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• mesoscopic ☞ system size comparable to typical length scales, λF , ξ

• unconventional superconductivity is fragile to:
✴ impurities and disorder
✴ surface scattering

☞ system size comparable to ξ may suppress the dominant ordered state

☞ other competing states/orders may be made visible….
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typical length scales e.g. YBCO: 
L ≳ ξ ≳ 1/kF

1/kF = 0.3 nm
ξ = 2 nm
L = 100 nm
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as a function of gate charge (ng=VgCg) -> charging effects, single-electron-ics
at low T (≲20 mK) varying an applied magnetic field 
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at low T (≲20 mK) varying an applied magnetic field 

Isd(Vsd) depends on the gate charge nG: 
☞ an “odd/even in e” parity effect is seen
☞ this parity effect increases with applied B.
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A d-wave superconductor Δ(pF)≈Δ0 cos(2    ) φp
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A d-wave superconductor Δ(pF)≈Δ0 cos(2    ) φp
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about the interface normal, and zero outside the cone. A
small value of fc represents a thick tunneling barrier,
while a large value of fc corresponds to a thin barrier.
The surface excitation spectrum, angle-resolved lo-

cal density of states, Nspf , R; ed, and order parameter,
Dspf , Rd, are obtained by solving Eilenberger’s transport
equations [13]. For high impedance junctions we can ne-
glect the influence of the tunnel current on the excitation
spectrum at the interface. In order to calculate the surface
order parameter and density of states we solve the trans-
port equations supplemented by surface boundary condi-
tions. We consider two models: (i) an atomically smooth
surface described by continuity of the propagator at the
surface for the incident and specularly reflected trajec-
tories, and (ii) a rough or faceted surface modeled as a
distribution of microscopic mirror surfaces that are mis-
oriented relative to the average interface normal [14].
For specular interfaces the order parameter is strongly

suppressed for a (110) surface because the order parame-
ter changes sign along all classical trajectories. Con-
sequently, an Andreev bound state with zero energy is
formed for every trajectory. The formation of bound
states comes at the expense of the continuum states that
form the dx22y2 pair condensate. Conversely, the specular
(100) interface is not pair breaking; the order parameter is
constant in magnitude and phase along all incident and
specularly reflected trajectories. Figure 1(a) also shows
the effect of surface roughness on the d-wave order pa-
rameter for (110) and (100) oriented surfaces. For rough
surfaces pair breaking occurs for all orientations of the
surface normal relative to the crystal axes. The key fea-
ture to note in Figs. 1(c) and 1(d) is the appearance of a
ZBCP with approximately equal spectral weight for both

FIG. 1. (a) The dx22y2 order parameter near (110) and (100)
surfaces for specular and rough surfaces. (b) The absence
of the ZBCP is a special feature of a specular (100) surface.
(c) The tunneling conductance for nanofaceted (110) and (100)
surfaces with three facets s0, 645±d. (d) A similar calculation
to (c) but with seven facets s0, 622.5±, 645±, 667.5±d. The
acceptance cone is fc ≠ 30±, the width parameter is g ≠
0.05D0, and T ≠ 0.3Tc

(110) and (100) orientations as a result of surface-induced
Andreev scattering by the rough surface.
Tunneling experiments performed on oriented YBCO

films were carried out in a magnetic field [5–7]. These
experiments show a ZBCP which broadens with increas-
ing field and is split by roughly 3 meV at H ≠ 1 T. The
field evolution of the ZBCP in PbyYBCO films was ini-
tially interpreted in terms of a Zeeman splitting of reso-
nant magnetic impurities in the tunnel barrier [15]. The
Zeeman shift of the conductance peak in the Appelbaum
theory is given by d ≠ gmBH, where g is the g factor
of the paramagnetic centers. Lesueur et al. [5] report a
large g factor to account for the splitting in PbyYBCO
junctions. An alternative way of expressing the Zee-
man shift in the Appelbaum model is d ≠ D0sHyHPd,
where HP ≠ D0ygmB is the Pauli field, i.e., the field scale
for pair breaking by the Zeeman energy. The data of
Lesueur et al. [5] imply an anomalously low Pauli field
(HP , 10 T vs D0y2mB ≠ 125 T) in order to account for
the splitting of the conductance peak in a field.
Here we suggest an explanation of the field evolution

