absence of
spin-orbit interaction, ggg(kkk) is the spin-orbit pseudovector, which is odd in momen-
tum, ggg(�kkk) = �ggg(kkk), and σσσ is the vector of Pauli matrices. The resulting helicity
band dispersion is

ξ±(kkk) = ξ (kkk)±|ggg(kkk)|. (44)

As is easily seen, spin-orbit interaction locks the orientation of the quasiparticle spin
with respect to its momentum in each helicity band. The Hamiltonian, Eq. (43), is
time reversal invariant, however lifts the spin degeneracy.
It is convenient to introduce polar and azimuthal angles for the vector ggg, defined
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For the superconducting state the Nambu-Gor’kov formalism is appropriate [66].
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Correspondingly, one can construct 4⇥4 retarded Green’s functions in spin basis,

Ĝ(s)
kkk1kkk2

(t1, t2) = �iθ (t1� t2)h
�
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pppβλ �. (42)

In the next section this procedure is carried out for the case of a strong spin-orbit
interaction, e.g. appropriate for some non-centrosymmetric materials.

3.2 Spin-orbit interaction and Helicity representation

As discussed in the introductory chapter of this book, for treating a non-centrosym-
metric material it is convenient to perform a canonical transformation from a spin
basis with fermion annihilation operators akkkα for spin α =",# to the so-called helic-
ity basis with fermion annihilation operators ckkkλ for helicity λ = ±. This canonical
transformation diagonalizes the kinetic part of the Hamiltonian,

Hkin =∑
kkk
∑

αβ=",#

⇥

ξ (kkk)+ggg (kkk) ·σσσ)αβ
⇤

a†kkkαakkkβ =∑
kkk
∑
λ=±

ξλ (kkk)c†kkkλ ckkkλ . (43)

Here, ξ (kkk) is the band dispersion relative to the chemical potential in the absence of
spin-orbit interaction, ggg(kkk) is the spin-orbit pseudovector, which is odd in momen-
tum, ggg(�kkk) = �ggg(kkk), and σσσ is the vector of Pauli matrices. The resulting helicity
band dispersion is

ξ±(kkk) = ξ (kkk)±|ggg(kkk)|. (44)

As is easily seen, spin-orbit interaction locks the orientation of the quasiparticle spin
with respect to its momentum in each helicity band. The Hamiltonian, Eq. (43), is
time reversal invariant, however lifts the spin degeneracy.
It is convenient to introduce polar and azimuthal angles for the vector ggg, defined

by {gx,gy,gz} = |ggg|{sin(θggg)cos(ϕggg),sin(θggg)sin(ϕggg),cos(θggg)} (where 0� θggg � π).
In terms of those, the transformation from spin to helicity basis, Ukkkλα , is defined
by [36]

Ukkkλα =
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�sin(θggg/2)eiϕggg cos(θggg/2)

◆
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α
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Obviously, ∑αβUkkkλα [ggg (kkk) ·σσσαβ ]U�
kkkλ �β = |ggg(kkk)|σ (3)

λλ � .
For the superconducting state the Nambu-Gor’kov formalism is appropriate [66].

The Nambu spinor, Âkkk = (akkk",akkk#,a†�kkk",a
†
�kkk#)

T transforms under the above canon-
ical transformation into the helical object Ĉkkk = (ckkk+,ckkk�,c†�kkk+,c†�kkk�)

T , where

Ĉkkk = ÛkkkÂkkk, Ûkkk =
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Correspondingly, one can construct 4⇥ 4 retarded Green’s functions in spin basis,

Ĝ(s)
kkk1kkk2

(t1, t2) = �iθ (t1� t2)h
�

Âkkk1(t1), Â
†
kkk2

(t2)
 iH , (47)
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Σ (QP)

λλ � (ppp,ε) =UpppλαΣ
(QP)

αβ (ppp,ε)U�
pppβλ �. (42)

In the next section this procedure is carried out for the case of a strong spin-orbit
interaction, e.g. appropriate for some non-centrosymmetric materials.

3.2 Spin-orbit interaction and Helicity representation

As discussed in the introductory chapter of this book, for treating a non-centrosym-
metric material it is convenient to perform a canonical transformation from a spin
basis with fermion annihilation operators akkkα for spin α =",# to the so-called helic-
ity basis with fermion annihilation operators ckkkλ for helicity λ = ±. This canonical
transformation diagonalizes the kinetic part of the Hamiltonian,

Hkin =∑
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∑

αβ=",#

⇥

ξ (kkk)+ggg (kkk) ·σσσ)αβ
⇤

a†kkkαakkkβ =∑
kkk
∑
λ=±

ξλ (kkk)c†kkkλ ckkkλ . (43)

Here, ξ (kkk) is the band dispersion relative to the chemical potential in the absence of
spin-orbit interaction, ggg(kkk) is the spin-orbit pseudovector, which is odd in momen-
tum, ggg(�kkk) = �ggg(kkk), and σσσ is the vector of Pauli matrices. The resulting helicity
band dispersion is

ξ±(kkk) = ξ (kkk)±|ggg(kkk)|. (44)

As is easily seen, spin-orbit interaction locks the orientation of the quasiparticle spin
with respect to its momentum in each helicity band. The Hamiltonian, Eq. (43), is
time reversal invariant, however lifts the spin degeneracy.
It is convenient to introduce polar and azimuthal angles for the vector ggg, defined

by {gx,gy,gz} = |ggg|{sin(θggg)cos(ϕggg),sin(θggg)sin(ϕggg),cos(θggg)} (where 0� θggg � π).
In terms of those, the transformation from spin to helicity basis, Ukkkλα , is defined
by [36]

Ukkkλα =
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Obviously, ∑αβUkkkλα [ggg (kkk) ·σσσαβ ]U�
kkkλ �β = |ggg(kkk)|σ (3)

λλ � .
For the superconducting state the Nambu-Gor’kov formalism is appropriate [66].

The Nambu spinor, Âkkk = (akkk",akkk#,a†�kkk",a
†
�kkk#)

T transforms under the above canon-
ical transformation into the helical object Ĉkkk = (ckkk+,ckkk�,c†�kkk+,c†�kkk�)

T , where

Ĉkkk = ÛkkkÂkkk, Ûkkk =
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Correspondingly, one can construct 4⇥4 retarded Green’s functions in spin basis,

Ĝ(s)
kkk1kkk2

(t1, t2) = �iθ (t1� t2)h
�

Âkkk1(t1), Â
†
kkk2

(t2)
 iH , (47)

Figure 23. Various types of spin-orbit coupling in crystals, relevant for topological
superconductivity. The crystal point group sets restrictions to the allowed spin-orbit
vector fields. The lowest order expansion terms in crystal momentum are shown.
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7.5. Spin-orbit coupling and topological materials

Spin-orbit effects play an important role whenever the inversion symmetry is broken,
either in the bulk material (when it is lacking a center of inversion), or at interfaces and
surfaces [392]. A prominent example for spin-orbit effects at surfaces is the Rashba-
Bychkov spin-orbit coupling [393], and in the bulk an example is the Dresselhaus
coupling due to bulk-inversion asymmetry [394].

Whereas in materials with a center of inversion all band-diagonal matrix elements
of the spin-orbit coupling vanish, this is not the case in non-centrosymmetric materials.
Spin-orbit coupling in non-centrosymmetric materials is strongly enhanced due to band-
diagonal contributions, leading to a splitting of the Fermi surface into spin-orbit bands,
sometimes also called ‘helicity bands’ (although a well defined helicity is only in special
cases present). The kinetic part of the Hamiltonian in a one-band model has the form

Hkin =

X

k

X

��02{",#}

["(k) + g(k) · �]��0 a
†
k�ak�0 (100)

with the spin-orbit vector being odd in k: g(�k) = �g(k). In figure 23 various
spin-orbit vector fields compatible with the point group of the crystal are visualized
on a hypothetical spherical Fermi surface. All three cases are relevant for materials:
C4v for CePt3Si [395], CeRhSi3 [396] and CeIrSi3 [397], Td for Y2C3 [398], and O for
Li2(Pd1�xPtx)3B [399]. The kinetic part of the Hamiltonian can be diagonalized, leading
to the above-mentioned helicity bands. The spin-orbit interaction locks the orientation
of the quasiparticle spin with respect to its momentum in each band.

One interesting aspect of a non-centrosymmetric ferromagnetic Josephson junction
is the modification of the Josephson relation from an odd function in the superconducting
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The spatial profiles of s-wave OPs can be seen in Figure 1

for the di�erent point groups and surface orientations.
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The spatial profiles of s-wave OPs can be seen in Figure 1
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The spatial profiles of s-wave OPs can be seen in Figure 1

for the di�erent point groups and surface orientations.
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In the next section this procedure is carried out for the case of a strong spin-orbit
interaction, e.g. appropriate for some non-centrosymmetric materials.

3.2 Spin-orbit interaction and Helicity representation

As discussed in the introductory chapter of this book, for treating a non-centrosym-
metric material it is convenient to perform a canonical transformation from a spin
basis with fermion annihilation operators akkkα for spin α =",# to the so-called helic-
ity basis with fermion annihilation operators ckkkλ for helicity λ = ±. This canonical
transformation diagonalizes the kinetic part of the Hamiltonian,
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Here, ξ (kkk) is the band dispersion relative to the chemical potential in the absence of
spin-orbit interaction, ggg(kkk) is the spin-orbit pseudovector, which is odd in momen-
tum, ggg(�kkk) = �ggg(kkk), and σσσ is the vector of Pauli matrices. The resulting helicity
band dispersion is

ξ±(kkk) = ξ (kkk)±|ggg(kkk)|. (44)

As is easily seen, spin-orbit interaction locks the orientation of the quasiparticle spin
with respect to its momentum in each helicity band. The Hamiltonian, Eq. (43), is
time reversal invariant, however lifts the spin degeneracy.
It is convenient to introduce polar and azimuthal angles for the vector ggg, defined
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✓

Ukkk 0
0 U�

�kkk

◆

. (46)

Correspondingly, one can construct 4⇥4 retarded Green’s functions in spin basis,

Ĝ(s)
kkk1kkk2

(t1, t2) = �iθ (t1� t2)h
�

Âkkk1(t1), Â
†
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(t2)
 iH , (47)
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Σ (QP)

λλ � (ppp,ε) =UpppλαΣ
(QP)

αβ (ppp,ε)U�
pppβλ �. (42)

In the next section this procedure is carried out for the case of a strong spin-orbit
interaction, e.g. appropriate for some non-centrosymmetric materials.

3.2 Spin-orbit interaction and Helicity representation

As discussed in the introductory chapter of this book, for treating a non-centrosym-
metric material it is convenient to perform a canonical transformation from a spin
basis with fermion annihilation operators akkkα for spin α =",# to the so-called helic-
ity basis with fermion annihilation operators ckkkλ for helicity λ = ±. This canonical
transformation diagonalizes the kinetic part of the Hamiltonian,

Hkin =∑
kkk
∑

αβ=",#

⇥

ξ (kkk)+ggg (kkk) ·σσσ)αβ
⇤

a†kkkαakkkβ =∑
kkk
∑
λ=±

ξλ (kkk)c†kkkλ ckkkλ . (43)

Here, ξ (kkk) is the band dispersion relative to the chemical potential in the absence of
spin-orbit interaction, ggg(kkk) is the spin-orbit pseudovector, which is odd in momen-
tum, ggg(�kkk) = �ggg(kkk), and σσσ is the vector of Pauli matrices. The resulting helicity
band dispersion is

ξ±(kkk) = ξ (kkk)±|ggg(kkk)|. (44)

As is easily seen, spin-orbit interaction locks the orientation of the quasiparticle spin
with respect to its momentum in each helicity band. The Hamiltonian, Eq. (43), is
time reversal invariant, however lifts the spin degeneracy.
It is convenient to introduce polar and azimuthal angles for the vector ggg, defined

by {gx,gy,gz} = |ggg|{sin(θggg)cos(ϕggg),sin(θggg)sin(ϕggg),cos(θggg)} (where 0� θggg � π).
In terms of those, the transformation from spin to helicity basis, Ukkkλα , is defined
by [36]

Ukkkλα =
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◆
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α
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Obviously, ∑αβUkkkλα [ggg (kkk) ·σσσαβ ]U�
kkkλ �β = |ggg(kkk)|σ (3)

λλ � .
For the superconducting state the Nambu-Gor’kov formalism is appropriate [66].

The Nambu spinor, Âkkk = (akkk",akkk#,a†�kkk",a
†
�kkk#)

T transforms under the above canon-
ical transformation into the helical object Ĉkkk = (ckkk+,ckkk�,c†�kkk+,c†�kkk�)

T , where
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Correspondingly, one can construct 4⇥4 retarded Green’s functions in spin basis,

Ĝ(s)
kkk1kkk2

(t1, t2) = �iθ (t1� t2)h
�

Âkkk1(t1), Â
†
kkk2

(t2)
 iH , (47)
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Σ (QP)

λλ � (ppp,ε) =UpppλαΣ
(QP)

αβ (ppp,ε)U�
pppβλ �. (42)

In the next section this procedure is carried out for the case of a strong spin-orbit
interaction, e.g. appropriate for some non-centrosymmetric materials.

3.2 Spin-orbit interaction and Helicity representation

As discussed in the introductory chapter of this book, for treating a non-centrosym-
metric material it is convenient to perform a canonical transformation from a spin
basis with fermion annihilation operators akkkα for spin α =",# to the so-called helic-
ity basis with fermion annihilation operators ckkkλ for helicity λ = ±. This canonical
transformation diagonalizes the kinetic part of the Hamiltonian,

Hkin =∑
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∑

αβ=",#

⇥

ξ (kkk)+ggg (kkk) ·σσσ)αβ
⇤

a†kkkαakkkβ =∑
kkk
∑
λ=±

ξλ (kkk)c†kkkλ ckkkλ . (43)

Here, ξ (kkk) is the band dispersion relative to the chemical potential in the absence of
spin-orbit interaction, ggg(kkk) is the spin-orbit pseudovector, which is odd in momen-
tum, ggg(�kkk) = �ggg(kkk), and σσσ is the vector of Pauli matrices. The resulting helicity
band dispersion is

ξ±(kkk) = ξ (kkk)±|ggg(kkk)|. (44)

As is easily seen, spin-orbit interaction locks the orientation of the quasiparticle spin
with respect to its momentum in each helicity band. The Hamiltonian, Eq. (43), is
time reversal invariant, however lifts the spin degeneracy.
It is convenient to introduce polar and azimuthal angles for the vector ggg, defined

by {gx,gy,gz} = |ggg|{sin(θggg)cos(ϕggg),sin(θggg)sin(ϕggg),cos(θggg)} (where 0� θggg � π).
In terms of those, the transformation from spin to helicity basis, Ukkkλα , is defined
by [36]

Ukkkλα =
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�sin(θggg/2)eiϕggg cos(θggg/2)
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α
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Obviously, ∑αβUkkkλα [ggg (kkk) ·σσσαβ ]U�
kkkλ �β = |ggg(kkk)|σ (3)

λλ � .
For the superconducting state the Nambu-Gor’kov formalism is appropriate [66].

The Nambu spinor, Âkkk = (akkk",akkk#,a†�kkk",a
†
�kkk#)

T transforms under the above canon-
ical transformation into the helical object Ĉkkk = (ckkk+,ckkk�,c†�kkk+,c†�kkk�)

T , where

Ĉkkk = ÛkkkÂkkk, Ûkkk =
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Correspondingly, one can construct 4⇥4 retarded Green’s functions in spin basis,

Ĝ(s)
kkk1kkk2

(t1, t2) = �iθ (t1� t2)h
�

Âkkk1(t1), Â
†
kkk2

(t2)
 iH , (47)

Figure 23. Various types of spin-orbit coupling in crystals, relevant for topological
superconductivity. The crystal point group sets restrictions to the allowed spin-orbit
vector fields. The lowest order expansion terms in crystal momentum are shown.
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7.5. Spin-orbit coupling and topological materials

Spin-orbit effects play an important role whenever the inversion symmetry is broken,
either in the bulk material (when it is lacking a center of inversion), or at interfaces and
surfaces [392]. A prominent example for spin-orbit effects at surfaces is the Rashba-
Bychkov spin-orbit coupling [393], and in the bulk an example is the Dresselhaus
coupling due to bulk-inversion asymmetry [394].

Whereas in materials with a center of inversion all band-diagonal matrix elements
of the spin-orbit coupling vanish, this is not the case in non-centrosymmetric materials.
Spin-orbit coupling in non-centrosymmetric materials is strongly enhanced due to band-
diagonal contributions, leading to a splitting of the Fermi surface into spin-orbit bands,
sometimes also called ‘helicity bands’ (although a well defined helicity is only in special
cases present). The kinetic part of the Hamiltonian in a one-band model has the form

Hkin =

X

k

X

��02{",#}

["(k) + g(k) · �]��0 a
†
k�ak�0 (100)

with the spin-orbit vector being odd in k: g(�k) = �g(k). In figure 23 various
spin-orbit vector fields compatible with the point group of the crystal are visualized
on a hypothetical spherical Fermi surface. All three cases are relevant for materials:
C4v for CePt3Si [395], CeRhSi3 [396] and CeIrSi3 [397], Td for Y2C3 [398], and O for
Li2(Pd1�xPtx)3B [399]. The kinetic part of the Hamiltonian can be diagonalized, leading
to the above-mentioned helicity bands. The spin-orbit interaction locks the orientation
of the quasiparticle spin with respect to its momentum in each band.

One interesting aspect of a non-centrosymmetric ferromagnetic Josephson junction
is the modification of the Josephson relation from an odd function in the superconducting
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The spatial profiles of s-wave OPs can be seen in Figure 1

for the di�erent point groups and surface orientations.
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The spatial profiles of s-wave OPs can be seen in Figure 1

for the di�erent point groups and surface orientations.
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The spatial profiles of s-wave OPs can be seen in Figure 1

for the di�erent point groups and surface orientations.
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pppβλ �. (42)

In the next section this procedure is carried out for the case of a strong spin-orbit
interaction, e.g. appropriate for some non-centrosymmetric materials.

3.2 Spin-orbit interaction and Helicity representation

As discussed in the introductory chapter of this book, for treating a non-centrosym-
metric material it is convenient to perform a canonical transformation from a spin
basis with fermion annihilation operators akkkα for spin α =",# to the so-called helic-
ity basis with fermion annihilation operators ckkkλ for helicity λ = ±. This canonical
transformation diagonalizes the kinetic part of the Hamiltonian,
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Here, ξ (kkk) is the band dispersion relative to the chemical potential in the absence of
spin-orbit interaction, ggg(kkk) is the spin-orbit pseudovector, which is odd in momen-
tum, ggg(�kkk) = �ggg(kkk), and σσσ is the vector of Pauli matrices. The resulting helicity
band dispersion is

ξ±(kkk) = ξ (kkk)±|ggg(kkk)|. (44)

As is easily seen, spin-orbit interaction locks the orientation of the quasiparticle spin
with respect to its momentum in each helicity band. The Hamiltonian, Eq. (43), is
time reversal invariant, however lifts the spin degeneracy.
It is convenient to introduce polar and azimuthal angles for the vector ggg, defined

by {gx,gy,gz} = |ggg|{sin(θggg)cos(ϕggg),sin(θggg)sin(ϕggg),cos(θggg)} (where 0� θggg � π).
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For the superconducting state the Nambu-Gor’kov formalism is appropriate [66].
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Correspondingly, one can construct 4⇥4 retarded Green’s functions in spin basis,
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Figure 23. Various types of spin-orbit coupling in crystals, relevant for topological
superconductivity. The crystal point group sets restrictions to the allowed spin-orbit
vector fields. The lowest order expansion terms in crystal momentum are shown.

2

the SOC strength, � = (�1, �2, �3) is a vector of spin
Pauli matrices, and lk is the SOC vector which is real,
invariant under crystal point group operations g,

lk ⌘ l(k) = gl(g�1k), (1)

and odd in k, l�k = �lk. We normalize the SOC vector
such that its maximum magnitude within the BZ is unity,
maxk2BZ |lk| = 1.

The kinetic part of the normal-state Hamiltonian can
thus be written as

Ĥk =
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with ⇠k = ✏k � µ, where ✏k is the band dispersion in
the absence of SOC (we will use for simplicity a nearest-
neighbor tight-binding dispersion), µ is the chemical po-
tential, and ck↵

(c†
k↵

) are fermion annihilation (creation)
operators for a quasiparticle with spin ↵ 2 {", #}. We
will study simple cubic (CUB) and body centered cu-
bic (BCC) lattices. The corresponding nearest-neighbor
tight binding dispersions are
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where t1 is the hopping integral.
The point groups considered here are the cubic point

group O, relevant for e.g. Li2Pd
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Pt3�x

;12,25,26,46,47 the
tetragonal point group C4v

, relevant for e.g. CePt3Si;10

and the tetrahedral point group T
d

, relevant for e.g.
Y2C3.48 We use dispersion (3) for the cubic point group,
O, and for sake of simplicity also for the tetragonal point
group, C4v

, whereas dispersion (4) will be used for the
tetrahedral point group T

d

. The SOC vectors are ob-
tained as lattice Fourier series, lk =

P
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l
n

sin(k · R
n

),
where R

n

are Bravais lattice vectors, and where the in-
variance under point group operations, Eq. (1), leads to
restrictions on the l

n
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The Hamiltonian, Eq. (2), is diagonalized and brought
to the so-called helicity basis by the canonical transfor-
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where the helical index takes the values � = {+, �},
and the helical band dispersion is given by ⇠±

k = ⇠k ±
↵|lk|. Note that ⇠�

k = ⇠�

�k even though the SOC vector
is antisymmetric. This is a consequence of Eq. (2) being
time-reversal invariant. Furthermore, the quasiparticle
spin is fixed with respect to its momentum on each band,
being parallel (� = +) or antiparallel (� = �) to lk.

B. Superconducting state

Superconductivity is modeled within the Nambu-
Gor’kov formalism. Under the canonical transfor-
mation defined above the Nambu spinor Ĉk =
(ck", ck#, c

†
�k", c

†
�k#)

T transforms into its helical equiv-

alent B̂k = (bk+, bk�, b†
�k+, b†

�k�)T ⌘ ÛkĈk with Ûk ⌘
diag(Uk, U⇤

�k), and the ”hat” denotes Nambu structure.
It is straightforward to construct 4 ⇥ 4 helical Green
functions, e.g. the retarded ĜR
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†
k
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(t2)}iH, where ⇥ is the Heaviside step
function, h•iH denotes a grand canonical average, {•, •}
is an anticommutator, and B̂k(t) a Heisenberg operator.
The quasiclassical propagator is obtained by integrating
out fast oscillations from the full Green functions. In the
case when the magnitude of the SOC is much smaller
than the Fermi energy, ↵ ⌧ E

F

, it su�ces to integrate
over ⇠k and treat the SOC term perturbatively. For
this case, in Wigner coordinates the quasiclassical prop-
agator is given by ǧ(k

F

,R, ✏, t) =
R

d⇠k⌧̂3Ǧ(k,R, ✏, t),
with k parameterized by (⇠k,k

F

), ⇠k = v
F

· (k � k
F

),
⌧̂ = (⌧̂1, ⌧̂2, ⌧̂3) are Pauli matrices in particle-hole space,
and the ”check” denotes Keldysh matrix structure.

The SOC term enters the transport equations as a
source term. Within this approximation the Eilenberger
equation49 for the quasiclassical Green function takes the
following form in the helicity basis

iv
F

· rRĝR,A,M + [z⌧̂3 � �̂ � v̂SO, ĝ]R,A,M = 0̂ (7)

with z = i✏
n

= i⇡T (2n + 1) for Matsubara, and z =
✏ ± i0+ for retarded (advanced), quantities. [•, •] is a
commutator, the SOC term is v̂SO = ↵|lkF |�3⌧̂0, and the
gap has the form
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where the ”tilde operation” is defined as the particle-
hole conjugate, Q̃(k

F

,R, z, t) ⌘ Q⇤(�k
F

,R, �z⇤, t).
Eq. (7) is supplemented by the normalization condition
(ĝR,A,M)2 = �⇡21̂. In order to simplify notation, we will
henceforth drop the subscript F at the Fermi momen-
tum; all momenta in the quasiclassical theory are Fermi
momenta. The subscript will be written out only when
it is necessary to avoid confusion. We consider time-
independent situations, such that the time variable t will
be dropped from here on.

The lack of a center of inversion allows for an admix-
ture of spin-singlet and spin-triplet pairing.37 The spin-
triplet vector is set to be parallel to the SOC vector in
order to maximize T

c

.38 In spin basis the order parameter
is written

�(k) = Yk(�
s

+ �
t

lk · �)i�2, (9)

where Yk is a crystal basis function corresponding to ir-
reducible representation of the dominant pairing chan-
nel, and �

s

and �
t

are referred to as the singlet and
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7.5. Spin-orbit coupling and topological materials

Spin-orbit effects play an important role whenever the inversion symmetry is broken,
either in the bulk material (when it is lacking a center of inversion), or at interfaces and
surfaces [392]. A prominent example for spin-orbit effects at surfaces is the Rashba-
Bychkov spin-orbit coupling [393], and in the bulk an example is the Dresselhaus
coupling due to bulk-inversion asymmetry [394].

Whereas in materials with a center of inversion all band-diagonal matrix elements
of the spin-orbit coupling vanish, this is not the case in non-centrosymmetric materials.
Spin-orbit coupling in non-centrosymmetric materials is strongly enhanced due to band-
diagonal contributions, leading to a splitting of the Fermi surface into spin-orbit bands,
sometimes also called ‘helicity bands’ (although a well defined helicity is only in special
cases present). The kinetic part of the Hamiltonian in a one-band model has the form

Hkin =

X

k

X

��02{",#}

["(k) + g(k) · �]��0 a
†
k�ak�0 (100)

with the spin-orbit vector being odd in k: g(�k) = �g(k). In figure 23 various
spin-orbit vector fields compatible with the point group of the crystal are visualized
on a hypothetical spherical Fermi surface. All three cases are relevant for materials:
C4v for CePt3Si [395], CeRhSi3 [396] and CeIrSi3 [397], Td for Y2C3 [398], and O for
Li2(Pd1�xPtx)3B [399]. The kinetic part of the Hamiltonian can be diagonalized, leading
to the above-mentioned helicity bands. The spin-orbit interaction locks the orientation
of the quasiparticle spin with respect to its momentum in each band.

One interesting aspect of a non-centrosymmetric ferromagnetic Josephson junction
is the modification of the Josephson relation from an odd function in the superconducting
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The spatial profiles of s-wave OPs can be seen in Figure 1

for the di�erent point groups and surface orientations.

TUNNEL CONDUCTANCE

The 4 ⇥ 4 scattering matrix, in the helicity basis, for a

junction between an NCS with weak spin-orbit coupling

and a normal metal can be written as

✓

S

11

S

12

S

21

S

22

◆

=

✓

r tU

†
k

t

�
U�k �rUkU

†
k

◆

, (23)

3

0 1 2 3

−0.5

0

0.5

1

1.5

O n=[100]

x/ξ
0

∆
/T

c

0 1 2 3
−1

0

1

2

Td n=[100]

x/ξ
0

∆
/T

c

0 1 2 3
−1

0

1

2

Td n=[110]

x/ξ
0

∆
/T

c

0 1 2 3
−1

0

1

2

Td n=[111]

x/ξ
0

∆
/T

c

0 1 2 3
−1

0

1

2

O n=[111]

x/ξ
0

∆
/T

c

0 1 2 3
−1

0

1

2

C
4v

 n=[100]

x/ξ
0

∆
/T

c

0 1 2 3
−1

0

1

2

C
4v

 n=[001]

x/ξ
0

∆
/T

c

0 1 2 3
−1

0

1

2

C
4v

 n=[111]

x/ξ
0

∆
/T

c

FIG. 1: The spatial dependence of the OP near the surface. Dashed black lines indicate the singlet components, and green
solid lines indicate the triplet. In each plot, from top to bottom, the absolute values of the ratio of the bulk components,
q = |�

s

/�
t

|, are 0, and (approximately) 0.3, and 0.8. They were all made with

0 = � 1

V

�t + ln

✓

2e

�
�c

⇡T

◆

��vm

�Y2

�

�s + vt

�|�gk|2Y2

�

�t

�

+⇡T

|"n|��c
X

"n

�

�vm

✓

1

2

Tr{f} � Y�s

|"n|
◆

+ vt|�gk|
✓

1

2

Tr{�

3

f} � |�gk|Y�t

|"n|
◆�

. (17)

Note that � = 0.5772... here refers to Euler’s constant,

not the Riccati amplitudes. Close to T ⇡ Tc Eq. (16)

and (17) simplifies to

ln

✓

2e

�
�c

⇡Tc

◆

L

✓

�s

�t

◆

=

1

V

✓

�s

�t

◆

(18)

with

L =

✓

vs

�Y2

� �vm

�|�gk|2Y2

�

vm

�Y2

�

vt

�|�gk|2Y2

�

◆

. (19)

The pairing potential is now determined by V

�1

=

ln (2e

�
�c/(⇡Tc)) max{�

1

, �

2

} where �

1

and �

2

are the

eigenvalues of L. Eq. (16) and (17) are then solved

iteratively for the di�erent point groups and surface ori-

entations.

The groups considered[9] are the tetragonal point

group to first order, i.e. Rashba coupling, (relevant to

CePt

3

Si, CeIrSi

3

and CeRhSi

3

)

C

4v : �gk =

0

@

ky

�kx

0

1

A

; (20)

cubic to second order (relevant to Li

2

PdxPt

3�x),

O : �gk =

0

@

kx

ky

kz

1

A

+ g

2

0

@

kx

�

k

2

y + k

2

z

�

ky

�

k

2

x + k

2

z

�

kz

�

k

2

x + k

2

y

�

1

A

(21)

with g

2

= �1.5; and the tetrahedral point group to first

order (relevant to Y

2

C

3

),

Td : �gk = 2

0

@

kx

�

k

2

y � k

2

z

�

ky

�

k

2

z � k

2

x

�

kz

�

k

2

x � k

2

y

�

1

A

. (22)

The spatial profiles of s-wave OPs can be seen in Figure 1
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The spatial profiles of s-wave OPs can be seen in Figure 1

for the di�erent point groups and surface orientations.
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In the next section this procedure is carried out for the case of a strong spin-orbit
interaction, e.g. appropriate for some non-centrosymmetric materials.

3.2 Spin-orbit interaction and Helicity representation

As discussed in the introductory chapter of this book, for treating a non-centrosym-
metric material it is convenient to perform a canonical transformation from a spin
basis with fermion annihilation operators akkkα for spin α =",# to the so-called helic-
ity basis with fermion annihilation operators ckkkλ for helicity λ = ±. This canonical
transformation diagonalizes the kinetic part of the Hamiltonian,
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ξλ (kkk)c†kkkλ ckkkλ . (43)

Here, ξ (kkk) is the band dispersion relative to the chemical potential in the absence of
spin-orbit interaction, ggg(kkk) is the spin-orbit pseudovector, which is odd in momen-
tum, ggg(�kkk) = �ggg(kkk), and σσσ is the vector of Pauli matrices. The resulting helicity
band dispersion is

ξ±(kkk) = ξ (kkk)±|ggg(kkk)|. (44)

As is easily seen, spin-orbit interaction locks the orientation of the quasiparticle spin
with respect to its momentum in each helicity band. The Hamiltonian, Eq. (43), is
time reversal invariant, however lifts the spin degeneracy.
It is convenient to introduce polar and azimuthal angles for the vector ggg, defined

by {gx,gy,gz} = |ggg|{sin(θggg)cos(ϕggg),sin(θggg)sin(ϕggg),cos(θggg)} (where 0� θggg � π).
In terms of those, the transformation from spin to helicity basis, Ukkkλα , is defined
by [36]
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For the superconducting state the Nambu-Gor’kov formalism is appropriate [66].

The Nambu spinor, Âkkk = (akkk",akkk#,a†�kkk",a
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Correspondingly, one can construct 4⇥4 retarded Green’s functions in spin basis,
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T , where
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Figure 23. Various types of spin-orbit coupling in crystals, relevant for topological
superconductivity. The crystal point group sets restrictions to the allowed spin-orbit
vector fields. The lowest order expansion terms in crystal momentum are shown.

Vorontsov, Vehter, M.E., Phys. Rev. Lett. 101, 127003 (2008)  

relative weights of intraband and interband scattering, and
Eq. (6) gives the bound state energy.

We show now that the suppression of the anisotropic
(triplet) component of the OP in Eq. (4) near the surface
drastically modifies the ABS spectrum, and the surface

DOS, Nð";kfÞ ¼ $ Nf

2! ImTrfgð";kfÞg, where Tr is a 2%
2 spin trace, and Nf is the normal state DOS. The salient
features are clear from considering a 2D material with the
Rashba-type SO coupling " ¼ "Rkf, gk ¼ ðk% ẑÞ=kf ¼
ðky;$kx; 0Þ=kf, and a triplet order parameter, !þ ¼
$!$ ¼ !; we find only quantitative differences for 3D
Fermi surface, !þ ! $!$ and other gk’s.

To obtain insight in the role of the OP suppression, we
consider first a simple model where ! ¼ 0 in a layer of
width W next to the surface; see Fig. 2. Trajectories inci-
dent at an angle # travel through a non-SC region of an
effective width 2D ¼ 2W= cos#. In this case Eq. (7) reads
M ¼ cot2#, the surface coherence amplitudes gain a
phase factor, $' ¼ $0

'e
i2"D=vf , ~$' ¼ ~$0

'e
i2"D=vf , Eq. (6)

yields Im2ð~$0
þe

i2"D=vf Þ ¼ Re2ð~$0
þe

i2"D=vf ÞM, and the
bound states are given by

"=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 $ "2
q

¼ $ tanð2W"=vf cos#'#Þ: (8)

Solutions of this equation are shown in Fig. 2. The ‘‘prin-
cipal’’ modes with energies away from the continuum edge
contribute the most to the subgap DOS. W ¼ 0 (no gap
suppression) reproduces the result of Ref. [24]: each in-
coming trajectory yields a bound state at a different energy.
For W ! 0 the main mode "bsð#Þ develops a maximum at
"? < !0, and we expect a peak in the surface DOS near "?

due to abundance of trajectories contributing to Nð"?Þ.
The fully self-consistent solution, shown in Fig. 3(b),

confirms this. Note that ! ! 0 at the surface, Fig. 3(a), as
in other unconventional superconductors misaligned with
respect to the interface [16]. Crucially, self-consistency
does yield a strong peak in the surface DOS below the
gap at a finite energy, in qualitative contrast to earlier
results [24,25]. Experimentally accessing this peak by

point contact tunneling requires a sufficiently wide tunnel-
ing cone as the feature arises from the trajectories at
intermediate incident angles; see Fig. 2.
These ABS have unusual spin structure. Figures 3(c) and

3(d) show the spin-resolved density of states, N"# ¼ N '
NZ, where N is the net DOS and N"ð%;kf;xÞ ¼
$ Nf

2! ImTrf&"gð%;kf;xÞg. At the interface NX ¼ NY ¼
0. The states corresponding to different branches of
Eq. (8) have opposite spin polarization. Since the spin
polarization changes sign for reversed trajectories, the
Andreev states carry spin current along the interface.
Spin currents exist in NCS materials because the spin is

not conserved, and consequently precession terms enter the
continuity equation, @tS

"ðxÞ þ r (!"ðxÞ ¼ P"ðxÞ [5].
Here, the spin density, S"ðxÞ ¼ 1

2 Tr
R
dk&"Gðk;xÞ, the

spin current, !"ðxÞ ¼ 1
4 Tr

R
dkf&"; vkgGðk;xÞ, and the

precession P"ðxÞ ¼ 1
2i Tr

R
dk½&"; vk ( k*Gðk;xÞ, (where

[+, +] is a commutator, and vk ¼ kf=mþ "R½ẑ% !* is
the band velocity), are all given in terms of Green’s func-
tions at imaginary relative time ' ¼ $i0. For the Rashba
case, the precession terms are related to spin currents via
the relations PX ¼ $2m"R"

Z
x , P

Y ¼ $2m"R"
Z
y , P

Z ¼
2m"Rð"X

x þ"Y
y Þ [26].

We first consider the spin currents in the normal state.
The bulk value, "Y

x ¼ $"X
y ¼ "bulk

spin ¼ m2"3
R=3! agrees

with Ref. [5]. To determine the surface spin currents we
find the Green’s function for a surface modeled as a
(-function barrier at x ¼ 0 of strengthU. The Dyson equa-
tion in 2% 2 spin space reads G$1 ¼ ½Gð0Þ*$1 $U(ðxÞ,
where ½Gð0Þ

k *$1 ¼ "$ )k $ "Rðk% ẑÞ!. For an impene-
trable surface (U ! 1) the solution is (for fixed ky) [27]
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relative weights of intraband and interband scattering, and
Eq. (6) gives the bound state energy.

We show now that the suppression of the anisotropic
(triplet) component of the OP in Eq. (4) near the surface
drastically modifies the ABS spectrum, and the surface

DOS, Nð";kfÞ ¼ $ Nf

2! ImTrfgð";kfÞg, where Tr is a 2%
2 spin trace, and Nf is the normal state DOS. The salient
features are clear from considering a 2D material with the
Rashba-type SO coupling " ¼ "Rkf, gk ¼ ðk% ẑÞ=kf ¼
ðky;$kx; 0Þ=kf, and a triplet order parameter, !þ ¼
$!$ ¼ !; we find only quantitative differences for 3D
Fermi surface, !þ ! $!$ and other gk’s.