of the ZBCP that does not invoke paramagnetic tunneling
centers, but depends upon the d-wave interpretation of
the ZBCP. The surface bound states that give rise to
the ZBCP couple to the magnetic field at the interface
via the screening current in the superconductor. The
electromagnetic coupling that enters the transport equation
is 2seycdvf ? AsRd, where AsRd is the self-consistently
determined vector potential. For a uniform (or slowly
varying) supercurrent this coupling leads to a Doppler
shift in the continuum excitations given by vf ? ps, where
psfsh̄y2d=q 2 seycdAsRdg is the condensate momentum,
i.e., excitations comoving with the superflow are shifted to
higher energy while countermoving excitations are shifted
to lower energy. The current also shifts the Andreev
bound state spectrum.
Consider the effect of ab-plane screening currents on the

tunneling conductance. The screening current is parallel to
the surface and proportional to the applied field:H ≠ H ẑ,
ps ≠ 2seycdAsxdŷ ≠ seycdHl exps2xyldŷ , where l is
the ab-plane penetration depth. First consider a model
for the excitation spectrum of a d-wave superconductor
which is not self-consistent, i.e., neglect pair breaking of
the d-wave order parameter at a specular (110) surface.
Eilenberger’s equation can then be solved analytically for
l ¿ j0; the resulting angle-resolved local density of states
is given by

Nspf , x; ed ≠ Im
µ

˜́R

DR 2
jDspf dj2

˜́RDR e22DR xyjvf?x̂j
∂

, (1)

where DR ≠
q
jDspf dj2 2 ˜́Rspf , ed2 and ˜́ Rspf , ed ≠

e 1 ig 1 seycdvf ? AsRd defines the excitation en-
ergy, with impurity broadening approximated by a
constant width g. The first term in Eq. (1) is the
bulk density of states. The second term gives a
bound state contribution near zero energy. At the
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Possible low-T transition to a fully gaped superconducting state 
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Abstract—A characteristic feature of the BCS theory of superconductivity is the quantum-mechanical coherence of
particle and hole states. Direct observation of particle-hole coherence in unusual superconductingmaterials is a strong
indicationof traditionalsuperconductivity.Weuse theFermi liquid theoryofsuperconductivity tostudythe implications
of particle-hole coherence on properties of d-wave superconductors near surfaces. Typical surface phenomena are
the suppression of the superconducting order parameter, surface bound states associated with Andreev reflection,
anomalous screening currents, and spontaneous breaking of time-reversal symmetry. We review these phenomena
and present new results for the effects of surface roughness. !1998 Elsevier Science Ltd. All rights reserved
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It is generally accepted that high Tc cuprate super-
conductors are strongly correlated metals whose super-
conducting state is not well described by mean field
theory or equivalent methods designed for weakly corre-
lated electrons. On the other hand, theoretical methods
for studying strongly correlated electrons, developed in
the context of high Tc superconductivity, are still far from
being able to calculate subtle effects such as the influence
of surface roughness on superconducting properties. A
theory which is not restricted to weakly correlated sys-
tems, but nevertheless can be used to study a broad range
of superconducting phenomena including the effects of
surfaces is the Fermi liquid theory of superconductivity.
The most useful formulation of this theory is in terms of
quasiclassical transport equations derived in 1968 by
Eilenberger [1] and Larkin and Ovchinnikov [2] for
superconductors in equilibrium, and generalized to none-
quilibrium phenomena a few years later [3, 4]. The Fermi
liquid theory of superconductivity combines the motion
of quasiparticles along classical trajectories (external
degrees of freedom) with the quantum dynamics of
internal degrees of freedom which are the spin and the
particle-hole degrees of freedom. This combination of
classical and quantum physics is the proper generaliza-
tion of Landau’s semi-classical transport equation for
normal Fermi liquids to the superconducting state. Like
Landau’s theory this theory keeps the leading order terms
in the expansion parameters of Fermi liquid theory such
as 1/k fy0 or e/E f where y0 ¼ !v f/2pTc, e is the quasipar-
ticle energy, and v f, !k f, E f are the Fermi velocity,
momenta and energy [5, 6]. The equations of the Fermi

liquid theory of superconductivity consist of the quasi-
classical transport equation for the quasiclassical propa-
gator, ǧ(pf ,R�e, t), Eilenberger’s normalization condition
for ǧ, the self-consistency equations for the self-energies,
ǰ(pf ,R�e, t), and boundary conditions at surfaces and inter-
faces [7–10]. An important part of the self-energy is the
superconducting order parameter Ď; it establishes the
coherence between particles and holes. We refer to
recent reviews [5, 6] and the original publications [1–3]
for the definitions and physical interpretation of the
quasiclassical propagators and self-energies, and the
detailed form of the quasiclassical transport equations
and boundary conditions.
In quasiclassical theory an excitation approaches the

surface along a classical (straight) incoming trajectory
and is reflected into an outgoing trajectory. At a specular
surface the outgoing trajectory is fixed by the conserva-
tion of parallel momentum (ideal reflection). Surfaces
with roughness lead to a statistical distribution of out-
going trajectories. This classical picture for the kine-
matics of an excitation must be supplemented by the
quantum equations for the internal degrees of freedom.
The internal state along a classical trajectory is obtained
by solving the quasiclassical matrix transport equations
on this trajectory. The most important quantum effect in
this context is Andreev reflection [11], which is caused by
rotations of the internal state of an excitation from
particle-type to hole-type (or vice versa). This may lead
to a velocity reversal (retro-reflection) or to trapping of an
excitation (Andreev bound states). Particle-hole rotation
and Andreev reflection are controlled by the off-diagonal
self-energy (order parameter), and carry information
about the anisotropy and symmetry of the order
parameter. A typical trajectory at a (120) surface of a
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gator, ǧ(pf ,R�e, t), Eilenberger’s normalization condition
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A dx2-y2+is state in a nanoscaled YBCO grain

energy level E1 ¼ Eg=2. This ratio decreases with increas-

ing Tc;s for two reasons: first, Eg increases and second, !s

decreases due to a more pronounced coherence peak [see

Fig. 1(c)] above the s-wave nodal gap. The low-energy

spectrum of a cuprate nanoscale island with a subdominant

s-wave state nucleated only on the surface is thus ess-

entially that of a conventional s-wave superconductor.

We find that in order to achieve !s=E1 " 0:05, as found
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FIG. 2 (color online). Subdominant d2-wave order. (a) QC d1-wave (dashed line), and d2-wave (solid lines) components across a L ¼
40"0 [100] slab forTc;d2 ¼ 0:5Tc (red, crosses) and0:47Tc (cyan, diamonds). (b)QCLDOS inunits of normal stateLDOS in the center (black
line) and at the surface (red line). Inset shows a zoom-in at low energies. (c)BdGenergy eigenstates times grain sizeL as a function ofL forE1

(solid lines) and E2 (dashed lines) for Tc;d2 ¼ 0:6Tc (black, circles), 0:5Tc (red, crosses), 0:4Tc (green, square), and 0Tc (blue, diamonds).
(d) Same as Fig. 1(e) but for d2-wave order. (e), (f) QC band structure at the surface forB ¼ 0 (e) andB ¼ 2B0 (f) with color scale showing
the angle resolved LDOS, i.e., #pf

measures the position on the Fermi circle measured from the kx-axis. Dashed lines mark the d1 node.