To obtain insight in the role of the OP suppression, we
consider first a simple model where ! ¼ 0 in a layer of
width W next to the surface; see Fig. 2. Trajectories inci-
dent at an angle # travel through a non-SC region of an
effective width 2D ¼ 2W= cos#. In this case Eq. (7) reads
M ¼ cot2#, the surface coherence amplitudes gain a
phase factor, $' ¼ $0

'e
i2"D=vf , ~$' ¼ ~$0

'e
i2"D=vf , Eq. (6)

yields Im2ð~$0
þe

i2"D=vf Þ ¼ Re2ð~$0
þe

i2"D=vf ÞM, and the
bound states are given by

"=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 $ "2
q

¼ $ tanð2W"=vf cos#'#Þ: (8)

Solutions of this equation are shown in Fig. 2. The ‘‘prin-
cipal’’ modes with energies away from the continuum edge
contribute the most to the subgap DOS. W ¼ 0 (no gap
suppression) reproduces the result of Ref. [24]: each in-
coming trajectory yields a bound state at a different energy.
For W ! 0 the main mode "bsð#Þ develops a maximum at
"? < !0, and we expect a peak in the surface DOS near "?

due to abundance of trajectories contributing to Nð"?Þ.
The fully self-consistent solution, shown in Fig. 3(b),

confirms this. Note that ! ! 0 at the surface, Fig. 3(a), as
in other unconventional superconductors misaligned with
respect to the interface [16]. Crucially, self-consistency
does yield a strong peak in the surface DOS below the
gap at a finite energy, in qualitative contrast to earlier
results [24,25]. Experimentally accessing this peak by

point contact tunneling requires a sufficiently wide tunnel-
ing cone as the feature arises from the trajectories at
intermediate incident angles; see Fig. 2.
These ABS have unusual spin structure. Figures 3(c) and

3(d) show the spin-resolved density of states, N"# ¼ N '
NZ, where N is the net DOS and N"ð%;kf;xÞ ¼
$ Nf

2! ImTrf&"gð%;kf;xÞg. At the interface NX ¼ NY ¼
0. The states corresponding to different branches of
Eq. (8) have opposite spin polarization. Since the spin
polarization changes sign for reversed trajectories, the
Andreev states carry spin current along the interface.
Spin currents exist in NCS materials because the spin is

not conserved, and consequently precession terms enter the
continuity equation, @tS

"ðxÞ þ r (!"ðxÞ ¼ P"ðxÞ [5].
Here, the spin density, S"ðxÞ ¼ 1

2 Tr
R
dk&"Gðk;xÞ, the

spin current, !"ðxÞ ¼ 1
4 Tr

R
dkf&"; vkgGðk;xÞ, and the

precession P"ðxÞ ¼ 1
2i Tr

R
dk½&"; vk ( k*Gðk;xÞ, (where

[+, +] is a commutator, and vk ¼ kf=mþ "R½ẑ% !* is
the band velocity), are all given in terms of Green’s func-
tions at imaginary relative time ' ¼ $i0. For the Rashba
case, the precession terms are related to spin currents via
the relations PX ¼ $2m"R"

Z
x , P

Y ¼ $2m"R"
Z
y , P

Z ¼
2m"Rð"X

x þ"Y
y Þ [26].

We first consider the spin currents in the normal state.
The bulk value, "Y

x ¼ $"X
y ¼ "bulk

spin ¼ m2"3
R=3! agrees

with Ref. [5]. To determine the surface spin currents we
find the Green’s function for a surface modeled as a
(-function barrier at x ¼ 0 of strengthU. The Dyson equa-
tion in 2% 2 spin space reads G$1 ¼ ½Gð0Þ*$1 $U(ðxÞ,
where ½Gð0Þ

k *$1 ¼ "$ )k $ "Rðk% ẑÞ!. For an impene-
trable surface (U ! 1) the solution is (for fixed ky) [27]
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Gkxk
0
x
¼ Gð0Þ

kx
2!"ðkx $ k0xÞ $Gð0Þ

kx

1
R dpx

2! Gð0Þ
px

Gð0Þ
k0x
: (9)

We solve Eq. (9) numerically, and show the normal state
surface spin currents in Figs. 4(a) and 4(b). The most
prominent new feature is a large surface current !Z

y with
out of plane spin polarization [28] that flows along the
surface, and decays rapidly into the bulk on the scale
similar to that of Friedel oscillations. This component is
related to !Y

x via the continuity equation, !Z
y ðxÞ ¼

$1=ð2m#RÞd!Y
x ðxÞ=dx. As a result, this component is

much greater, by a factor of order kf=m#R, than the bulk
spin currents in the normal state.

The SC spin current, shown in Figs. 4(c) and 4(d), is
defined in the quasiclassical method relative to the normal
state,

J # % !# $!#
N ¼

Z 1

$1
d$nfð$ÞhvfN#ð$;kf;xÞi; (10)

where nfð$Þ is the Fermi function. The surface-induced
current with out of plane spin polarization is greater than
the normal state current by the factor &TcE

2
f=#

3. The

maximal amplitude at the surface is solely determined by
the structure of the SC gap and formally survives even in
the limit # ! 0. SC spin currents decay into the bulk on
the scale of the coherence length, much slower than in the
normal phase. The oscillations in Figs. 4(c) and 4(d) are
determined by the spin-orbit strength # and appear due to
Faraday-like rotations of the spin coherence functions
along quasiparticle trajectories.

In summary, we presented a general analysis of surface
bound states and the associated spin currents in noncen-
trosymmetric superconductors, and applied it to a system
with a Rashba-type spin-orbit coupling. We found that the

suppression of superconductivity near the surface gives
rise to a finite-bias peak in the surface density of states
that can be probed by point contact tunneling. We pre-
dicted that large in amplitude and slowly decaying spin
currents with out of plane spin polarization are generically
carried by these surface states. Our prediction opens the
route to future investigations and applications of spin
transport in systems containing superconductors without
center of inversion, and for their use in spin-based devices.
This work was supported by the Louisiana Board of

Regents, and through I2CAM by NSF Grant No. DMR
0645461.
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the SOC strength, � = (�1, �2, �3) is a vector of spin
Pauli matrices, and lk is the SOC vector which is real,
invariant under crystal point group operations g,

lk ⌘ l(k) = gl(g�1k), (1)

and odd in k, l�k = �lk. We normalize the SOC vector
such that its maximum magnitude within the BZ is unity,
maxk2BZ |lk| = 1.

The kinetic part of the normal-state Hamiltonian can
thus be written as

Ĥk =
X

k↵�

c†
k↵

(⇠k�0 + ↵lk · �)
↵�

ck�

(2)

with ⇠k = ✏k � µ, where ✏k is the band dispersion in
the absence of SOC (we will use for simplicity a nearest-
neighbor tight-binding dispersion), µ is the chemical po-
tential, and ck↵

(c†
k↵

) are fermion annihilation (creation)
operators for a quasiparticle with spin ↵ 2 {", #}. We
will study simple cubic (CUB) and body centered cu-
bic (BCC) lattices. The corresponding nearest-neighbor
tight binding dispersions are

✏CUB
k = t1 [cos (k

x

) + cos (k
y

) + cos (k
z

)] (3)

and

✏BCC
k = 8t1 cos (k

x

/2) cos (k
y

/2) cos (k
z

/2) , (4)

where t1 is the hopping integral.
The point groups considered here are the cubic point

group O, relevant for e.g. Li2Pd
x

Pt3�x

;12,25,26,46,47 the
tetragonal point group C4v

, relevant for e.g. CePt3Si;10

and the tetrahedral point group T
d

, relevant for e.g.
Y2C3.48 We use dispersion (3) for the cubic point group,
O, and for sake of simplicity also for the tetragonal point
group, C4v

, whereas dispersion (4) will be used for the
tetrahedral point group T

d

. The SOC vectors are ob-
tained as lattice Fourier series, lk =

P
n

l
n

sin(k · R
n

),
where R

n

are Bravais lattice vectors, and where the in-
variance under point group operations, Eq. (1), leads to
restrictions on the l

n

.8

The Hamiltonian, Eq. (2), is diagonalized and brought
to the so-called helicity basis by the canonical transfor-
mation Uk (lk · �) U†

k = |lk|�3, where

Uk =

✓
cos

�
✓l
2

�
e�i�l sin

�
✓l
2

�

�ei�l sin
�

✓l
2

�
cos

�
✓l
2

�
◆

, (5)

with �
l

= tan�1(l
y

/l
x

) and ✓
l

= tan�1(
q

l2
x

+ l2
y

/l
z

)

being the spherical angles of the SOC vector, lk =
(l

x

, l
y

, l
z

)T , yielding

Ĥk =
X

k�

⇠�

kb†
k�

bk�

, bk�

=
X

↵

Uk�↵

ck↵

(6)

where the helical index takes the values � = {+, �},
and the helical band dispersion is given by ⇠±

k = ⇠k ±
↵|lk|. Note that ⇠�

k = ⇠�

�k even though the SOC vector
is antisymmetric. This is a consequence of Eq. (2) being
time-reversal invariant. Furthermore, the quasiparticle
spin is fixed with respect to its momentum on each band,
being parallel (� = +) or antiparallel (� = �) to lk.

B. Superconducting state

Superconductivity is modeled within the Nambu-
Gor’kov formalism. Under the canonical transfor-
mation defined above the Nambu spinor Ĉk =
(ck", ck#, c

†
�k", c

†
�k#)

T transforms into its helical equiv-

alent B̂k = (bk+, bk�, b†
�k+, b†

�k�)T ⌘ ÛkĈk with Ûk ⌘
diag(Uk, U⇤

�k), and the ”hat” denotes Nambu structure.
It is straightforward to construct 4 ⇥ 4 helical Green
functions, e.g. the retarded ĜR

k
1

k
2

(t1, t2) = �i⇥(t1 �
t2)h{B̂k

1

(t1), B̂
†
k
2

(t2)}iH, where ⇥ is the Heaviside step
function, h•iH denotes a grand canonical average, {•, •}
is an anticommutator, and B̂k(t) a Heisenberg operator.
The quasiclassical propagator is obtained by integrating
out fast oscillations from the full Green functions. In the
case when the magnitude of the SOC is much smaller
than the Fermi energy, ↵ ⌧ E

F

, it su�ces to integrate
over ⇠k and treat the SOC term perturbatively. For
this case, in Wigner coordinates the quasiclassical prop-
agator is given by ǧ(k

F

,R, ✏, t) =
R

d⇠k⌧̂3Ǧ(k,R, ✏, t),
with k parameterized by (⇠k,k

F

), ⇠k = v
F

· (k � k
F

),
⌧̂ = (⌧̂1, ⌧̂2, ⌧̂3) are Pauli matrices in particle-hole space,
and the ”check” denotes Keldysh matrix structure.

The SOC term enters the transport equations as a
source term. Within this approximation the Eilenberger
equation49 for the quasiclassical Green function takes the
following form in the helicity basis

iv
F

· rRĝR,A,M + [z⌧̂3 � �̂ � v̂SO, ĝ]R,A,M = 0̂ (7)

with z = i✏
n

= i⇡T (2n + 1) for Matsubara, and z =
✏ ± i0+ for retarded (advanced), quantities. [•, •] is a
commutator, the SOC term is v̂SO = ↵|lkF |�3⌧̂0, and the
gap has the form

�̂ =

✓
0 �
�̃ 0

◆
(8)

where the ”tilde operation” is defined as the particle-
hole conjugate, Q̃(k

F

,R, z, t) ⌘ Q⇤(�k
F

,R, �z⇤, t).
Eq. (7) is supplemented by the normalization condition
(ĝR,A,M)2 = �⇡21̂. In order to simplify notation, we will
henceforth drop the subscript F at the Fermi momen-
tum; all momenta in the quasiclassical theory are Fermi
momenta. The subscript will be written out only when
it is necessary to avoid confusion. We consider time-
independent situations, such that the time variable t will
be dropped from here on.

The lack of a center of inversion allows for an admix-
ture of spin-singlet and spin-triplet pairing.37 The spin-
triplet vector is set to be parallel to the SOC vector in
order to maximize T

c

.38 In spin basis the order parameter
is written

�(k) = Yk(�
s

+ �
t

lk · �)i�2, (9)

where Yk is a crystal basis function corresponding to ir-
reducible representation of the dominant pairing chan-
nel, and �

s

and �
t

are referred to as the singlet and

4

with l± = |lk| ± |lk0 |. The self-consistency equation in
the Matsubara formalism is expressed in terms of Fermi
surface averages h•i, defined as

h•i =
1

N
F

Z
d2k

F

(2⇡)3|v
F

| (•) , N
F

=

Z
d2k

F

(2⇡)3|v
F

| .(22)

With this, the self-consistency equation takes the form

✓
�+(k)
��(k)

◆
= TN

F

|✏n|<✏

cX

✏n

⌧
V (k,k0)

✓
f+(k0, ✏

n

)
f�(k0, ✏

n

)

◆�

k0
(23)

where f± are defined by

f(k, ✏
n

) =

✓
f+(k, ✏

n

)t+(k) 0
0 f�(k, ✏
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, (24)

the phase factors are defined in Eq. (11), and ✏
c

is the
BCS technical cuto↵. Using the relations �

s

= 1
2 (�+ +

��) and �
t

|lk| = 1
2 (�+ � ��), the implicit form of

the self-consistency equation for the singlet and triplet
components of the order parameter reads
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where
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After elimination of the cuto↵ and the pairing strength V
in favor of the superconducting transition temperature,
one obtains
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where the matrix exponent in the logarithm, T hLki, is
taken element-wise, i.e.

h
T hLki

i

ij

⌘ T h[Lk]iji , (28)

and with

Lk =

✓
v

s

|Yk|2 �v
m

|Yklk|2
�v
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|Yk|2 v
t

|Yklk|2
◆

. (29)

Furthermore, �max ⌘ max{�1, �2}, and �1,2 are the
eigenvalues of the matrix hLki. We follow Ref. 52 in
eliminating the cut-o↵ dependence in close vicinity to the
surface as well. For details on the numerical procedure
to achieve self-consistency see appendix A.

D. Bulk superconducting phase

At T = T
c

the self-consistency equation reduces to
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where � = 0.5772... is the Euler-Mascheroni constant.
The number of positive eigenvalues of hLki determines
the number of nucleation channels, with T

c

determined
by the largest eigenvalue �max. Using Eq. (20), the eigen-
values can be mapped onto the unit sphere. How the
number of nucleation channels depends on the spherical
angles �

v

= tan�1(v
t

/v
s

) and ✓
v

= tan�1(
p

v2
s

+ v2
t

/v
m

)

can be seen in Fig. 1. When both eigenvalues are posi-
tive there are two possible nucleation channels, the dom-

inant and the subdominant one. The dominant chan-
nel is responsible for the transition to superconductiv-
ity due to its larger critical temperature. The domi-
nant channel also determines the singlet to triplet or-
der parameter ratio, �

s

/�
t

, and their relative sign. The
subdominant channel nucleates at a lower temperature
T sub.

c

 T
c

. With a finite mixing, v
m

6= 0, an admix-
ture of singlet and triplet components is obtained. For
certain choices of the parameters (v

s

, v
t

, v
m

) it is possi-
ble to achieve a cross-over from dominating singlet com-
ponent at T = T

c

to a dominating triplet component
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FIG. 1. Dependence of the number of nucleation channels,
i.e. positive eigenvalues to the matrix defined in Eq. (29), on
the angles �
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channels is independent of the SOC as long as it is finite.

Transport equation: 

Order parameter: singlet-triplet mixture 

Self-consistency equation: 

15

plicated Fermi surface geometries and parameter values
remains to be seen.

The order parameter suppression’s dependence on sur-
face orientation and singlet to triplet order parameter
ration was studied for a range of di↵erent surface nor-
mals. The suppression was seen to be highly dependent
on surface orientation.

The Andreev bound states (ABS) are found to be spin
polarized with di↵erent polarization axes for di↵erent sin-
glet to triplet ratios. The order parameter suppression
a↵ects the ABS heavily for glancing trajectories and sub-
gap energies close to the gap, and less for smaller ener-
gies. Zero-energy states are not a↵ected by the calculated
suppression. Thus the zero-bias conductance peaks are
present in the non-self-consistent tunnel conductance as
well.

We showed that the zero-energy surface states are
topological in nature. Thus it is clear that the calculated
suppression should not a↵ect the zero-energy states due
to the gap not vanishing at any distance from the surface.
If this can happen for other parameters and/or surface
orientations is an open question.
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Appendix A: Temperature Dependence of the Gap

The self-consistency equation for the order parameter
Eq. (27), can be written symbolically in the form of a
fixed point equation

� = F(�) (A1)

where � = (�
s

, �
t

)T , and the function F(�) is simply
a short-hand notation for the right hand side of Eq. (27).
Any � that obeys eq. (A1) is called a fixed point. Then
a iteration scheme is employed to find a convergence to
a fixed point. This yields a series of points �1, �2, . . .,
which hopefully converges to a solution. The procedure
is said to have converged when the di↵erence between
iterations is su�ciently small

|�
n+1 � �

n

|
|�

n

| < c (A2)

where the number c is the convergence criterion. In the
bulk the fixed points can be obtained by computing F(�)
for a vast number of points.

We illustrate the method for the case of two attrac-
tive channels. Because the number of possible indepen-
dent attractive fixed points is equal to the number of
positive eigenvalues to the matrix L, one has for val-
ues of (v

s

, v
t

, v
m

) in the yellow oval in Fig. 1 two nu-
cleation channels. However, the subdominant channel
does in general not nucleate at Tc, but at a lower tem-
perature, T sub.

c < Tc. Thus, if one follows the proce-
dure in the previous paragraph for the initial guesses �0

one will not see the possible transition to the subdom-
inant channel. What is needed in this case is to cal-
culate the order parameter with increasing temperature
instead of decreasing. By computing a few iterations,
n ⇠ 20, at a su�ciently low temperature, say T = 0.1Tc

(which must be smaller than T sub.
c obviously), for a num-

ber of random initial guesses, an attractive fixed point
corresponding to the subdominant channel is obtained,
and is denoted �sub.. For the lowest temperature the
initial guess will thus be �sub., and subsequent guesses
�0(T + �T ) = �

n

(T ). By calculating the order parame-
ter this way, it will converge to the subdominant channel
value until T  T sub.

c . At T = T sub.
c the order parameter

transitions to the dominant channel value due to it be-
ing the only attractive fixed point at these temperatures,
unless the subdominant channel value at T = T sub.

c is
zero, �

n

(T sub.
c ) = 0, in which case it will stay zero. In

this manner, the subdominant critical temperatures are
obtained.