FIG. 1 (color online). Subdominant s-wave order. (a) QC s-wave component !s in the center of the island (circles) and nodal energy
gapEg (times) of a pair-breaking [110] surfacewith disorder as a function of slab lengthL="0 forTc;s=Tc ¼ 0:001 (magenta), 0.01 (blue),
0.1 (green) (increasing values) at temperature T ¼ 0:01Tc. Dashed lines are !sðcenterÞ ¼ 48!sðsurfaceÞ=f½1& logðTc;s=TcÞ'ðL="0Þ2g,
dotted lines areEg ¼ 4!sðsurfaceÞ=ðL="0Þ. (b) BdG disorder averaged energy gapEg as a function of!s in the center of the grain (solid)
and at the surface (dashed) for Tc;s ¼ 0:5Tc (black, circles), 0:25Tc (red, crosses), and 0:1Tc (green, squares). Dotted line is Eg ¼ 2!.
(c) BdG disorder averaged LDOS in the center of the grain (solid line) and at the surface (dashed line). (d) BdG eigenstate spatial density
for one disorder configuration with L ¼ 40 (black dots marking removed sites) averaged over the four lowest energy states (left) and
disorder averaged (40 configurations) for the lowest energy state (right).White ¼ zero, black ¼ 0:01 (left) or 0.005 (right) states per unit
cell. (e) BdG disorder averaged level spacing !s ¼ Enþ1 & En ratio to first energy value E1 for n ¼ 1 (solid lines) and n ¼ 2 (dashed
lines) as a function of grain size L. (f) Evolution of the QC energy gap Eg (black, crosses) and !s on the surface (cyan, squares) with
magnetic field, B0 ¼ "0=$"0%0 ) 2:2 T (derived assuming "0 ¼ 2 nm, %0 ¼ 150 nm for YBCO) for a L ¼ 40"0 slab with surface
disorder modeled by a thin layer ("0:2"0) with a graded impurity concentration [32] and Tc;s ¼ 0:065Tc.
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FIG. 1 (color online). Subdominant s-wave order. (a) QC s-wave component !s in the center of the island (circles) and nodal energy
gapEg (times) of a pair-breaking [110] surfacewith disorder as a function of slab lengthL="0 forTc;s=Tc ¼ 0:001 (magenta), 0.01 (blue),
0.1 (green) (increasing values) at temperature T ¼ 0:01Tc. Dashed lines are !sðcenterÞ ¼ 48!sðsurfaceÞ=f½1& logðTc;s=TcÞ'ðL="0Þ2g,
dotted lines areEg ¼ 4!sðsurfaceÞ=ðL="0Þ. (b) BdG disorder averaged energy gapEg as a function of!s in the center of the grain (solid)
and at the surface (dashed) for Tc;s ¼ 0:5Tc (black, circles), 0:25Tc (red, crosses), and 0:1Tc (green, squares). Dotted line is Eg ¼ 2!.
(c) BdG disorder averaged LDOS in the center of the grain (solid line) and at the surface (dashed line). (d) BdG eigenstate spatial density
for one disorder configuration with L ¼ 40 (black dots marking removed sites) averaged over the four lowest energy states (left) and
disorder averaged (40 configurations) for the lowest energy state (right).White ¼ zero, black ¼ 0:01 (left) or 0.005 (right) states per unit
cell. (e) BdG disorder averaged level spacing !s ¼ Enþ1 & En ratio to first energy value E1 for n ¼ 1 (solid lines) and n ¼ 2 (dashed
lines) as a function of grain size L. (f) Evolution of the QC energy gap Eg (black, crosses) and !s on the surface (cyan, squares) with
magnetic field, B0 ¼ "0=$"0%0 ) 2:2 T (derived assuming "0 ¼ 2 nm, %0 ¼ 150 nm for YBCO) for a L ¼ 40"0 slab with surface
disorder modeled by a thin layer ("0:2"0) with a graded impurity concentration [32] and Tc;s ¼ 0:065Tc.

PRL 110, 197001 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
10 MAY 2013

197001-3

Tight-binding BdG calculation Quasi-classical calculation

The spectral gap: Eg ~1/R, R is the slab width 

d-wave SC  
Δ(p)=Δ cos(2φp)

ab̂ ^

L ≳ ξ0

n̂

D ≳ ξ0



Mikael Fogelström, Applied Quantum Physics Laboratory

T>TS     T< TS

A dx2-y2+is state in a nanoscaled YBCO grain

energy level E1 ¼ Eg=2. This ratio decreases with increas-

ing Tc;s for two reasons: first, Eg increases and second, !s

decreases due to a more pronounced coherence peak [see

Fig. 1(c)] above the s-wave nodal gap. The low-energy

spectrum of a cuprate nanoscale island with a subdominant

s-wave state nucleated only on the surface is thus ess-

entially that of a conventional s-wave superconductor.

We find that in order to achieve !s=E1 " 0:05, as found

(b)

E/∆d1

L
D

O
S surface

center

0 0.4-0.4

0

2

-2

2

0

4

6

8

(a)

(d)

x/ξ0

∆

∆d1

∆d2
Tc,d2

 = 0.5TcTc,d2
 = 0.47Tc

x (cells)x (cells)

x 
(c

el
ls

)

(f)

0 0.4-0.4

0

–1

3

0.2

–0.2 0.2
0

0

2

2

1

0
0

0
1–20

0.2

0.4

0.2
0.1

0
0 20 20 40

-2

2

0

4

6

8
(e)

E
/∆

d 1

E
/∆

d 1

(c)

L (cells)

E
·L

 
(e

V
·c

el
ls

) Tc,d2
 = 0.6Tc

Tc,d2
 = 0.4Tc

Tc,d2
 = 0.5Tc

Tc,d2
 = 0

FIG. 2 (color online). Subdominant d2-wave order. (a) QC d1-wave (dashed line), and d2-wave (solid lines) components across a L ¼
40"0 [100] slab forTc;d2 ¼ 0:5Tc (red, crosses) and0:47Tc (cyan, diamonds). (b)QCLDOS inunits of normal stateLDOS in the center (black
line) and at the surface (red line). Inset shows a zoom-in at low energies. (c)BdGenergy eigenstates times grain sizeL as a function ofL forE1

(solid lines) and E2 (dashed lines) for Tc;d2 ¼ 0:6Tc (black, circles), 0:5Tc (red, crosses), 0:4Tc (green, square), and 0Tc (blue, diamonds).
(d) Same as Fig. 1(e) but for d2-wave order. (e), (f) QC band structure at the surface forB ¼ 0 (e) andB ¼ 2B0 (f) with color scale showing
the angle resolved LDOS, i.e., #pf

measures the position on the Fermi circle measured from the kx-axis. Dashed lines mark the d1 node.

FIG. 1 (color online). Subdominant s-wave order. (a) QC s-wave component !s in the center of the island (circles) and nodal energy
gapEg (times) of a pair-breaking [110] surfacewith disorder as a function of slab lengthL="0 forTc;s=Tc ¼ 0:001 (magenta), 0.01 (blue),
0.1 (green) (increasing values) at temperature T ¼ 0:01Tc. Dashed lines are !sðcenterÞ ¼ 48!sðsurfaceÞ=f½1& logðTc;s=TcÞ'ðL="0Þ2g,
dotted lines areEg ¼ 4!sðsurfaceÞ=ðL="0Þ. (b) BdG disorder averaged energy gapEg as a function of!s in the center of the grain (solid)
and at the surface (dashed) for Tc;s ¼ 0:5Tc (black, circles), 0:25Tc (red, crosses), and 0:1Tc (green, squares). Dotted line is Eg ¼ 2!.
(c) BdG disorder averaged LDOS in the center of the grain (solid line) and at the surface (dashed line). (d) BdG eigenstate spatial density
for one disorder configuration with L ¼ 40 (black dots marking removed sites) averaged over the four lowest energy states (left) and
disorder averaged (40 configurations) for the lowest energy state (right).White ¼ zero, black ¼ 0:01 (left) or 0.005 (right) states per unit
cell. (e) BdG disorder averaged level spacing !s ¼ Enþ1 & En ratio to first energy value E1 for n ¼ 1 (solid lines) and n ¼ 2 (dashed
lines) as a function of grain size L. (f) Evolution of the QC energy gap Eg (black, crosses) and !s on the surface (cyan, squares) with
magnetic field, B0 ¼ "0=$"0%0 ) 2:2 T (derived assuming "0 ¼ 2 nm, %0 ¼ 150 nm for YBCO) for a L ¼ 40"0 slab with surface
disorder modeled by a thin layer ("0:2"0) with a graded impurity concentration [32] and Tc;s ¼ 0:065Tc.
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FIG. 1 (color online). Subdominant s-wave order. (a) QC s-wave component !s in the center of the island (circles) and nodal energy
gapEg (times) of a pair-breaking [110] surfacewith disorder as a function of slab lengthL="0 forTc;s=Tc ¼ 0:001 (magenta), 0.01 (blue),
0.1 (green) (increasing values) at temperature T ¼ 0:01Tc. Dashed lines are !sðcenterÞ ¼ 48!sðsurfaceÞ=f½1& logðTc;s=TcÞ'ðL="0Þ2g,
dotted lines areEg ¼ 4!sðsurfaceÞ=ðL="0Þ. (b) BdG disorder averaged energy gapEg as a function of!s in the center of the grain (solid)
and at the surface (dashed) for Tc;s ¼ 0:5Tc (black, circles), 0:25Tc (red, crosses), and 0:1Tc (green, squares). Dotted line is Eg ¼ 2!.
(c) BdG disorder averaged LDOS in the center of the grain (solid line) and at the surface (dashed line). (d) BdG eigenstate spatial density
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magnetic field, B0 ¼ "0=$"0%0 ) 2:2 T (derived assuming "0 ¼ 2 nm, %0 ¼ 150 nm for YBCO) for a L ¼ 40"0 slab with surface
disorder modeled by a thin layer ("0:2"0) with a graded impurity concentration [32] and Tc;s ¼ 0:065Tc.
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Existing experimental evidence of T-symmetry breaking state
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Observation of Surface-Induced Broken Time-Reversal Symmetry
in YBa2Cu3O7 Tunnel Junctions
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Data from ab-oriented YBa2Cu3O7yIyCu tunnel junctions are presented. Self-assembled monolayers

form the insulating tunnel barrier, I. The YBa2Cu3O7 features in the tunneling conductance match those
of low-leakage ab-oriented YBa2Cu3O7yPb junctions. Results show that the zero-bias conductance
peak is an Andreev bound state (ABS) of a d-wave order parameter. In zero magnetic field, the
ABS splits below ,7 K, consistent with the presence of a subdominant order parameter at the
surface. An applied magnetic field induces further splitting that grows nonlinearly with increasing field.
[S0031-9007(97)03529-1]