A choice of parameter values yielding an admixture of
singlet and triplet with an attractive subdominant chan-
nel is e.g. (v

s

, v
t

, v
m

) = (1, 1/h|lk|2i, �0.1) (ignoring nor-
malization). In Fig. 14 examples for the fixed point it-
eration are shown for the point group O (the plots look
qualitatively similar for all other point groups). The grey
blobs correspond to the function f(�) = |� � F(�)|.
Darker indicates smaller values of f(�), and pure black
indicates the existence of a fixed point. The colored cir-
cles connected by lines show the convergence of 25 ran-
dom initial guesses, �0, progressing a number of itera-
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Figure 5.5: All plots in this figure show the behaviour of the dominant channel with an attrac-
tive subdominant channel, given by (vs, vt, vm) = (h|lk|2i, 1, �0.1h|lk|2i) (ignoring normalisa-
tion). Plot (a), (b), and (c) show the temperature dependence of the singlet component, triplet
component, and the scaled singlet to triplet ratio rbulk

� ⌘ �s/(�t max(|lk|)), respectively. The
legend in (a) holds for (a) - (c). Note that the ratio increases with decreasing temperature.
The vertical dashed line is there to guide the eye to the temperature, T = 0.9Tc, at which
(d) was computed. The gray blobs in (d) corresponds to the function f(�) = |� � F(�)|.
The darker the smaller value of f(�), and pure black indicates the existence of a fixed point.
The coloured circles connected by lines show the convergence of 25 random initial guesses,
�0, progressing a number of steps, updated according to eq. (5.10). The colours of the circles
indicate the iteration number n. Starting with dark blue for n = 0, transitioning through
cyan, green, yellow, and ending with red for n = nmax. Any fixed point �nmax converges to is
attractive, others are repulsive. Here the point group O with g2 = 0 was chosen for (d), but
all point groups look qualitatively the same. The behaviour of the subdominant channel can
be seen in fig. 5.6.
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Figure 5.6: All plots in this figure show the behaviour of the attractive subdominant channel,
given by (vs, vt, vm) = (h|lk|2i, 1, �0.1h|lk|2i) (ignoring normalisation). Plot (a), (b), and (c)
show the temperature dependence of the singlet component, triplet component, and the scaled
singlet to triplet ratio rbulk

� ⌘ �s/(�t max(|lk|)), respectively. The legend in (a) holds for (a)
- (c). Note that the subdominant channel does not exist for temperatures T > T sub.

c . The
vertical dashed line is there to guide the eye to the temperature, T = 0.1Tc, at which (d)
was computed. The gray blobs in (d) corresponds to the function f(�) = |� � F(�)|. The
darker the smaller value of f(�), and pure black indicates the existence of a fixed point. The
coloured circles connected by lines show the convergence of 25 random initial guesses, �0,
progressing a number of steps, updated according to eq. (5.10). The colours of the circles
indicate the iteration number n. Starting with dark blue for n = 0, transitioning through
cyan, green, yellow, and ending with red for n = nmax. Any fixed point �nmax converges to is
attractive, others are repulsive. Here the point group O with g2 = 0 was chosen for (d), but
all point groups look qualitatively the same. Note that there are two independent attractive,
as well as two non-trivial repulsive, fixed points. The behaviour of the dominant channel can
be seen in fig. 5.5.
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dominant channel subdominant channel 

T=0.1Tc T=0.9Tc 

FIG. 14. Two examples for convergence diagrams for a
mixed order parameter with two active channels (dominant
and subdominant), for point group O with g2 = 0, and
(v

s

, v
t

, v
m

) = (h|lk|2i, 1, �0.1h|lk|2i) (ignoring normalization).
See text for explanation.
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triplet component, respectively. In the helicity ba-
sis the order parameter takes the form �(k) = Yk ·
diag(�+(k)t+(k), ��(k)t�(k)), where

�±(k) = �
s

± �
t

|lk|, (10)

and the phase factors are given by

t±(k) = �e⌥i�l(k), �
l

(k) = tan�1(l
y

/l
x

). (11)

Note that t±(�k) = �t±(k).
Eq. (7) can be parameterized in terms of coherence

functions, �(k,R, z) and �̃(k,R, z),50 in such a way as
to automatically fulfill the normalization condition,

ĝR,A,M ⌘
✓
g f
f̃ g̃
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= ⌥i⇡
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(�0 + ��̃) 2�

�2�̃ �(�0 + �̃�)

◆
(12)

where the top (bottom) sign corresponds to ĝR (ĝA), and
in the case of ĝM, to positive (negative) Matsubara fre-
quencies. With this, Eq. (7) transforms into two decou-
pled Riccati di↵erential equations,

(iv
F

· rR + 2z)� = ��̃� + [↵|lk|�3, �] � � , (13)

(iv
F

· rR � 2z)�̃ = �̃��̃ + [↵|lk|�3, �̃] � �̃ . (14)

In the homogeneous case, i.e. in the bulk, the solution
is �

h

= Yk · diag(�+(k)t+(k), ��(k)t�(k)) with the ab-
breviations �± = ��±/(z + i

p|Yk�±|2 � z2). For this
case the SOC term drops out.

The surface problem is treated by solving Eqs. (13)-
(14) along classical trajectories parallel to v

F

, using the
homogeneous solutions as initial conditions at a su�cient
distance from the surface. This is done by discretizing
the path and treating the order parameter as a series

of step functions in the middle between the desired grid
points. Each step is solved analytically.51 Parameteriz-
ing the path as R = R0 + ⇢v

F

and writing the order
parameter �(⇢) = �0 + ⇥(⇢)(�1 � �0) at one of these
steps, �(⇢) with ⇢ > 0 is given by
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h

+ ei⌦
1

⇢�0

�
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2

⇢ + C(⇢)�0
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(15)

with �0 = [�0 � �
h

], where �0 ⌘ �(0) is the initial value
and �

h

is the homogeneous solution for ⇢ > 0, ⌦1 =
z��

h

�̃ and ⌦2 = �z+�̃�
h

, and C(⇢) = C0ei⌦
1�ei⌦

2C0,
where C0 is the solution to C0⌦1 � ⌦2C0 = �̃. The
solution for �̃(⇢) is completely analogous.

The reflection at the surface is in leading approxima-
tion (as ↵ ⌧ E

F

) considered to be specular in spin space,
with the momentum component parallel to the surface,
kk, conserved. Writing the momentum for incoming tra-
jectories k = (k?,kk) this gives the momentum for out-
going trajectories as k = (�k?,kk). Following Ref. 50,
incoming (outgoing) quantities are written with lower-
case (uppercase) symbols and the surface boundary con-
ditions become

U†
k�(k, ")U⇤

�k = �s(k, ") = �s(k, ") = U†
k�(k, ")U⇤

�k

(16)

and

UT

�k�̃(k, ")Uk = �̃s(k, ") = �̃s(k, ") = UT

�k�̃(k, ")Uk,
(17)

where the s superscript indicates that the coherence func-
tions are expressed in the spin basis.

C. Gap equation

The pairing potential in spin space can be written as
a sum of singlet, triplet, and a mixture term37
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where v
s

, v
t

, and v
m

are free parameters that describe the relative coupling strength of each term, respectively, V is
the overall pairing potential strength, and Yk is the basis function of the irreducible representation with the highest
Tc. To avoid ambiguity, we normalize the relative pairing strengths according to

v2
s

+ v2
t

+ v2
m

= 1 (19)

and for later reference introduce spherical coordinates
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In helicity space the pairing potential takes the form
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Figure 5.5: All plots in this figure show the behaviour of the dominant channel with an attrac-
tive subdominant channel, given by (vs, vt, vm) = (h|lk|2i, 1,�0.1h|lk|2i) (ignoring normalisa-
tion). Plot (a), (b), and (c) show the temperature dependence of the singlet component, triplet
component, and the scaled singlet to triplet ratio rbulk

�

⌘ �s/(�tmax(|lk|)), respectively. The
legend in (a) holds for (a) - (c). Note that the ratio increases with decreasing temperature.
The vertical dashed line is there to guide the eye to the temperature, T = 0.9Tc, at which
(d) was computed. The gray blobs in (d) corresponds to the function f(�) = |� � F(�)|.
The darker the smaller value of f(�), and pure black indicates the existence of a fixed point.
The coloured circles connected by lines show the convergence of 25 random initial guesses,
�

0

, progressing a number of steps, updated according to eq. (5.10). The colours of the circles
indicate the iteration number n. Starting with dark blue for n = 0, transitioning through
cyan, green, yellow, and ending with red for n = nmax. Any fixed point �n

max

converges to is
attractive, others are repulsive. Here the point group O with g

2

= 0 was chosen for (d), but
all point groups look qualitatively the same. The behaviour of the subdominant channel can
be seen in fig. 5.6.
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G. Topology

We characterise the topology of a system by computing
three topological invariants. The starting point is the
Bogolioubov-de Gennes (BdG) Hamiltonian

H(k) =

✓
h(k) �(k)
�†(k) �hT (�k)

◆
(39)

obeying time-reversal symmetry, T , particle-hole sym-
metry, C , as well as the combined ’chiral’ symmetry
S = iT C. The BdG Hamiltonian is thus of the sym-
metry class DIII.53 It anticommutes with S and in the
basis where S is block diagonal H becomes block o↵-
diagonal, H̄ = V HV †. The flat-band block o↵-diagonal
Hamiltonian Q(k) is constructed by projecting all bands
above (below) the gap to +1 (�1)

Q(k) =

✓
0 q(k)

q†(k) 0

◆
(40)

where q(k) is a 2⇥ 2 matrix in the one-band model (we
set for simplicity Yk = 1)

q(k) =
1

2
[A|lk|�1 +Bk�2]�0 +

1

2
[A|lk|�2 +Bk�1]

lk
|lk| · � (41)

with A = ↵+ i�
t

, Bk = ⇠k + i�
s

, �1 = ��1
+ ���1

� , �2 =
��1
+ + ��1

� , where �± = |A|lk| ±Bk|. Note that Q(k),
and thus q(k), is ill-defined for nodal order parameters.
Fully gapped systems are classified by calculating the

3D winding number which is defined as

⌫ =

Z

BZ

d3k

24⇡2
"abcTr

⇥
(q�1@

a

q)(q�1@
b

q)(q�1@
c

q)
⇤

(42)

where Einstein summation is implied, "abc is the Levi-
Civita pseudo-tensor, a, b, c 2 {k

x

, k
y

, k
z

}, and the inte-
gral is over the entire first BZ. From the definition of q it
is clear that ⌫ is only well-defined if the order parameter
on the negative helical Fermi surface does not have nodes,
i.e. ��(k�

F

) 6= 0. There are two ways this can be true; ei-
ther sign[��(k�

F

)] = +1 8k�
F

=) �
s

/�
s

> max |l(k�
F

)|,
or sign[��(k�

F

)] = �1 8k�
F

=) �
s

/�
s

< min |l(k�
F

)|.
Nodal systems are classified by calculating the 1D

winding number which is defined as

NL =

I

L

dl

2⇡i
Tr

⇥
q�1r

l

q
⇤

(43)

where l parameterises the loop L in the BZ, and r
l

is the
directional gradient along this loop. The loop L cannot
pass through nodes of the order parameter, but is other
than that arbitrary. The 1D Hamiltonian for this loop
is in general not time-reversal invariant and is thus of
symmetry class AIII.53 In order to characterise a nodal
phase the loop needs to be constructed in such a way as

to always encircle a line node of ��(k�
F

) for any Fermi
surface geometry.
With increasing singlet to triplet ratio the first nodes

appear at the points where �
s

/�
t

= min |l(k�
F

)|. In-
creasing �

s

/�
t

further the nodal rings continue to be
positioned around these points until they connect with
one another. At this stage the nodal rings become posi-
tioned around the points where they eventually disappear
�

s

/�
t

= max |l(k�
F

)|. Thus a general loop should pass
through the points where the nodal rings appear and dis-
appear. This is accomplished by the loop

L : � ! min |l(k�
F

)| ! @BZ ! max |l(k�
F

)| ! � (44)

where @BZ is the BZ boundary, and the arrows do not
necessarily imply straight lines.
In order to study the topology’s e↵ect on the sur-

face states the 1D winding number is also computed for
straight noncontractible loops, i.e. loops traversing one
or several of the three circles making up the BZ torus
T3 = S1⇥S1⇥S1, that are perpendicular to the surface.
Writing the momentum k = (kk, k?) and the surface nor-
mal n = (l,m, n) the 1D winding number is written

N(lmn)(kk) =
Z

dk?
2⇡i

Tr
⇥
q�1r?q

⇤
. (45)

Restricting ourselves to time-reversal invariant non-
contractible loops another topological invariant can be
defined. Namely the Z2 invariant

W(lmn)(Kk) =
Y

K

Pf[i�2qT (K)]p
det[i�2qT (K)]

(46)

where K are time-reversal invariant momenta on the
loop, and Pf[•] denotes the pfa�an of an antisymmet-
ric matrix •. The 1D Hamiltonian for this loop is of the
symmetry class DIII.53

The singlet (triplet) component is said to be domi-
nant if the inequality�

s

/�
t

> max |l(k�
F

)| is true (false).
With a dominant singlet component the material is fully
gapped. Increasing �

s

and/or decreasing �
t

the mate-
rial becomes nodal and eventually fully gapped again if
min |l(k�

F

)| > 0. As is shown below the dominance of
either component is temperature dependent.

H. Surface band structure

The surface band structure is computed by first Fourier
transforming the BdG Hamiltonian in the direction of the
surface normal n,

H(kk, k?,R) ! H(kk, ⇢,R). (47)

This gives rise to a series of delta functions,

H(kk, ⇢,R) =
X

j

H
j

(kk,R+
1

2
⇢n) �(j � ⇢/⇢0) (48)
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�iû ˆ

0

◆
(7)

ˆT ˆH(k) = ˆH(k) ˆT (8)

ˆU ˆH(k) = ˆH⇤
(�k) ˆU (9)

ˆU ˆU⇤
= �ˆ

1 (10)

ˆU†
ˆU =

ˆ

1 (11)

ˆP ˆH(k) = � ˆH⇤
(�k) ˆP (12)

ˆC ˆH(k) = � ˆH(k) ˆC (13)

ˆW ˆH(k) ˆW†
=

✓
ˆ

0

ˆD(k)
ˆD†

(k) ˆ

0

◆
(14)

ˆW =

1p
2

✓
ˆ

1 iû†
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G. Topology

We characterise the topology of a system by computing
three topological invariants. The starting point is the
Bogolioubov-de Gennes (BdG) Hamiltonian

H(k) =

✓
h(k) �(k)
�†(k) �hT (�k)

◆
(39)

obeying time-reversal symmetry, T , particle-hole sym-
metry, C , as well as the combined ’chiral’ symmetry
S = iT C. The BdG Hamiltonian is thus of the sym-
metry class DIII.53 It anticommutes with S and in the
basis where S is block diagonal H becomes block o↵-
diagonal, H̄ = V HV †. The flat-band block o↵-diagonal
Hamiltonian Q(k) is constructed by projecting all bands
above (below) the gap to +1 (�1)

Q(k) =

✓
0 q(k)

q†(k) 0

◆
(40)

where q(k) is a 2⇥ 2 matrix in the one-band model (we
set for simplicity Yk = 1)

q(k) =
1

2
[A|lk|�1 +Bk�2]�0 +

1

2
[A|lk|�2 +Bk�1]

lk
|lk| · � (41)

with A = ↵+ i�
t

, Bk = ⇠k + i�
s

, �1 = ��1
+ ���1

� , �2 =
��1
+ + ��1

� , where �± = |A|lk| ±Bk|. Note that Q(k),
and thus q(k), is ill-defined for nodal order parameters.
Fully gapped systems are classified by calculating the

3D winding number which is defined as

⌫ =

Z

BZ

d3k

24⇡2
"abcTr

⇥
(q�1@

a

q)(q�1@
b

q)(q�1@
c

q)
⇤

(42)

where Einstein summation is implied, "abc is the Levi-
Civita pseudo-tensor, a, b, c 2 {k

x

, k
y

, k
z

}, and the inte-
gral is over the entire first BZ. From the definition of q it
is clear that ⌫ is only well-defined if the order parameter
on the negative helical Fermi surface does not have nodes,
i.e. ��(k�

F

) 6= 0. There are two ways this can be true; ei-
ther sign[��(k�

F

)] = +1 8k�
F

=) �
s

/�
s

> max |l(k�
F

)|,
or sign[��(k�

F

)] = �1 8k�
F

=) �
s

/�
s

< min |l(k�
F

)|.
Nodal systems are classified by calculating the 1D

winding number which is defined as

NL =

I

L

dl

2⇡i
Tr

⇥
q�1r

l

q
⇤

(43)

where l parameterises the loop L in the BZ, and r
l

is the
directional gradient along this loop. The loop L cannot
pass through nodes of the order parameter, but is other
than that arbitrary. The 1D Hamiltonian for this loop
is in general not time-reversal invariant and is thus of
symmetry class AIII.53 In order to characterise a nodal
phase the loop needs to be constructed in such a way as

to always encircle a line node of ��(k�
F

) for any Fermi
surface geometry.
With increasing singlet to triplet ratio the first nodes

appear at the points where �
s

/�
t

= min |l(k�
F

)|. In-
creasing �

s

/�
t

further the nodal rings continue to be
positioned around these points until they connect with
one another. At this stage the nodal rings become posi-
tioned around the points where they eventually disappear
�

s

/�
t

= max |l(k�
F

)|. Thus a general loop should pass
through the points where the nodal rings appear and dis-
appear. This is accomplished by the loop

L : � ! min |l(k�
F

)| ! @BZ ! max |l(k�
F

)| ! � (44)

where @BZ is the BZ boundary, and the arrows do not
necessarily imply straight lines.
In order to study the topology’s e↵ect on the sur-

face states the 1D winding number is also computed for
straight noncontractible loops, i.e. loops traversing one
or several of the three circles making up the BZ torus
T3 = S1⇥S1⇥S1, that are perpendicular to the surface.
Writing the momentum k = (kk, k?) and the surface nor-
mal n = (l,m, n) the 1D winding number is written

N(lmn)(kk) =
Z

dk?
2⇡i

Tr
⇥
q�1r?q

⇤
. (45)

Restricting ourselves to time-reversal invariant non-
contractible loops another topological invariant can be
defined. Namely the Z2 invariant

W(lmn)(Kk) =
Y

K

Pf[i�2qT (K)]p
det[i�2qT (K)]

(46)

where K are time-reversal invariant momenta on the
loop, and Pf[•] denotes the pfa�an of an antisymmet-
ric matrix •. The 1D Hamiltonian for this loop is of the
symmetry class DIII.53

The singlet (triplet) component is said to be domi-
nant if the inequality�

s

/�
t

> max |l(k�
F

)| is true (false).
With a dominant singlet component the material is fully
gapped. Increasing �

s

and/or decreasing �
t

the mate-
rial becomes nodal and eventually fully gapped again if
min |l(k�

F

)| > 0. As is shown below the dominance of
either component is temperature dependent.

H. Surface band structure

The surface band structure is computed by first Fourier
transforming the BdG Hamiltonian in the direction of the
surface normal n,

H(kk, k?,R) ! H(kk, ⇢,R). (47)

This gives rise to a series of delta functions,

H(kk, ⇢,R) =
X

j

H
j

(kk,R+
1

2
⇢n) �(j � ⇢/⇢0) (48)

3D winding number for fully gapped systems (class DIII): 

1D winding number along contractable loop 
(not T-invariant, class AIII): 

Due to time-reversal and particle-hole symmetry one can perform the following transformations: 

(e.g. Sato et al. 2011, Schnyder et al. 2012) 
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where the expression is evaluated at ✏ = eV , v
F

1

is the
Fermi velocity in the normal metal, h•iout indicates that
the average is only for outgoing trajectories in the normal
metal, B(✏) = S12 (�0 + A2(✏)S22),

A2(✏) =
⇣
�0 � �2(✏)S̃22�̃2(✏)S22
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�2(✏)S̃22�̃2(✏) (38)

and || • ||2 ⌘ 1
2Tr

⇥
(•)(•)†⇤. The normal state conduc-

tance, G
N

, is simply obtained by setting the coherence
functions to zero.
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We characterize the topology of a system by computing
three topological invariants. The starting point is the
Bogolioubov-de Gennes (BdG) Hamiltonian
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obeying time-reversal symmetry, T , particle-hole sym-
metry, C , as well as the combined ’chiral’ symmetry
S = iT C. The BdG Hamiltonian is thus of the sym-
metry class DIII.53 It anticommutes with S and in the
basis where S is block diagonal H becomes block o↵-
diagonal, H̄ = V HV †. The flat-band block o↵-diagonal
Hamiltonian Q(k) is constructed by projecting all bands
above (below) the gap to +1 (�1)
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is clear that ⌫ is only well-defined if the order parameter
on the negative helical Fermi surface does not have nodes,
i.e. ��(k�

F

) 6= 0. There are two ways this can be true; ei-
ther sign[��(k�

F

)] = +1 8k�
F

=) �
s

/�
t

> max |l(k�
F

)|,
or sign[��(k�

F

)] = �1 8k�
F

=) �
s

/�
t

< min |l(k�
F

)|.

We calculate ⌫ numerically using the procedure in ap-
pendix C.

Nodal systems are classified by calculating the 1D
winding number which is defined as

NL =

I

L

dl

2⇡i
Tr

⇥
q�1r

l

q
⇤

(43)

where l parameterizes the loop L in the BZ, and r
l

is the
directional gradient along this loop. The loop L cannot
pass through nodes of the order parameter, but is other
than that arbitrary. The 1D Hamiltonian for this loop
is in general not time-reversal invariant and is thus of
symmetry class AIII.53 In order to characterize a nodal
phase the loop needs to be constructed in such a way as
to always encircle a line node of ��(k�

F

) for any Fermi
surface geometry.

With increasing singlet to triplet ratio the first nodes
appear at the points where �

s

/�
t

= min |l(k�
F

)|. In-
creasing �

s

/�
t

further the nodal rings continue to be
positioned around these points until they connect with
one another. At this stage the nodal rings become posi-
tioned around the points where they eventually disappear
�

s

/�
t

= max |l(k�
F

)|. Thus a general loop should pass
through the points where the nodal rings appear and dis-
appear. This is accomplished by the loop

L : � ! min |l(k�
F

)| ! @BZ ! max |l(k�
F

)| ! � (44)

where @BZ is the BZ boundary, and the arrows do not
necessarily imply straight lines.

In order to study the topology’s e↵ect on the sur-
face states the 1D winding number is also computed for
straight noncontractible loops, i.e. loops traversing one
or several of the three circles making up the BZ torus
T3 = S1 ⇥S1 ⇥S1, that are perpendicular to the surface.
Writing the momentum k = (kk, k?) and the surface nor-
mal n = (l, m, n) the 1D winding number is written

N(lmn)(kk) =

Z
dk?
2⇡i

Tr
⇥
q�1r?q

⇤
. (45)

Restricting ourselves to time-reversal invariant non-
contractible loops another topological invariant can be
defined. Namely the Z2 invariant

W(lmn)(Kk) =
Y

K

Pf[i�2qT (K)]p
det[i�2qT (K)]

(46)

where K are time-reversal invariant momenta on the
loop, and Pf[•] denotes the Pfa�an of an antisymmet-
ric matrix •. The 1D Hamiltonian for this loop is of the
symmetry class DIII.53

The singlet (triplet) component is said to be domi-
nant if the inequality �

s

/�
t

> max |l(k�
F

)| is true (false).
With a dominant singlet component the material is fully
gapped. Increasing �

s

and/or decreasing �
t

the mate-
rial becomes nodal and eventually fully gapped again if
min |l(k�

F

)| > 0. As is shown below the dominance of
either component is temperature dependent.

1D winding number along non-contractable loop 
of  Brillouin zone torus T3=S1×S1×S1  in direction 
of surface normal n=(lmn): 
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where H�j

(kk,R � 1
2⇢n) = H†

j

(kk,R + 1
2⇢n), and ⇢0

defines a length scale and is related to the surface normal.
The sum has a finite number of terms, i.e. there exist a
number j

c

such that H
j

= 0 : |j| > j
c

. The on-site
energy is given by H0 and the hopping to site j by H

j

.
Discretising R in steps of ⇢0 the Schrödinger equation for
L layers can be written

j(l)X

j=�j(l)

H
j

(kk,n⇢0(l +
1

2
j) 

j

(kk) = E
l

(kk) l

(kk), (49)

where l = 0, 1, . . . , L � 1 and j(l) = min{j
c

, l} which
takes care of the boundary conditions, i.e. no hopping to
non-existent sites. The Schrödinger equation is simply a
matrix equation He↵(kk) (kk) = E(kk) (kk), and the
band structure is obtained by using Lanczos method to
find the eigenvalues with the smallest magnitude. Note
that the order parameter needs to be mirrored so that it
is suppressed at both surfaces.

III. NUMERICAL RESULTS

In this work the SOC strength entering the quasiclassi-
cal calculations is considered to be much smaller than the
Fermi energy, ↵ ⌧ E

F

. In this case the Fermi surface is
only weakly split. Ignoring this splitting, and the Fermi
velocity renormalisation, the quasiparticles with opposite
helicity are assigned to a single, common Fermi surface,
and move coherently along classical trajectories. In addi-
tion, for the quasiclassical part of the numerical calcula-
tions, the Fermi surface is approximated to be spherical,
with |k

F

| being equal to the average of the Fermi sur-
face defined by ⇠ (k

F

) = 0 with (t1, µ) = (�40↵,�50↵).
The SOC term enters the transport equations as a source
term. In the following, we restrict our discussion to the
maximally symmetric basis function corresponding to the
irreducible representation A1, i.e. Yk = 1.

A. The Cubic Point Group O

To next-nearest neighbours in the sum over Bravais
lattice sites8 the SOC vector corresponding to the cubic
point group O, takes the form

lk =

0

@
sin(k

x

) [1� g2 (cos(ky) + cos(k
z

))]
sin(k

y

) [1� g2 (cos(kz) + cos(k
x

))]
sin(k

z

) [1� g2 (cos(kx) + cos(k
y

))]

1

A (50)

where g2 is a free parameter which determines the relative
weight between the first and second order contributions.
Its magnitude and direction is illustrated in Fig. 2.
An important property of the SOC vector correspond-

ing to the cubic point group is its lack of line nodes in
the BZ, it only vanishes at specific points. With g2 = 0
these points are simply �, X, M, and R [for the nota-
tion see Fig. 3(a)]. A finite value of g2 brings about two
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k
F
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(a) O, g2 = 1.03
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FIG. 2. The magnitude (colour) and direction (arrows) of
the SOC vector corresponding to the point group O defined
in eqs. (50), with the g2 = 1.03. The SOC is shown upon
the spherical Fermi surface defined by the averge Fermi mu-
mentum given by ⇠(k

F

) = 0, where ⇠ is the correspond-
ing tight-binding dispersion in the absence of SOC with
(t1, µ) = (�40↵,�50↵). The Fermi surface is seen from the
k = (1, 1, 1) direction.

more points. With g2 > 0 they are positioned somewhere
on the paths � ! R, and � ! M, and with g2 < 0 on
� ! R, and X ! R, in Fig. 3 (a). The exact positions,
k⇤, of these points depend on the value of g2, and are
given by

� ! R : k⇤ = cos�1

✓
1

2g2

◆
(1, 1, 1)T , (51)

� ! M : k⇤ = cos�1

✓
1

g2
� 1

◆
(1, 1, 0)T , (52)

X ! R : k⇤ = (b,⇡, b)T , b = cos�1

✓
1

g2
+ 1

◆
. (53)

The lack of line nodes means that it is easy to construct
a Fermi surface for which the minimum value of the SOC
on the negative helical FS, min |l(k�

F

)|, is not zero. The
dependence of min |l(k�

F

)| on the chemical potential and
the SOC parameter g2 is shown in Fig. 3 (b). The SOC
minimum is zero along certain lines in this parameter
space. The line at µ = t1 marks the transition between
open and closed FS, i.e. the FS is tangent to the X-point
in the BZ. These lines in Fig. 3 (b) also mark the bound-
aries of fully gapped regions with di↵erent values of the
3D winding number ⌫. This is demonstrated in figs. 3 (c)
and (d) in which the topological phase diagram is shown
for an open, µ = �20↵, and closed, µ = �50↵, Fermi
surface respectively. White indicates that the system is
fully gapped and topologically trivial, ⌫ = 0, whereas the
coloured regions (excluding grey) indicate that the sys-
tem is fully gapped and topologically non-trivial, ⌫ 6= 0.
Grey indicates a topologically non-trivial nodal phase,
NL = 1, with loops defined by Eq. (44).
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where H�j

(kk,R � 1
2⇢n) = H†

j

(kk,R + 1
2⇢n), and ⇢0

defines a length scale and is related to the surface normal.
The sum has a finite number of terms, i.e. there exist a
number j

c

such that H
j

= 0 : |j| > j
c

. The on-site
energy is given by H0 and the hopping to site j by H

j

.
Discretising R in steps of ⇢0 the Schrödinger equation for
L layers can be written

j(l)X

j=�j(l)

H
j

(kk,n⇢0(l +
1

2
j) 

j

(kk) = E
l

(kk) l

(kk), (49)

where l = 0, 1, . . . , L � 1 and j(l) = min{j
c

, l} which
takes care of the boundary conditions, i.e. no hopping to
non-existent sites. The Schrödinger equation is simply a
matrix equation He↵(kk) (kk) = E(kk) (kk), and the
band structure is obtained by using Lanczos method to
find the eigenvalues with the smallest magnitude. Note
that the order parameter needs to be mirrored so that it
is suppressed at both surfaces.

III. NUMERICAL RESULTS

In this work the SOC strength entering the quasiclassi-
cal calculations is considered to be much smaller than the
Fermi energy, ↵ ⌧ E

F

. In this case the Fermi surface is
only weakly split. Ignoring this splitting, and the Fermi
velocity renormalisation, the quasiparticles with opposite
helicity are assigned to a single, common Fermi surface,
and move coherently along classical trajectories. In addi-
tion, for the quasiclassical part of the numerical calcula-
tions, the Fermi surface is approximated to be spherical,
with |k

F

| being equal to the average of the Fermi sur-
face defined by ⇠ (k

F

) = 0 with (t1, µ) = (�40↵,�50↵).
The SOC term enters the transport equations as a source
term. In the following, we restrict our discussion to the
maximally symmetric basis function corresponding to the
irreducible representation A1, i.e. Yk = 1.

A. The Cubic Point Group O

To next-nearest neighbours in the sum over Bravais
lattice sites8 the SOC vector corresponding to the cubic
point group O, takes the form

lk =

0

@
sin(k

x

) [1� g2 (cos(ky) + cos(k
z

))]
sin(k

y

) [1� g2 (cos(kz) + cos(k
x

))]
sin(k

z

) [1� g2 (cos(kx) + cos(k
y

))]

1

A (50)

where g2 is a free parameter which determines the relative
weight between the first and second order contributions.
Its magnitude and direction is illustrated in Fig. 2.
An important property of the SOC vector correspond-

ing to the cubic point group is its lack of line nodes in
the BZ, it only vanishes at specific points. With g2 = 0
these points are simply �, X, M, and R [for the nota-
tion see Fig. 3(a)]. A finite value of g2 brings about two
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FIG. 2. The magnitude (colour) and direction (arrows) of
the SOC vector corresponding to the point group O defined
in eqs. (50), with the g2 = 1.03. The SOC is shown upon
the spherical Fermi surface defined by the averge Fermi mu-
mentum given by ⇠(k

F

) = 0, where ⇠ is the correspond-
ing tight-binding dispersion in the absence of SOC with
(t1, µ) = (�40↵,�50↵). The Fermi surface is seen from the
k = (1, 1, 1) direction.

more points. With g2 > 0 they are positioned somewhere
on the paths � ! R, and � ! M, and with g2 < 0 on
� ! R, and X ! R, in Fig. 3 (a). The exact positions,
k⇤, of these points depend on the value of g2, and are
given by

� ! R : k⇤ = cos�1

✓
1

2g2

◆
(1, 1, 1)T , (51)

� ! M : k⇤ = cos�1

✓
1

g2
� 1

◆
(1, 1, 0)T , (52)

X ! R : k⇤ = (b,⇡, b)T , b = cos�1

✓
1

g2
+ 1

◆
. (53)

The lack of line nodes means that it is easy to construct
a Fermi surface for which the minimum value of the SOC
on the negative helical FS, min |l(k�

F

)|, is not zero. The
dependence of min |l(k�

F

)| on the chemical potential and
the SOC parameter g2 is shown in Fig. 3 (b). The SOC
minimum is zero along certain lines in this parameter
space. The line at µ = t1 marks the transition between
open and closed FS, i.e. the FS is tangent to the X-point
in the BZ. These lines in Fig. 3 (b) also mark the bound-
aries of fully gapped regions with di↵erent values of the
3D winding number ⌫. This is demonstrated in figs. 3 (c)
and (d) in which the topological phase diagram is shown
for an open, µ = �20↵, and closed, µ = �50↵, Fermi
surface respectively. White indicates that the system is
fully gapped and topologically trivial, ⌫ = 0, whereas the
coloured regions (excluding grey) indicate that the sys-
tem is fully gapped and topologically non-trivial, ⌫ 6= 0.
Grey indicates a topologically non-trivial nodal phase,
NL = 1, with loops defined by Eq. (44).
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G. Topology

We characterise the topology of a system by computing
three topological invariants. The starting point is the
Bogolioubov-de Gennes (BdG) Hamiltonian

H(k) =

✓
h(k) �(k)
�†(k) �hT (�k)

◆
(39)

obeying time-reversal symmetry, T , particle-hole sym-
metry, C , as well as the combined ’chiral’ symmetry
S = iT C. The BdG Hamiltonian is thus of the sym-
metry class DIII.53 It anticommutes with S and in the
basis where S is block diagonal H becomes block o↵-
diagonal, H̄ = V HV †. The flat-band block o↵-diagonal
Hamiltonian Q(k) is constructed by projecting all bands
above (below) the gap to +1 (�1)

Q(k) =

✓
0 q(k)

q†(k) 0

◆
(40)

where q(k) is a 2⇥ 2 matrix in the one-band model (we
set for simplicity Yk = 1)

q(k) =
1

2
[A|lk|�1 +Bk�2]�0 +

1

2
[A|lk|�2 +Bk�1]

lk
|lk| · � (41)

with A = ↵+ i�
t

, Bk = ⇠k + i�
s

, �1 = ��1
+ ���1

� , �2 =
��1
+ + ��1

� , where �± = |A|lk| ±Bk|. Note that Q(k),
and thus q(k), is ill-defined for nodal order parameters.
Fully gapped systems are classified by calculating the

3D winding number which is defined as

⌫ =

Z

BZ

d3k

24⇡2
"abcTr

⇥
(q�1@

a

q)(q�1@
b

q)(q�1@
c

q)
⇤

(42)

where Einstein summation is implied, "abc is the Levi-
Civita pseudo-tensor, a, b, c 2 {k

x

, k
y

, k
z

}, and the inte-
gral is over the entire first BZ. From the definition of q it
is clear that ⌫ is only well-defined if the order parameter
on the negative helical Fermi surface does not have nodes,
i.e. ��(k�

F

) 6= 0. There are two ways this can be true; ei-
ther sign[��(k�

F

)] = +1 8k�
F

=) �
s

/�
s

> max |l(k�
F

)|,
or sign[��(k�

F

)] = �1 8k�
F

=) �
s

/�
s

< min |l(k�
F

)|.
Nodal systems are classified by calculating the 1D

winding number which is defined as

NL =

I

L

dl

2⇡i
Tr

⇥
q�1r

l

q
⇤

(43)

where l parameterises the loop L in the BZ, and r
l

is the
directional gradient along this loop. The loop L cannot
pass through nodes of the order parameter, but is other
than that arbitrary. The 1D Hamiltonian for this loop
is in general not time-reversal invariant and is thus of
symmetry class AIII.53 In order to characterise a nodal
phase the loop needs to be constructed in such a way as

to always encircle a line node of ��(k�
F

) for any Fermi
surface geometry.
With increasing singlet to triplet ratio the first nodes

appear at the points where �
s

/�
t

= min |l(k�
F

)|. In-
creasing �

s

/�
t

further the nodal rings continue to be
positioned around these points until they connect with
one another. At this stage the nodal rings become posi-
tioned around the points where they eventually disappear
�

s

/�
t

= max |l(k�
F

)|. Thus a general loop should pass
through the points where the nodal rings appear and dis-
appear. This is accomplished by the loop

L : � ! min |l(k�
F

)| ! @BZ ! max |l(k�
F

)| ! � (44)

where @BZ is the BZ boundary, and the arrows do not
necessarily imply straight lines.
In order to study the topology’s e↵ect on the sur-

face states the 1D winding number is also computed for
straight noncontractible loops, i.e. loops traversing one
or several of the three circles making up the BZ torus
T3 = S1⇥S1⇥S1, that are perpendicular to the surface.
Writing the momentum k = (kk, k?) and the surface nor-
mal n = (l,m, n) the 1D winding number is written

N(lmn)(kk) =
Z

dk?
2⇡i

Tr
⇥
q�1r?q

⇤
. (45)

Restricting ourselves to time-reversal invariant non-
contractible loops another topological invariant can be
defined. Namely the Z2 invariant

W(lmn)(Kk) =
Y

K

Pf[i�2qT (K)]p
det[i�2qT (K)]

(46)

where K are time-reversal invariant momenta on the
loop, and Pf[•] denotes the pfa�an of an antisymmet-
ric matrix •. The 1D Hamiltonian for this loop is of the
symmetry class DIII.53

The singlet (triplet) component is said to be domi-
nant if the inequality�

s

/�
t

> max |l(k�
F

)| is true (false).
With a dominant singlet component the material is fully
gapped. Increasing �

s

and/or decreasing �
t

the mate-
rial becomes nodal and eventually fully gapped again if
min |l(k�

F

)| > 0. As is shown below the dominance of
either component is temperature dependent.