PACS numbers: 74.50.+r, 74.72.Bk

Tunneling spectroscopy provides unsurpassed sensi-
tivity and resolution in the measurement of the su-
perconducting quasiparticle density of states, yielding
information on the superconducting mechanism and gap
[1]. However, the YBa2Cu3O7 (YBCO) features repro-
ducibly observed in the conductance of YBa2Cu3O7yPb
tunnel junctions are quite puzzling because they are quali-
tatively different than those expected for a conventional
superconductor [2–6]. One particularly intriguing feature
is the zero bias conductance peak (ZBCP) observed when
tunneling into ab-oriented thin films [2–5]. This feature
was originally analyzed in terms of spin-flip scattering of
the tunneling electrons from magnetic impurities specu-
lated to exist in the insulating barrier [3]. The tempera-
ture and voltage dependence of the ZBCP and its splitting
upon application of a magnetic field showed some quali-
tative agreement with this model [7,8]. However, quanti-
tative analysis showed major discrepancies. According to
the spin-flip scattering model, the splitting of the ZBCP is
linear with field and proportional to the Landé g factor of
the scattering centers. In ab-plane YBCO tunneling, the
ZBCP splitting is nonlinear with field, and its magnitude
implies an anomalously large g factor [3]. A further ob-
servation that challenges the spin-flip scattering analysis
for YBCO is the absence of the ZBCP in the tunneling
conductance of c-axis-oriented YBCOyPb junctions.
Zero-bias quasiparticle bound states in the tunneling

density of states of p-wave superconductors have been
proposed [9]. For the same physical reason, Hu [10]
showed that a quasiparticle bound state forms at the
Fermi energy (defined to be zero) when the node of a
d-wave order parameter [11] is normal to a specularly
reflecting surface, regardless of any proximity effects.
Quasiparticles reflecting from the surface experience a
change in the sign of the order parameter along their
trajectory and subsequently undergo Andreev reflection.
Constructive interference between incident and Andreev

reflected quasiparticles leads to bound states confined to
the surface. These bound states can carry current and
will produce a ZBCP in a tunneling spectrum [12–14].
Further calculations have considered dx22y2 symmetry
gaps at surface orientations ranging from (100) to (110).
These have shown that the Andreev bound state is a robust
feature existing for any specular surface misoriented from
(100) (the lobe direction of the dx22y2 gap), albeit with
variable spectral weight [12,13,15]. In a broken time
reversal symmetry (BTRS) state, the Andreev bound state
shifts to finite energy, resulting in a split ZBCP [14,16].
It is generally agreed that the bulk state of YBCO does

not exhibit BTRS [17]. However, a state with two order
parameters with a py2 relative phase difference has been
proposed to exist at the surface of YBCO, giving rise to
BTRS [18]. The phase diagram of this BTRS state has
recently been calculated by Fogelström et al. [14] who
discuss the origin of a surface-induced BTRS state and
make several predictions in quantitative agreement with
our measurements. The essence of their theory follows:
Andreev scattering near the surface of a dx22y2 supercon-
ductor causes strong pair breaking. The quasiparticles may
then be paired by a subdominant pairing interaction that
is less sensitive to surface pair breaking than the domi-
nant d wave. Calculations minimizing the free energy
show that the d-wave and subdominant order parameters
can coexist with a py2 relative phase difference at low
temperature. This phase difference between the two or-
der parameters leads to a spontaneous supercurrent, and a
surface phase transition to a BTRS state is achieved. The
bound states are shifted to finite energy in zero applied
magnetic field. Application of an external magnetic field
to the spontaneous BTRS state will further shift the bound
state energy nonlinearly with increasing field. The pre-
dicted splitting of the ZBCP in zero magnetic field and
its evolution with increasing field distinguishes the BTRS
state. Furthermore, this zero field splitting is a unique
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The YBCO GLF is significantly different from the
gaps observed in conventional low-Tc superconductors. It
appears that there is a large amount of pair breaking in
YBCO near the tunnel junction, resulting in a large number
of states within the GLF, as expected for a d-wave order
parameter. It is further significant to note that the depth of
the GLF in YBCOyCu junctions is typically twice as small
as that measured in YBCOyPb junctions. This smaller
gap depth is also reproducibly observed in ab-oriented Pr-
doped YBCOyPb junctions [5], suggesting that it may be
an indication of more disorder and quasiparticle scattering
near the interface of YBCOyCu junctions compared to
YBCOyPb junctions [22].
The most significant experimental observation is the