H. Surface band structure

The surface band structure is computed by first Fourier
transforming the BdG Hamiltonian in the direction of the
surface normal n,

H(kk, k?,R) ! H(kk, ⇢,R). (47)

This gives rise to a series of delta functions,

H(kk, ⇢,R) =
X

j

H
j

(kk,R+
1

2
⇢n) �(j � ⇢/⇢0) (48)

2

invariant under crystal point group operations g,

lk ⌘ l(k) = gl(g�1k), (1)

and odd in k, l�k = �lk. We normalise the SOC vector
such that its maximum magnitude within the BZ is unity,
maxk2BZ |lk| = 1.
The kinetic part of the normal-state Hamiltonian can

thus be written as

Ĥk =
X

k↵�

c†k↵ (⇠k�0 + ↵lk · �)
↵�

ck� (2)

with ⇠k = ✏k � µ, where ✏k is the band dispersion in
the absence of SOC (we will use for simplicity a nearest-
neighbour tight-binding dispersion), µ is the chemical
potential, and ck↵ (c†k↵) are fermion annihilation (cre-
ation) operators for a quasiparticle with spin ↵ 2 {", #}.
We will study simple cubic (CUB) and body centered cu-
bic (BCC) lattices. The corresponding nearest-neighbour
tight binding dispersions are

✏CUB
k = t1 [cos (kx) + cos (k

y

) + cos (k
z

)] (3)

and

✏BCC
k = 8t1 cos (kx/2) cos (ky/2) cos (kz/2) , (4)

where t1 is the hopping integral.
The point groups considered here are the cubic point

group O, relevant for e.g. Li2PdxPt3�x

;12,25,26,46,47 the
tetragonal point group C4v, relevant for e.g. CePt3Si;10

and the tetrahedral point group T
d

, relevant for e.g.
Y2C3.48 We use dispersion (3) for the cubic point group,
O, and for sake of simplicity also for the tetragonal point
group, C4v, whereas dispersion (4) will be used for the
tetrahedral point group T

d

. The SOC vectors are ob-
tained as lattice Fourier series, lk =

P
n

l
n

sin(k · R
n

),
where R

n

are Bravais lattice vectors, and where the in-
variance under point group operations, Eq. (1), leads to
restrictions on the l

n

.8

The Hamiltonian, Eq. (2), is diagonalised and brought
to the so-called helicity basis by the canonical transfor-
mation Uk (lk · �)U†

k = |lk|�3, where

Uk =

✓
cos

�
✓l
2

�
e�i�l sin

�
✓l
2

�

�ei�l sin
�
✓l
2

�
cos

�
✓l
2

�
◆

, (5)

with �
l

= tan�1(l
y

/l
x

) and ✓
l

= tan�1(
q
l2
x

+ l2
y

/l
z

)

being the spherical angles of the SOC vector, lk =
(l
x

, l
y

, l
z

)T , yielding

Ĥk =
X

k�

⇠�kb
†
k�bk�, bk� =

X

↵

Uk�↵ck↵ (6)

where the helical index takes the values � = {+,�},
and the helical band dispersion is given by ⇠�k = ⇠k ±
↵|lk|. Note that ⇠�k = ⇠��k even though the SOC vector
is antisymmetric. This is a consequence of Eq. (2) being
time-reversal invariant. Furthermore, the quasiparticle
spin is fixed with respect to its momentum on each band,
being parallel (� = +) or antiparallel (� = �) to lk.

B. Superconducting state

Superconductivity is modeled within the Nambu-
Gor’kov formalism. Under the canonical transfor-
mation defined above the Nambu spinor Ĉk =
(ck", ck#, c

†
�k", c

†
�k#)

T transforms into its helical equiv-

alent B̂k = (bk+, bk�, b
†
�k+, b

†
�k�)

T ⌘ ÛkĈk with Ûk ⌘
diag(Uk, U⇤

�k), and the ”hat” denotes Nambu structure.
It is straightforward to construct 4 ⇥ 4 helical Green’s
functions, e.g. the retarded ĜR

k
1

k
2

(t1, t2) = �i⇥(t1 �
t2)h{B̂k

1

(t1), B̂
†
k
2

(t2)}iH, where ⇥ is the Heaviside step
function, h•iH denotes a grand canonical average, {•, •}
is an anticommutator, and B̂k(t) a Heisenberg operator.
The quasiclassical propagator is obtained by integrating
out fast oscillations from the full Green’s functions. In
the case when the magnitude of the SOC is much smaller
than the Fermi energy, ↵ ⌧ E

F

, it su�ces to integrate
over ⇠k and treat the SOC term perturbatively. For
this case, in Wigner coordinates the quasiclassical prop-
agator is given by ǧ(k

F

,R, ✏, t) =
R
d⇠k⌧̂3Ǧ(k,R, ✏, t),

with k parameterized by (⇠k,kF

), ⇠k = v
F

· (k � k
F

),
⌧̂ = (⌧̂1, ⌧̂2, ⌧̂3) are Pauli matrices in particle-hole space,
and the ”check” denotes Keldysh matrix structure.

The SOC term enters the transport equations as a
source term. Within this approximation the Eilenberger
equation49 for the quasiclassical Green’s function takes
the following form in the helicity basis

iv
F

·rRĝR,A,M + [z⌧̂3 � �̂� v̂SO, ĝ]
R,A,M = 0̂ (7)

with z = i✏
n

= i⇡T (2n + 1) for Matsubara, and z =
✏ ± i0+ for retarded (advanced), quantities. [•, •] is a
commutator, the SOC term is v̂SO = ↵|lkF |�3⌧̂0, and the
gap has the form

�̂ =

✓
0 �
�̃ 0

◆
(8)

where the ”tilde operation” is defined as the particle-
hole conjugate, Q̃(k

F

,R, z, t) ⌘ Q⇤(�k
F

,R,�z⇤, t).
Eq. (7) is supplemented by the normalisation condition
(ĝR,A,M)2 = �⇡21̂. In order to simplify nontation, we
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FIG. 3. (a) The high symmetry points and axes in the BZ
for a simple cubic crystal. (b) The minima of the SOC vec-
tor on the negative helical Fermi surface, with t1 = �40↵.
Note the transition between a closed and open Fermi surface
at µ = t1. The topological phase diagram for an open and
closed FS is shown in (c) and (d) respectively. White areas in-
dicate a gapped phase with trivial topology, (NL, ⌫) = (0, 0);
grey a nodal phase with NL = 1 with a loop defined by
Eq. (44); coloured areas gapped non-trivial phases with ⌫
taking the values (black, red, cyan) = (+10,�2,+2) in (c),
and (green, blue, yellow, magenta) = (+1,�5,+7,�1) in (d).
Note the small phase at g2 = �5 in (c), with ⌫ = +10.

The self-consistent order parameter is calculated for
four di↵erent values of g2, namely g2 2 {0, 0.7, 1.03, 2.5},
one for each distinct gapped topologically non-trivial
phase with a closed Fermi surface, i.e. the coloured re-
gions in Fig. 3 (d). This is done for nine values of the
scaled bulk singlet to triplet ratio, rbulk� 2 [0, 1.1], with
one active channel. These values are shown in table I.
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FIG. 4. Plots (a) - (d) show the quantity rsurf.� /rbulk� =
[�

s

/�
t

]surf. · [�
t

/�
s

]bulk as a measure of the order param-
eter surface suppression. This is done for a range of di↵erent
surface normals along the path n = (1, 0, 0) ! (1, 1, 0) !
(1, 1, 1) ! (0, 1, 2) ! (1, 0, 0). In plots (e) - (h) the zero-

bias conductance, computed with t0 = 10�
1

2 , is shown for the
same surface normals. The numbers in the legend hold for all
plots and correspond to the columns in table I showing the
scaled singlet to triplet ratios.

case, including the high symmetry axis n = (1, 1, 1).
Note that all lines for which �

s

/�
t

< min |lkF | are
degenerate, and the zero-bias conductance is zero for
�

s

/�
t

> max |lkF |. Furthermore, the surface suppres-
sion due to self-consistency does not a↵ect the zero-bias
conductance. This reflects the fact that the gap does not
go to zero at some distance inwards from the surface for
the obtained gap profiles.

The Andreev bound states (ABS) of NCSs have in-
tricate structures and are spin polarised. As an exam-
ple, the momentum angle-resolved and spin-resolved lo-
cal density of states, N (z)(�, ✏), computed with Eq. (33),
is plotted in Fig. 5(a) for momenta in the xy-plane (pa-
rameterized by the azimutal angle �, the polar angle is
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H. Surface band structure

The surface band structure is computed by first Fourier
transforming the BdG Hamiltonian in the relative mo-
mentum coordinate k? in the direction of the surface
normal n,

H(kk, k?,R) ! H(kk, ⇢,R). (47)

The helical dispersion, ⇠�

k , contains for the tight-binding
approximation we use trigonometric functions whose
Fourier transform give rise to a series of delta functions

H(kk, ⇢,R) =
X

j

H
j

(kk,R +
1

2
⇢n) �(j � ⇢/⇢0) (48)

where H�j

(kk,R� 1
2⇢n) = H†

j

(kk,R+ 1
2⇢n), j is a layer

index, and ⇢0 is the length one needs to move along the
direction of the surface normal in order to return to a
translation-equivalent point in the lattice unit cell. The
sum has a finite number of terms, i.e. there exist a num-
ber j

c

such that H
j

= 0 : |j| > j
c

. The terms H
j

with
j 6= 0 can be interpreted in terms of hopping across the
layers. Discretizing the center-of-mass coordinate R in
steps of ⇢0, the Schrödinger equation for L layers can be
written

j(l)X

j=�j(l)

H
j

✓
kk,n⇢0(l +

1

2
j)

◆
 

j

(kk) = E
l

(kk) l

(kk),

(49)

where l = 0, 1, . . . , L�1 and j(l) = min{j
c

, l} which takes
care of the boundary conditions, i.e. no hopping across
the boundary. Eq. (49) can be written more compactly as
a matrix equation He↵(kk) (kk) = E(kk) (kk), and the
band structure is given by the eigenvalues of He↵, Non-
trivial topology gives rise to zero-energy ABS. We are
therefore mainly interested in the band structure close
to zero energy. This allows us to avoid diagonalizing
He↵, and instead only compute the smallest magnitude
eigenvalues using the Lanczos method. Note that the
order parameter is suppressed at both surfaces.

III. NUMERICAL RESULTS

In this work the SOC strength entering the quasiclassi-
cal calculations is considered to be much smaller than the
Fermi energy, ↵ ⌧ E

F

. In this case the Fermi surface is
only weakly split. Ignoring this splitting, and the Fermi
velocity renormalisation, the quasiparticles with opposite
helicity are assigned to a single, common Fermi surface,
and move coherently along classical trajectories. In addi-
tion, for the quasiclassical part of the numerical calcula-
tions, the Fermi surface is approximated to be spherical,
with |k

F

| being equal to the average of the Fermi sur-
face defined by ⇠ (k

F

) = 0 with (t1, µ) = (�40↵, �50↵).
Here, t1 determines the bandwidth, which must be large

compared to the Fermi-surface splitting in order for the
approximation of equal Fermi surfaces for both helicities
to be valid, and µ < 0 must smaller than t1 � ↵ in order
for the Fermi surface to be closed. The chosen values are
consistent with the approximation of an approximately
spherical Fermi surface. The SOC term enters the trans-
port equations as a source term. In the following, we
restrict our discussion to the maximally symmetric basis
function corresponding to the irreducible representation
A1, i.e. Yk = 1.

A. The Cubic Point Group O

To next-nearest neighbors in the sum over Bravais lat-
tice sites8 the SOC vector corresponding to the cubic
point group O, takes the form

lk =

0

@
sin(k

x

) [1 � g2 (cos(k
y

) + cos(k
z

))]
sin(k

y

) [1 � g2 (cos(k
z

) + cos(k
x

))]
sin(k

z

) [1 � g2 (cos(k
x

) + cos(k
y

))]

1

A (50)

where g2 is a free parameter which determines the relative
weight between the first and second order contributions.
Its magnitude and direction is illustrated in Fig. 2.

An important property of the SOC vector correspond-
ing to the cubic point group is its lack of line nodes in
the BZ, it only vanishes at specific points. With g2 = 0
these points are simply �, X, M, and R [for the nota-
tion see Fig. 3(a)]. A finite value of g2 brings about two
more points. With g2 > 0 they are positioned somewhere
on the paths � ! R, and � ! M, and with g2 < 0 on
� ! R, and X ! R, in Fig. 3 (a). The exact positions,
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FIG. 2. The magnitude (color) and direction (arrows) of the
SOC vector corresponding to the point group O defined in
Eqs. (50), with the g2 = 1.03. The SOC is shown upon
the spherical Fermi surface defined by the average Fermi mo-
mentum given by ⇠(k

F

) = 0, where ⇠ is the correspond-
ing tight-binding dispersion in the absence of SOC with
(t1, µ) = (�40↵, �50↵). The Fermi surface is seen from the
k = (1, 1, 1) direction.
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, l} which takes
care of the boundary conditions, i.e. no hopping across
the boundary. Eq. (49) can be written more compactly as
a matrix equation He↵(kk) (kk) = E(kk) (kk), and the
band structure is given by the eigenvalues of He↵, Non-
trivial topology gives rise to zero-energy ABS. We are
therefore mainly interested in the band structure close
to zero energy. This allows us to avoid diagonalizing
He↵, and instead only compute the smallest magnitude
eigenvalues using the Lanczos method. Note that the
order parameter is suppressed at both surfaces.

III. NUMERICAL RESULTS

In this work the SOC strength entering the quasiclassi-
cal calculations is considered to be much smaller than the
Fermi energy, ↵ ⌧ E
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. In this case the Fermi surface is
only weakly split. Ignoring this splitting, and the Fermi
velocity renormalisation, the quasiparticles with opposite
helicity are assigned to a single, common Fermi surface,
and move coherently along classical trajectories. In addi-
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to be valid, and µ < 0 must smaller than t1 � ↵ in order
for the Fermi surface to be closed. The chosen values are
consistent with the approximation of an approximately
spherical Fermi surface. The SOC term enters the trans-
port equations as a source term. In the following, we
restrict our discussion to the maximally symmetric basis
function corresponding to the irreducible representation
A1, i.e. Yk = 1.

A. The Cubic Point Group O
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tice sites8 the SOC vector corresponding to the cubic
point group O, takes the form
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where g2 is a free parameter which determines the relative
weight between the first and second order contributions.
Its magnitude and direction is illustrated in Fig. 2.

An important property of the SOC vector correspond-
ing to the cubic point group is its lack of line nodes in
the BZ, it only vanishes at specific points. With g2 = 0
these points are simply �, X, M, and R [for the nota-
tion see Fig. 3(a)]. A finite value of g2 brings about two
more points. With g2 > 0 they are positioned somewhere
on the paths � ! R, and � ! M, and with g2 < 0 on
� ! R, and X ! R, in Fig. 3 (a). The exact positions,
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FIG. 2. The magnitude (color) and direction (arrows) of the
SOC vector corresponding to the point group O defined in
Eqs. (50), with the g2 = 1.03. The SOC is shown upon
the spherical Fermi surface defined by the average Fermi mo-
mentum given by ⇠(k

F

) = 0, where ⇠ is the correspond-
ing tight-binding dispersion in the absence of SOC with
(t1, µ) = (�40↵, �50↵). The Fermi surface is seen from the
k = (1, 1, 1) direction.
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weight between the first and second order contributions.
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where g2 is a free parameter which determines the relative
weight between the first and second order contributions.
Its magnitude and direction is illustrated in Fig. 2.

An important property of the SOC vector correspond-
ing to the cubic point group is its lack of line nodes in
the BZ, it only vanishes at specific points. With g2 = 0
these points are simply �, X, M, and R [for the nota-
tion see Fig. 3(a)]. A finite value of g2 brings about two
more points. With g2 > 0 they are positioned somewhere
on the paths � ! R, and � ! M, and with g2 < 0 on
� ! R, and X ! R, in Fig. 3 (a). The exact positions,
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FIG. 2. The magnitude (color) and direction (arrows) of the
SOC vector corresponding to the point group O defined in
Eqs. (50), with the g2 = 1.03. The SOC is shown upon
the spherical Fermi surface defined by the average Fermi mo-
mentum given by ⇠(k

F

) = 0, where ⇠ is the correspond-
ing tight-binding dispersion in the absence of SOC with
(t1, µ) = (�40↵, �50↵). The Fermi surface is seen from the
k = (1, 1, 1) direction.
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H. Surface band structure

The surface band structure is computed by first Fourier
transforming the BdG Hamiltonian in the relative mo-
mentum coordinate k? in the direction of the surface
normal n,

H(kk, k?,R) ! H(kk, ⇢,R). (47)

The helical dispersion, ⇠�

k , contains for the tight-binding
approximation we use trigonometric functions whose
Fourier transform give rise to a series of delta functions
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where l = 0, 1, . . . , L�1 and j(l) = min{j
c

, l} which takes
care of the boundary conditions, i.e. no hopping across
the boundary. Eq. (49) can be written more compactly as
a matrix equation He↵(kk) (kk) = E(kk) (kk), and the
band structure is given by the eigenvalues of He↵, Non-
trivial topology gives rise to zero-energy ABS. We are
therefore mainly interested in the band structure close
to zero energy. This allows us to avoid diagonalizing
He↵, and instead only compute the smallest magnitude
eigenvalues using the Lanczos method. Note that the
order parameter is suppressed at both surfaces.

III. NUMERICAL RESULTS

In this work the SOC strength entering the quasiclassi-
cal calculations is considered to be much smaller than the
Fermi energy, ↵ ⌧ E

F

. In this case the Fermi surface is
only weakly split. Ignoring this splitting, and the Fermi
velocity renormalisation, the quasiparticles with opposite
helicity are assigned to a single, common Fermi surface,
and move coherently along classical trajectories. In addi-
tion, for the quasiclassical part of the numerical calcula-
tions, the Fermi surface is approximated to be spherical,
with |k

F

| being equal to the average of the Fermi sur-
face defined by ⇠ (k

F

) = 0 with (t1, µ) = (�40↵, �50↵).
Here, t1 determines the bandwidth, which must be large

compared to the Fermi-surface splitting in order for the
approximation of equal Fermi surfaces for both helicities
to be valid, and µ < 0 must smaller than t1 � ↵ in order
for the Fermi surface to be closed. The chosen values are
consistent with the approximation of an approximately
spherical Fermi surface. The SOC term enters the trans-
port equations as a source term. In the following, we
restrict our discussion to the maximally symmetric basis
function corresponding to the irreducible representation
A1, i.e. Yk = 1.

A. The Cubic Point Group O

To next-nearest neighbors in the sum over Bravais lat-
tice sites8 the SOC vector corresponding to the cubic
point group O, takes the form
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where g2 is a free parameter which determines the relative
weight between the first and second order contributions.
Its magnitude and direction is illustrated in Fig. 2.

An important property of the SOC vector correspond-
ing to the cubic point group is its lack of line nodes in
the BZ, it only vanishes at specific points. With g2 = 0
these points are simply �, X, M, and R [for the nota-
tion see Fig. 3(a)]. A finite value of g2 brings about two
more points. With g2 > 0 they are positioned somewhere
on the paths � ! R, and � ! M, and with g2 < 0 on
� ! R, and X ! R, in Fig. 3 (a). The exact positions,
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FIG. 2. The magnitude (color) and direction (arrows) of the
SOC vector corresponding to the point group O defined in
Eqs. (50), with the g2 = 1.03. The SOC is shown upon
the spherical Fermi surface defined by the average Fermi mo-
mentum given by ⇠(k

F

) = 0, where ⇠ is the correspond-
ing tight-binding dispersion in the absence of SOC with
(t1, µ) = (�40↵, �50↵). The Fermi surface is seen from the
k = (1, 1, 1) direction.
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, l} which takes
care of the boundary conditions, i.e. no hopping across
the boundary. Eq. (49) can be written more compactly as
a matrix equation He↵(kk) (kk) = E(kk) (kk), and the
band structure is given by the eigenvalues of He↵, Non-
trivial topology gives rise to zero-energy ABS. We are
therefore mainly interested in the band structure close
to zero energy. This allows us to avoid diagonalizing
He↵, and instead only compute the smallest magnitude
eigenvalues using the Lanczos method. Note that the
order parameter is suppressed at both surfaces.
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In this work the SOC strength entering the quasiclassi-
cal calculations is considered to be much smaller than the
Fermi energy, ↵ ⌧ E
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. In this case the Fermi surface is
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velocity renormalisation, the quasiparticles with opposite
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Here, t1 determines the bandwidth, which must be large

compared to the Fermi-surface splitting in order for the
approximation of equal Fermi surfaces for both helicities
to be valid, and µ < 0 must smaller than t1 � ↵ in order
for the Fermi surface to be closed. The chosen values are
consistent with the approximation of an approximately
spherical Fermi surface. The SOC term enters the trans-
port equations as a source term. In the following, we
restrict our discussion to the maximally symmetric basis
function corresponding to the irreducible representation
A1, i.e. Yk = 1.

A. The Cubic Point Group O

To next-nearest neighbors in the sum over Bravais lat-
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where g2 is a free parameter which determines the relative
weight between the first and second order contributions.
Its magnitude and direction is illustrated in Fig. 2.

An important property of the SOC vector correspond-
ing to the cubic point group is its lack of line nodes in
the BZ, it only vanishes at specific points. With g2 = 0
these points are simply �, X, M, and R [for the nota-
tion see Fig. 3(a)]. A finite value of g2 brings about two
more points. With g2 > 0 they are positioned somewhere
on the paths � ! R, and � ! M, and with g2 < 0 on
� ! R, and X ! R, in Fig. 3 (a). The exact positions,
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FIG. 2. The magnitude (color) and direction (arrows) of the
SOC vector corresponding to the point group O defined in
Eqs. (50), with the g2 = 1.03. The SOC is shown upon
the spherical Fermi surface defined by the average Fermi mo-
mentum given by ⇠(k
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) = 0, where ⇠ is the correspond-
ing tight-binding dispersion in the absence of SOC with
(t1, µ) = (�40↵, �50↵). The Fermi surface is seen from the
k = (1, 1, 1) direction.
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trivial topology gives rise to zero-energy ABS. We are
therefore mainly interested in the band structure close
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He↵, and instead only compute the smallest magnitude
eigenvalues using the Lanczos method. Note that the
order parameter is suppressed at both surfaces.
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consistent with the approximation of an approximately
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port equations as a source term. In the following, we
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function corresponding to the irreducible representation
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where g2 is a free parameter which determines the relative
weight between the first and second order contributions.
Its magnitude and direction is illustrated in Fig. 2.

An important property of the SOC vector correspond-
ing to the cubic point group is its lack of line nodes in
the BZ, it only vanishes at specific points. With g2 = 0
these points are simply �, X, M, and R [for the nota-
tion see Fig. 3(a)]. A finite value of g2 brings about two
more points. With g2 > 0 they are positioned somewhere
on the paths � ! R, and � ! M, and with g2 < 0 on
� ! R, and X ! R, in Fig. 3 (a). The exact positions,
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FIG. 2. The magnitude (color) and direction (arrows) of the
SOC vector corresponding to the point group O defined in
Eqs. (50), with the g2 = 1.03. The SOC is shown upon
the spherical Fermi surface defined by the average Fermi mo-
mentum given by ⇠(k

F

) = 0, where ⇠ is the correspond-
ing tight-binding dispersion in the absence of SOC with
(t1, µ) = (�40↵, �50↵). The Fermi surface is seen from the
k = (1, 1, 1) direction.
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G. Topology

We characterise the topology of a system by computing
three topological invariants. The starting point is the
Bogolioubov-de Gennes (BdG) Hamiltonian

H(k) =

✓
h(k) �(k)
�†(k) �hT (�k)

◆
(39)

obeying time-reversal symmetry, T , particle-hole sym-
metry, C , as well as the combined ’chiral’ symmetry
S = iT C. The BdG Hamiltonian is thus of the sym-
metry class DIII.53 It anticommutes with S and in the
basis where S is block diagonal H becomes block o↵-
diagonal, H̄ = V HV †. The flat-band block o↵-diagonal
Hamiltonian Q(k) is constructed by projecting all bands
above (below) the gap to +1 (�1)

Q(k) =

✓
0 q(k)

q†(k) 0

◆
(40)

where q(k) is a 2⇥ 2 matrix in the one-band model (we
set for simplicity Yk = 1)

q(k) =
1

2
[A|lk|�1 +Bk�2]�0 +

1

2
[A|lk|�2 +Bk�1]

lk
|lk| · � (41)

with A = ↵+ i�
t

, Bk = ⇠k + i�
s

, �1 = ��1
+ ���1

� , �2 =
��1
+ + ��1

� , where �± = |A|lk| ±Bk|. Note that Q(k),
and thus q(k), is ill-defined for nodal order parameters.
Fully gapped systems are classified by calculating the

3D winding number which is defined as

⌫ =

Z

BZ

d3k

24⇡2
"abcTr

⇥
(q�1@

a

q)(q�1@
b

q)(q�1@
c

q)
⇤

(42)

where Einstein summation is implied, "abc is the Levi-
Civita pseudo-tensor, a, b, c 2 {k

x

, k
y

, k
z

}, and the inte-
gral is over the entire first BZ. From the definition of q it
is clear that ⌫ is only well-defined if the order parameter
on the negative helical Fermi surface does not have nodes,
i.e. ��(k�

F

) 6= 0. There are two ways this can be true; ei-
ther sign[��(k�

F

)] = +1 8k�
F

=) �
s

/�
s

> max |l(k�
F

)|,
or sign[��(k�

F

)] = �1 8k�
F

=) �
s

/�
s

< min |l(k�
F

)|.
Nodal systems are classified by calculating the 1D

winding number which is defined as

NL =

I

L

dl

2⇡i
Tr

⇥
q�1r

l

q
⇤

(43)

where l parameterises the loop L in the BZ, and r
l

is the
directional gradient along this loop. The loop L cannot
pass through nodes of the order parameter, but is other
than that arbitrary. The 1D Hamiltonian for this loop
is in general not time-reversal invariant and is thus of
symmetry class AIII.53 In order to characterise a nodal
phase the loop needs to be constructed in such a way as

to always encircle a line node of ��(k�
F

) for any Fermi
surface geometry.
With increasing singlet to triplet ratio the first nodes

appear at the points where �
s

/�
t

= min |l(k�
F

)|. In-
creasing �

s

/�
t

further the nodal rings continue to be
positioned around these points until they connect with
one another. At this stage the nodal rings become posi-
tioned around the points where they eventually disappear
�

s

/�
t

= max |l(k�
F

)|. Thus a general loop should pass
through the points where the nodal rings appear and dis-
appear. This is accomplished by the loop

L : � ! min |l(k�
F

)| ! @BZ ! max |l(k�
F

)| ! � (44)

where @BZ is the BZ boundary, and the arrows do not
necessarily imply straight lines.
In order to study the topology’s e↵ect on the sur-

face states the 1D winding number is also computed for
straight noncontractible loops, i.e. loops traversing one
or several of the three circles making up the BZ torus
T3 = S1⇥S1⇥S1, that are perpendicular to the surface.
Writing the momentum k = (kk, k?) and the surface nor-
mal n = (l,m, n) the 1D winding number is written

N(lmn)(kk) =
Z

dk?
2⇡i

Tr
⇥
q�1r?q

⇤
. (45)

Restricting ourselves to time-reversal invariant non-
contractible loops another topological invariant can be
defined. Namely the Z2 invariant

W(lmn)(Kk) =
Y

K

Pf[i�2qT (K)]p
det[i�2qT (K)]

(46)

where K are time-reversal invariant momenta on the
loop, and Pf[•] denotes the pfa�an of an antisymmet-
ric matrix •. The 1D Hamiltonian for this loop is of the
symmetry class DIII.53

The singlet (triplet) component is said to be domi-
nant if the inequality�

s

/�
t

> max |l(k�
F

)| is true (false).
With a dominant singlet component the material is fully
gapped. Increasing �

s

and/or decreasing �
t

the mate-
rial becomes nodal and eventually fully gapped again if
min |l(k�

F

)| > 0. As is shown below the dominance of
either component is temperature dependent.

H. Surface band structure

The surface band structure is computed by first Fourier
transforming the BdG Hamiltonian in the direction of the
surface normal n,

H(kk, k?,R) ! H(kk, ⇢,R). (47)

This gives rise to a series of delta functions,

H(kk, ⇢,R) =
X

j

H
j

(kk,R+
1

2
⇢n) �(j � ⇢/⇢0) (48)
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FIG. 5. All plots are for the cubic point group O with g2 = 1.03. (a) N (z)(k,ϵ), defined in Eq. (33), which is a measure of the spin
polarization along the z axis. It is shown for a self-consistent pure triplet order parameter and for momentum directions in the xy plane (i.e.,
θ = π/2), at the surface with the surface normal n = (1,0,0). (b) Momentum-resolved ABS at zero energy computed assuming a constant order
parameter with rbulk

$ = 0.67. The disk is the projection of the Fermi surface onto the slab surface with n = (1,1,1). Green regions corresponds
to ABS for which (ϒk,ϒk) = (+1, − 1), and yellow regions to (ϒk,ϒk) = (−1, + 1). Momenta of trajectories not yielding ABSs are colored
black. (c) Point contact conductance spectra along n = (1,1,1) for self-consistent order parameters (the numbers refer to columns for rbulk

$ in
Table I and to the curves from top to bottom), and with t0 = 10− 1

2 . (d) The topological invariant N(111), with rbulk
$ = 0.67, where light green/blue

corresponds to N(111) = ±1, and white to trivial topology. (e) The surface band structure with k
∥
1 = 0, and rbulk

$ = 0.67. (f) The lowest positive
eigenvalues of Heff for self-consistent order parameter with rbulk

$ = 0.67. Black regions correspond to zero energy. Dashed circles in (d) and (f)
show for comparison the projection of the spherical Fermi surface used in the quasiclassical calculations.

rbulk
$ = 0.67 along the k

∥
2 axis with k

∥
1 = 0, and L = 1.3 × 104

layers. N(111) ̸= 0 gives rise to singly degenerate zero-energy
flat bands, one on each surface, with the corresponding
wave functions decaying exponentially into the bulk. The
surface momenta of the zero-energy flat bands are given by
N(111)(k∥) ̸= 0, which can be seen in Fig. 5(f) where the lowest
positive eigenvalue of Heff [see Eq. (49)] is plotted for the
self-consistent order parameter. Note that the zero-energy flat
bands are given by the projection of nontrivial values of the
1D winding number.

B. The tetragonal point group C4v

To next-nearest neighbors in the sum over Bravais lattice
sites [8] the SOC vector corresponding to the tetragonal point
group C4v takes the form

lk =

⎛

⎜⎝
sin(ky)

− sin(kx)
g2 sin(kx) sin(ky) sin(kz)[cos(ky) − cos(kx)]

⎞

⎟⎠, (54)

where g2 determines the relative weight between first and
second order contributions, just like for the cubic point group
O. Its magnitude and direction on the Fermi surface are
illustrated in Fig. 6.

But unlike O, this point group has line nodes of the SOC in
the BZ. For all values of g2 the SOC is identically zero along the
three paths parallel to the z axis, & → Z, X → R, and M → A
in Fig. 7(a). Given the simple cubic first-order tight-binding
dispersion, for the range of µ we study the line node & → Z
intersects all closed, and the line node X → R intersects all
open Fermi surfaces. Thus min |l(k−

F )| = 0 for both cases. The
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FIG. 6. The SOC vector, defined by Eq. (54), with g2 = 0. See
the caption of Fig. 2.
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polarization along the z axis. It is shown for a self-consistent pure triplet order parameter and for momentum directions in the xy plane (i.e.,
θ = π/2), at the surface with the surface normal n = (1,0,0). (b) Momentum-resolved ABS at zero energy computed assuming a constant order
parameter with rbulk

$ = 0.67. The disk is the projection of the Fermi surface onto the slab surface with n = (1,1,1). Green regions corresponds
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2 . (d) The topological invariant N(111), with rbulk
$ = 0.67, where light green/blue

corresponds to N(111) = ±1, and white to trivial topology. (e) The surface band structure with k
∥
1 = 0, and rbulk

$ = 0.67. (f) The lowest positive
eigenvalues of Heff for self-consistent order parameter with rbulk

$ = 0.67. Black regions correspond to zero energy. Dashed circles in (d) and (f)
show for comparison the projection of the spherical Fermi surface used in the quasiclassical calculations.

rbulk
$ = 0.67 along the k

∥
2 axis with k

∥
1 = 0, and L = 1.3 × 104

layers. N(111) ̸= 0 gives rise to singly degenerate zero-energy
flat bands, one on each surface, with the corresponding
wave functions decaying exponentially into the bulk. The
surface momenta of the zero-energy flat bands are given by
N(111)(k∥) ̸= 0, which can be seen in Fig. 5(f) where the lowest
positive eigenvalue of Heff [see Eq. (49)] is plotted for the
self-consistent order parameter. Note that the zero-energy flat
bands are given by the projection of nontrivial values of the
1D winding number.

B. The tetragonal point group C4v

To next-nearest neighbors in the sum over Bravais lattice
sites [8] the SOC vector corresponding to the tetragonal point
group C4v takes the form

lk =

⎛

⎜⎝
sin(ky)

− sin(kx)
g2 sin(kx) sin(ky) sin(kz)[cos(ky) − cos(kx)]

⎞

⎟⎠, (54)

where g2 determines the relative weight between first and
second order contributions, just like for the cubic point group
O. Its magnitude and direction on the Fermi surface are
illustrated in Fig. 6.

But unlike O, this point group has line nodes of the SOC in
the BZ. For all values of g2 the SOC is identically zero along the
three paths parallel to the z axis, & → Z, X → R, and M → A
in Fig. 7(a). Given the simple cubic first-order tight-binding
dispersion, for the range of µ we study the line node & → Z
intersects all closed, and the line node X → R intersects all
open Fermi surfaces. Thus min |l(k−

F )| = 0 for both cases. The
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FIG. 6. The SOC vector, defined by Eq. (54), with g2 = 0. See
the caption of Fig. 2.
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FIG. 9. All plots are for the tetragonal point group C4v with g2 = 0. See the caption of Fig. 5; here rbulk
! = 0.69 in (b) and (d)–(f). The

vertical magenta line in (b) denotes an ABS for which ϒk = ϒk = −1. The vertical red line in (d) indicates W(111) = −1.

quasiclassical calculations. The red line is given by W(111) =
−1. Thus states corresponding to solutions of Eq. (34) are
directly related to the Z2 invariant being nontrivial, and are
topologically protected as well.

In Fig. 9(e) the band structure is shown for g2 = 0 and
rbulk
! = 0.69 along the k

∥
2 axis with k

∥
1 = 0, and L = 1.3 × 104

layers. Note that the states corresponding to W(111) = −1 are
doubly degenerate on each surface. Just like for O the zero-
energy bands are given by the projection of the nontrivial val-
ues of the topological invariants, which can be seen in Fig. 9(f).

C. The tetrahedral point group Td

To next-nearest neighbors in the sum over Bravais lattice
sites [8] the SOC vector corresponding to the tetrahedral point
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FIG. 10. The SOC vector, defined by Eq. (55). See the caption of
Fig. 2.

group Td takes the form

lk =

⎛

⎜⎝
sin(kx)[cos(kz) − cos(ky)]

sin(ky)[cos(kx) − cos(kz)]

sin(kz)[cos(ky) − cos(kx)]

⎞

⎟⎠ (55)

with no free parameter g2 in contrast with O and C4v . It
is illustrated in Fig. 10. This SOC exhibits line nodes in
the BZ along the paths # → P → H → # and P → N in
Fig. 11(a). Just like for C4v the line nodes intersect the
negative helical Fermi surface for all values of µ, i.e., all Fermi
surface geometries, given a BCC first-order tight-binding
dispersion. Thus min |l(k−

F )| = 0 and there are no gapped
phases with sgn[!−(k−

F )] = −1, which can be seen in the

FIG. 11. (a) The high-symmetry points and axes in the BZ of a
tetrahedral crystal. (b) The topological phase diagram for different
values of the chemical potential. The Fermi surface is open (closed)
for sgn[µ] = ∓1. White areas indicate a gapped phase with trivial
topology, (NL,ν) = (0,0); gray a nodal phase with NL = 1 [loop
defined by Eq. (44)].
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−1. Thus states corresponding to solutions of Eq. (34) are
directly related to the Z2 invariant being nontrivial, and are
topologically protected as well.
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layers. Note that the states corresponding to W(111) = −1 are
doubly degenerate on each surface. Just like for O the zero-
energy bands are given by the projection of the nontrivial val-
ues of the topological invariants, which can be seen in Fig. 9(f).

C. The tetrahedral point group Td

To next-nearest neighbors in the sum over Bravais lattice
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with no free parameter g2 in contrast with O and C4v . It
is illustrated in Fig. 10. This SOC exhibits line nodes in
the BZ along the paths # → P → H → # and P → N in
Fig. 11(a). Just like for C4v the line nodes intersect the
negative helical Fermi surface for all values of µ, i.e., all Fermi
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FIG. 12. (a) The quantity r surf
! /rbulk

! = [!s/!t ]surf[!t /!s]bulk as
a measure of the order parameter surface suppression. (b) The zero-
bias conductance for the same surface normals as in (a). The numbers
in the legend hold for both plots and correspond to the columns in
Table I showing the scaled singlet to triplet ratios.

topological phase diagram in Fig. 11(b). Just like for C4v there
are only two distinct topological phases: one gapped trivial,
(NL,ν) = (0,0), and a nodal nontrivial, NL = 1, phase.