temperature dependence of the ZBCP: It is reproducibly
observed to split in zero magnetic field at low temperature,
as presented in Fig. 1. To our knowledge, Geerk et al. [2]
provide the only other possible evidence for a zero field
ZBCP splitting in ab-oriented YBCO tunneling. Corrobo-
rating evidence comes from the zero-bias conductance,
Gs0d, versus temperature, shown in the inset to Fig. 1. Be-
low about 30 K, the ZBCP begins to appear in the con-
ductance with a concomitant increase in Gs0d. The Gs0d
increases with decreasing temperature until the onset of
splitting in the density of states, below which it decreases.
Numerical simulations of thermal broadening on the low

temperature data show that the conductance cannot be ex-
plained by thermal population effects alone, implying that
the density of states is temperature dependent. There is a
distinct splitting in the density of states below a particular
temperature. The peak-to-peak separation at low tempera-
ture and the onset of the zero field splitting in the density of
states are junction dependent. The peak-to-peak separation
at 1.5 K is observed to range from 1.75 to 2.31 mV, and
the onset temperature, Ts, of the zero field splitting varies
from,6 to,8 K, respectively. The Ts is identified as the
temperature where Gs0d deviates from either lnsT d or T21

behavior, which is the expected functional temperature de-
pendence for ZBCP’s originating from spin-flip scattering
or an Andreev bound state, respectively. The Ts is roughly
the same regardless of the choice of the functional tempera-
ture dependence. Note that, due to thermal broadening ef-
fects, two peaks in the conductance are only resolved well
below Ts, but the onset of splitting in the density of states
manifests itself in the downward deviation of Gs0d and the
broadening beyond 3.5kBT of the region where G deviates
from ,lnsV d behavior.
As shown in Fig. 2(a), an externally applied magnetic

field induces the ZBCP to split beyond its zero field
value. The peak position, in energy, varies nonlinearly
with increasing magnetic field, as shown in Fig. 2(b). For
contrast, we also plot published experimental data repre-
sentative of junctions with magnetic impurities in the in-
sulating barrier [8,22–24]. The theoretical calculation (see
below) of the magnetic field-induced ZBCP splitting is also
shown in Fig. 2(b) for the case of an A1g-symmetry (s
wave) subdominant order parameter [14]. The theoretical

FIG. 2. (a) Magnetic field dependence of the ZBCP from
a YBCOyCu tunnel junction. A magnetic field induces
further splitting of the ZBCP. (b) A compendium of data on
the magnetic field-induced splitting of ZBCP’s. Data from
YBCOyCu and YBCOyPb [3] junctions are indicated by closed
and open circles, respectively. The theoretical curve for the
subdominant order parameter being A1g (s wave) is shown as a
full line [14]. As a comparison, data from other junctions with
magnetic scattering centers are included. These are represented
by snd for TayTa2O5yAl [8], smd for SnySnxOyySn [23],
s3d for AlyTi-doped Al2O3yAl [24], and s.d for a AuySi:P
Schottky barrier tunnel junction [25].

peak splitting is caused by currents induced by the mag-
netic field and the py2 phase difference between the two
order parameters. The saturation of the splitting around
,2 T is due to the screening current saturating at the bulk
critical current.
It is important to emphasize just how strikingly dif-

ferent the behavior of the YBCO ZBCP is compared
to ZBCP’s originating from spin-flip scattering. First,
a ZBCP arising from magnetic impurity scattering will
split only in a finite magnetic field. Figure 2(b) im-
plies that at least 4 T is required to split paramagnetic
ZBCP’s by the 1.16 mV zero field value observed in the
YBCOyCu junction. Second, the magnitude of the split-
ting from magnetic impurities is 5 to 10 times smaller
at low fields. Third, the splitting for spin-flip scatter-
ing is roughly linear and extrapolates to zero at zero
field. Fourth, the zero-bias conductance increases loga-
rithmically as the temperature approaches absolute zero,
in sharp contrast to the downturn we observe. Finally,
we reproducibly observe a large magnetic hysteresis in the
YBCO peak position that cannot be explained by spin-flip
scattering [22].
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Doping and Magnetic Field Dependence of In-Plane Tunneling into YBa2Cu3O72x:
Possible Evidence for the Existence of a Quantum Critical Point
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We present tunneling measurements into !1, 1, 0" YBa2Cu3O72x films at various doping levels around
the optimum. We find that, above a certain doping level near optimum doping, a spontaneous zero
bias conductance peak splitting, d, appears. It increases with doping. It also increases with magnetic
field applied along the c axis, for both underdoped and overdoped films. The low field susceptibility
x ! dd

dH
jH!0 is maximum, possibly diverging when the spontaneous value of d goes to zero. These

results suggest a transition from a pure dx22y2 to a d 1 idxy or d 1 is order parameter.