Due to there being no free parameter to vary, the self-
consistent order parameter is only calculated with this single
SOC vector for this point group. This is done for nine values
of the scaled bulk singlet to triplet ratio, rbulk

! ∈ [0,1.1], with
one active channel. The exact values are shown in Table I. The
suppression of these order parameters is shown in Fig. 12(a)
for the same range of surface normals as for the previously
examined point groups. Here the largest suppression is for
n = (1,1,0) and n = (0,1,2) and barely any suppression at all
for n = (1,1,1).

In Fig. 12(b) the zero-bias conductance for these order
parameters and surface normals is shown. Unsurprisingly the
ZBC is very small for the high-symmetry axes n = (1,0,0) and
n = (1,1,0), it is quite large, but still a local minimum, for the

high-symmetry axis n = (1,1,1), and larger still in between
these surface normals.

The ABSs are spin polarized for this point group as well.
In Fig. 13(a) the quantity N (z)(k), Eq. (33), is plotted for
a pure triplet order parameter and n = (1,0,0). For a pure
triplet N (x) = N (y) = 0. Self-consistency does not drastically
alter the ABSs for this surface normal due to the states
being predominantly located at small energies for glancing
trajectories.

The momentum-resolved zero-energy ABSs for rbulk
! =

0.69 are shown in Fig. 13(b). The states in the middle are
from the nonoverlapping parts of the projection of the nodal
rings around the # → P high-symmetry axis, and the ones
around the edges of the disk from the projection of the nodal
rings around # → H and # → N .

Just like for the other point groups ZBCPs are seen in the
tunnel conductance spectra, with t0 = 10− 1

2 , for n = (1,1,1)
and singlet to triplet ratios in the interval min |lkF

| < !s/!t <
max |lkF

|, i.e., 0 < rbulk
! < 1; see Fig. 13(c). ABSs given

by Eq. (34) only appear for 0 ! rbulk
! ! 0.28, and then not

for k∥ = 0, which is the most important momentum when
calculating the tunnel conductance [54]. Hence the ZBCPs
emanating from valleys in the spectra.

The nontrivial values of the topological invariant N(111)
(W(111) being trivial for this singlet to triplet ratio) are shown
in Fig. 13(d). The dashed circle is the projection of the
spherical Fermi surface used in the quasiclassical calculations.
Compared to the other point groups considered the spherical
Fermi surface approximation does not work as well due to the
actual Fermi surface bulging out in the k = (1,1,1) direction.
Furthermore, the BZ is not cubic and thus the line integral
defining N(lmn) potentially goes through Fermi surfaces from
adjacent BZs, which is precisely what happens for this surface
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FIG. 13. All plots are for the tetrahedral point group Td . See the caption of Fig. 5; here rbulk
! = 0.69 in (b) and (d)–(f).
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Table I showing the scaled singlet to triplet ratios.

topological phase diagram in Fig. 11(b). Just like for C4v there
are only two distinct topological phases: one gapped trivial,
(NL,ν) = (0,0), and a nodal nontrivial, NL = 1, phase.

Due to there being no free parameter to vary, the self-
consistent order parameter is only calculated with this single
SOC vector for this point group. This is done for nine values
of the scaled bulk singlet to triplet ratio, rbulk

! ∈ [0,1.1], with
one active channel. The exact values are shown in Table I. The
suppression of these order parameters is shown in Fig. 12(a)
for the same range of surface normals as for the previously
examined point groups. Here the largest suppression is for
n = (1,1,0) and n = (0,1,2) and barely any suppression at all
for n = (1,1,1).

In Fig. 12(b) the zero-bias conductance for these order
parameters and surface normals is shown. Unsurprisingly the
ZBC is very small for the high-symmetry axes n = (1,0,0) and
n = (1,1,0), it is quite large, but still a local minimum, for the

high-symmetry axis n = (1,1,1), and larger still in between
these surface normals.

The ABSs are spin polarized for this point group as well.
In Fig. 13(a) the quantity N (z)(k), Eq. (33), is plotted for
a pure triplet order parameter and n = (1,0,0). For a pure
triplet N (x) = N (y) = 0. Self-consistency does not drastically
alter the ABSs for this surface normal due to the states
being predominantly located at small energies for glancing
trajectories.

The momentum-resolved zero-energy ABSs for rbulk
! =

0.69 are shown in Fig. 13(b). The states in the middle are
from the nonoverlapping parts of the projection of the nodal
rings around the # → P high-symmetry axis, and the ones
around the edges of the disk from the projection of the nodal
rings around # → H and # → N .

Just like for the other point groups ZBCPs are seen in the
tunnel conductance spectra, with t0 = 10− 1

2 , for n = (1,1,1)
and singlet to triplet ratios in the interval min |lkF

| < !s/!t <
max |lkF

|, i.e., 0 < rbulk
! < 1; see Fig. 13(c). ABSs given

by Eq. (34) only appear for 0 ! rbulk
! ! 0.28, and then not

for k∥ = 0, which is the most important momentum when
calculating the tunnel conductance [54]. Hence the ZBCPs
emanating from valleys in the spectra.

The nontrivial values of the topological invariant N(111)
(W(111) being trivial for this singlet to triplet ratio) are shown
in Fig. 13(d). The dashed circle is the projection of the
spherical Fermi surface used in the quasiclassical calculations.
Compared to the other point groups considered the spherical
Fermi surface approximation does not work as well due to the
actual Fermi surface bulging out in the k = (1,1,1) direction.
Furthermore, the BZ is not cubic and thus the line integral
defining N(lmn) potentially goes through Fermi surfaces from
adjacent BZs, which is precisely what happens for this surface
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FIG. 13. All plots are for the tetrahedral point group Td . See the caption of Fig. 5; here rbulk
! = 0.69 in (b) and (d)–(f).
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H. Surface band structure

The surface band structure is computed by first Fourier
transforming the BdG Hamiltonian in the relative mo-
mentum coordinate k? in the direction of the surface
normal n,

H(kk, k?,R) ! H(kk, ⇢,R). (47)

The helical dispersion, ⇠�

k , contains for the tight-binding
approximation we use trigonometric functions whose
Fourier transform give rise to a series of delta functions

H(kk, ⇢,R) =
X

j

H
j

(kk,R +
1

2
⇢n) �(j � ⇢/⇢0) (48)

where H�j

(kk,R� 1
2⇢n) = H†

j

(kk,R+ 1
2⇢n), j is a layer

index, and ⇢0 is the length one needs to move along the
direction of the surface normal in order to return to a
translation-equivalent point in the lattice unit cell. The
sum has a finite number of terms, i.e. there exist a num-
ber j

c

such that H
j

= 0 : |j| > j
c

. The terms H
j

with
j 6= 0 can be interpreted in terms of hopping across the
layers. Discretizing the center-of-mass coordinate R in
steps of ⇢0, the Schrödinger equation for L layers can be
written

j(l)X

j=�j(l)

H
j

✓
kk,n⇢0(l +

1

2
j)

◆
 

j

(kk) = E
l

(kk) l

(kk),

(49)

where l = 0, 1, . . . , L�1 and j(l) = min{j
c

, l} which takes
care of the boundary conditions, i.e. no hopping across
the boundary. Eq. (49) can be written more compactly as
a matrix equation He↵(kk) (kk) = E(kk) (kk), and the
band structure is given by the eigenvalues of He↵, Non-
trivial topology gives rise to zero-energy ABS. We are
therefore mainly interested in the band structure close
to zero energy. This allows us to avoid diagonalizing
He↵, and instead only compute the smallest magnitude
eigenvalues using the Lanczos method. Note that the
order parameter is suppressed at both surfaces.

III. NUMERICAL RESULTS

In this work the SOC strength entering the quasiclassi-
cal calculations is considered to be much smaller than the
Fermi energy, ↵ ⌧ E

F

. In this case the Fermi surface is
only weakly split. Ignoring this splitting, and the Fermi
velocity renormalisation, the quasiparticles with opposite
helicity are assigned to a single, common Fermi surface,
and move coherently along classical trajectories. In addi-
tion, for the quasiclassical part of the numerical calcula-
tions, the Fermi surface is approximated to be spherical,
with |k

F

| being equal to the average of the Fermi sur-
face defined by ⇠ (k

F

) = 0 with (t1, µ) = (�40↵, �50↵).
Here, t1 determines the bandwidth, which must be large

compared to the Fermi-surface splitting in order for the
approximation of equal Fermi surfaces for both helicities
to be valid, and µ < 0 must smaller than t1 � ↵ in order
for the Fermi surface to be closed. The chosen values are
consistent with the approximation of an approximately
spherical Fermi surface. The SOC term enters the trans-
port equations as a source term. In the following, we
restrict our discussion to the maximally symmetric basis
function corresponding to the irreducible representation
A1, i.e. Yk = 1.

A. The Cubic Point Group O

To next-nearest neighbors in the sum over Bravais lat-
tice sites8 the SOC vector corresponding to the cubic
point group O, takes the form

lk =

0

@
sin(k

x

) [1 � g2 (cos(k
y

) + cos(k
z

))]
sin(k

y

) [1 � g2 (cos(k
z

) + cos(k
x

))]
sin(k

z

) [1 � g2 (cos(k
x

) + cos(k
y

))]

1

A (50)

where g2 is a free parameter which determines the relative
weight between the first and second order contributions.
Its magnitude and direction is illustrated in Fig. 2.

An important property of the SOC vector correspond-
ing to the cubic point group is its lack of line nodes in
the BZ, it only vanishes at specific points. With g2 = 0
these points are simply �, X, M, and R [for the nota-
tion see Fig. 3(a)]. A finite value of g2 brings about two
more points. With g2 > 0 they are positioned somewhere
on the paths � ! R, and � ! M, and with g2 < 0 on
� ! R, and X ! R, in Fig. 3 (a). The exact positions,
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FIG. 2. The magnitude (color) and direction (arrows) of the
SOC vector corresponding to the point group O defined in
Eqs. (50), with the g2 = 1.03. The SOC is shown upon
the spherical Fermi surface defined by the average Fermi mo-
mentum given by ⇠(k

F

) = 0, where ⇠ is the correspond-
ing tight-binding dispersion in the absence of SOC with
(t1, µ) = (�40↵, �50↵). The Fermi surface is seen from the
k = (1, 1, 1) direction.
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FIG. 6. The SOC vector, defined by Eq. (54), with g2 = 0.
See the caption of Fig. 2.

where g2 determines the relative weight between first and
second order contributions, just like for the cubic point
group O. Its magnitude and direction on the Fermi sur-
face is illustrated in Fig. 6.

But unlike O, this point group has line nodes of the
SOC in the BZ. For all values of g2 the SOC is identically
zero along the three paths parallel to the z-axis, � ! Z,
X ! R, and M ! A in Fig. 7 (a). Given the simple cu-
bic first order tight-binding dispersion, for the range of
µ we study the line node � ! Z intersects all closed, and
the line node X ! R intersects all open Fermi surfaces.
Thus min |l(k�

F

)| = 0 for both cases. The transition be-
tween the two is therefore seamless, and there are no
fully gapped phases with sign[��(k�

F

)] = �1. The only
two distinct phases is a topologically trivial, ⌫ = 0, and
a nodal non-trivial phase, NL = 1, shown in white and
grey respectively in Fig. 7 for a closed Fermi surface,
µ = �50↵.

Despite there only being a single topologically non-
trivial phase the order parameter is calculated self-
consistently for the two values g2 2 {0, 4} in order to
study the e↵ect of second order contributions to the SOC
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FIG. 7. (a) High symmetry points and axes in the BZ of a
tetragonal crystal. (b) Topological phase diagram for a closed
Fermi surface with µ = �50↵ and t1 = �40↵. White areas:
gapped phase with trivial topology, (NL, ⌫) = (0, 0); grey:
nodal phase with NL = 1 [loop defined by Eq. (44)].
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FIG. 8. Plots (a) - (b) show the quantity rsurf.
� /rbulk

� =
[�

s

/�
t

]surf. · [�
t

/�
s

]bulk as a measure of the order param-
eter surface suppression. This is done for a range of di↵erent
surface normals along the path n = (1, 0, 0) ! (1, 1, 0) !
(1, 1, 1) ! (0, 1, 2) ! (1, 0, 0). In plots (c) - (d) the zero-

bias conductance, computed with t0 = 10� 1

2 , is shown for the
same surface normals. The numbers in the legend holds for
all plots and correspond to the columns in table I showing the
scaled singlet to triplet ratios.

vector. This is done for nine values of the scaled bulk sin-
glet to triplet ratio, rbulk

� 2 [0, 1.1], with one active chan-
nel. The exact values are shown in table I. The order
parameter is calculated with the same surface normals as
for the cubic point group. How the order parameter sup-
pression depends on the surface orientation can be seen in
Fig. 8 (a) - (b). Here the greatest suppression is not for
the surface normal n = (1, 1, 1), but rather n = (1, 1, 0),
and n = (0, 1, 2) shows very little suppression.

The zero-bias conductances for the two g2 values, are
very dissimilar for surface normals in the xy-plane. With
g2 = 0, Fig. 8 (c), rather large conductances are seen
for 0.69  rbulk

�  0.96 in between the high symmetry
axes n = (1, 0, 0) and n = (1, 1, 0), with the largest for
rbulk
� = 0.83 and n ⇡ (1, 0.44, 0). The lines correspond-

ing to 0 < rbulk
�  0.55 are (almost) degenerate due to all

of them having smaller singlet to triplet ratios than the
rather small di↵erence between the maximum and mini-
mum value of the SOC in the xy-plane of the Fermi sur-
face. Only a few trajectories around the poles contribute
to the ZBCPs. There are no ZBCPs for n = (1, 1, 0)
but rather a large dome-like feature which is interest-
ingly higher than the peaks for the (almost) degenerate
lines. With g2 = 4, Fig. 8 (d), the lines corresponding to
0.69  rbulk

�  0.96 show a dip for n ⇡ (1, 0.4, 0) due to
the higher order contributions in the SOC changing the
shape of the nodal rings, causing their projection onto
the surface to largely overlap for these singlet to triplet
ratios.

The ABS are heavily a↵ected by self-consistency and
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FIG. 10. The SOC vector, defined by Eq. (55). See the
caption of Fig. 2.

dral point group T
d

takes the form
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@
sin(k
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A (55)

with no free parameter g2 in contrast with O and C4v

. It
is illustrated in Fig. 10. This SOC exhibits line nodes in
the BZ along the paths � ! P ! H ! � and P ! N in
Fig. 11 (a). Just like for C4v

the line nodes intersect the
negative helical Fermi surface for all values of µ, i.e. all
Fermi surface geometries, given a BCC first order tight-
binding dispersion. Thus min |l(k�

F

)| = 0 and there are
no gapped phases with sign[��(k�

F

)] = �1, which can
be seen in the topological phase diagram in Fig. 11 (b).
Just like for C4v

there are only two distinct topological
phases; one gapped trivial, (NL, ⌫) = (0, 0), and a nodal
non-trivial, NL = 1, phase.

Due to there being no free parameter to vary the self-
consistent order parameter is only calculated with this

H
N
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FIG. 11. (a) The high symmetry points and axes in the BZ of
a tetrahedral crystal. (b) The topological phase diagram for
di↵erent values of the chemical potential. The Fermi surface
is open (closed) for sign[µ] = ⌥1. White areas indicate a
gapped phase with trivial topology, (NL, ⌫) = (0, 0); grey a
nodal phase with NL = 1 [loop defined by Eq. (44)].
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FIG. 12. (a) The quantity rsurf.
� /rbulk

� = [�
s

/�
t

]surf. ·
[�

t

/�
s

]bulk as a measure of the order parameter surface sup-
pression. (b) The zero-bias conductance for the same surface
normals as in (a). The numbers in the legend holds for both
plots and correspond to the columns in table I showing the
scaled singlet to triplet ratios.

single SOC vector for this point group. This is done
for nine values of the scaled bulk singlet to triplet ratio,
rbulk
� 2 [0, 1.1], with one active channel. The exact values

are shown in table I. The suppression of these order
parameters is shown in Fig. 12 (a) for the same range
of surface normals as for the previous examined point
groups. Here the largest suppression is for n = (1, 1, 0)
and n = (0, 1, 2) and barely any suppression at all for
n = (1, 1, 1).

In Fig. 12 (b) the zero-bias conductance for these order
parameters and surface normals are shown. Unsurpris-
ingly the ZBC is very small for the high-symmetry axes
n = (1, 0, 0) and n = (1, 1, 0), it is quite large, but still
a local minima, for the high-symmetry axis n = (1, 1, 1),
and larger still in between these surface normals.

The ABS are spin polarized for this point group as well.
In Fig. 13 (a) the quantity N (z)(k), Eq. (33), is plotted
for a pure triplet order parameter and n = (1, 0, 0). For a
pure triplet N (x) = N (y) = 0. Self-consistency does not
drastically alter the ABS for this surface normal due to
the states being predominantly located at small energies
for glancing trajectories.

The momentum-resolved zero-energy ABS for rbulk
� =

0.69 are shown in Fig. 13 (b). The states in middle are
from the non-overlapping parts of the projection of the
nodal rings around the � ! P high symmetry axis, and
the ones around the edges of the disk from the projection
of the nodal rings around � ! H and � ! N.

Just like for the other point groups ZBCPs are seen
in the tunnel conductance spectra, with t0 = 10� 1

2 , for
n = (1, 1, 1) and singlet to triplet ratios in the interval
min |lkF | < �

s

/�
t

< max |lkF |, i.e. 0 < rbulk
� < 1,

see Fig. 13 (c). ABS given by Eq. (34) only appear
for 0  rbulk

�  0.28, and then not for kk = 0 which
is the most important momentum when calculating the
tunnel conductance54. Hence the ZBCPs emanating from
valleys in the spectra.

The non-trivial values of the topological invariant
N(111) (W(111) being trivial for this singlet to triplet ratio)
is shown in Fig. 13 (d). The dashed circle is projection
of the spherical Fermi surface used in the quasiclassical
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Topology of ground state connects bulk properties  
with interface properties 

 
Topological excitations give rise to dissipation 

Note the two different aspects of topology in condensed matter physics: 



Superfluids and superconductors show the rich interplay between 
spontaneous symmetry breaking and emergent symmetry 

The topology of the ground state and of the excitations is closely 
related to the symmetry of the order parameter in topological 
materials 

Combination of spin and Cooper pairs opens new horizons for a 
quickly developing field “superspintronics”, contributing to solution of 
energy efficiency problem for data centers and supercomputers 

Condensed matter systems as test ground for particle physics: e.g. 
equivalents of Higgs bosons, Majorana fermions, Chiral fermions 
may emerge at low energies 
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Summary 