DOI: 10.1103/PhysRevLett.87.177004 PACS numbers: 74.50.+r, 74.72.–h

Recent tunneling experiments, performed on films of
the high Tc cuprate YBa2Cu3O72x having the !1, 0, 0" or
!1, 1, 0" orientations (in-plane tunneling), have shown a
change of the order parameter symmetry when a magnetic
field is applied parallel to the surface and perpendicular
to the CuO2 planes. An additional component develops,
which removes the nodes of the dominant d-wave order
parameter [1–3] In a tunneling experiment, these nodes
produce a zero bias conductance peak (ZBCP), which re-
flects the existence of Andreev surface bound states that
are formed at and near the Fermi level [4,5]. Removal
of the nodes appears as a split of the ZBCP. In addi-
tion to the field induced splitting, a spontaneous (zero
field) splitting of the ZBCP was also reported in several
works [1–3]. It was qualitatively related to overdoping in
Y0.8Ca0.2Ba2Cu3O72x films in Refs. [6,7].

In this Letter, we report on a comprehensive study of
the ZBCP splitting as a function of oxygen doping and
magnetic field for YBa2Cu3O72x films having the !1, 1, 0"
orientation. We show that a spontaneous splitting devlops
progressively above a certain doping level, near optimum
doping. At this point x, the initial slope of the field-
induced splitting seems to diverge. As the doping is
either increased in overdoped samples or decreased in un-
derdoped samples x decreases. In the last case, no spon-
taneous splitting is seen. The implications of these results
are discussed in the context of current theories, in particu-
lar in reference to the possible existence of a quantum criti-
cal point (QCP) where time reversal symmetry breaking
would occur.

!1, 1, 0" oriented thin Y1Ba2Cu3O72x films of various
doping levels near the optimal doping were grown on
!1, 1, 0" SrTiO3 substrates, using rf and dc off-axis sput-
tering. A Pr1Ba2Cu3O72x template was used in order to
reduce the !1, 0, 3" orientations, following the method used
by Poelders et al. [8] Garcia Lopez et al. [9] showed that
the amount of oxygen loaded in the YBa2Cu3O72x film
during the growth can be controlled by changing the oxy-
gen pressure and the amount of atomic and ionic oxy-
gen in the plasma. In addition, they showed that the film

remains oxidized if quenched at room temperature. We
used this method of Garcia Lopez et al. to grow over-
doped (Tc ! 85.6 90 K down set) samples, with the dop-
ing level controlled by the amount of water vapor added to
the plasma. This affects the amount of atomic oxygen in
the plasma [10]. By increasing the amount of water vapor,
we obtained a reduction of Tc and of Dd , the position of
the d-wave gap feature. To make sure that we have indeed
obtained overdoped films, we have annealed them in a low
oxygen pressure environment at 650 ±C; a Tc of 90 K was
then retrieved as expected. In addition, we have found the
resistance characteristics, R!T ", in overdoped samples to
show the expected positive curvature [11]. Underdoping
(Tc ! 83.6 90 K down set) was achieved by annealing
the film in a low oxygen pressure. These films exhibit the
downwards deviation of R!T " from linearity, signaling the
pseudogap temperature [12], at T . Tc.

The junction is an In/insulator/YBa2Cu3O72x contact.
Film characterization, junction preparation, junction char-
acterization, and the measurements technique are the same
as in Refs. [13,14]. The films are in-plane oriented, the
#1, 1, 0$ direction can be easily distinguished from the
#0, 0, 1$ direction using a resistivity measurement as shown
in Ref. [13]. The magnetic field can be therefore ap-
plied parallel to the surface of the film along either of
these directions.

The conductance characteristics of an underdoped
sample [having a zero resistance temperature (down
set), Tc ! 86.7 K] at various magnetic fields applied
parallel to the c direction at 4.2 K is presented in
Fig. 1. The d-wave gap feature is strongly marked at
the positive bias side, with a conductance maximum at
16.7 mV. As is common to all our underdoped samples
(Tc ! 83.6 90 K down set), no splitting of the ZBCP
is seen at zero magnetic field. A focus on the low bias
behavior is shown in the inset of Fig. 1, the ZBCP splits
as the magnetic field is increased. We define d as the
position of the maximum of the split ZBCP at the positive
bias side. d and the amplitude of the split peak both
rapidly increase as the field is increased from zero to
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FIG. 1. The conductance versus voltage characteristics for an
underdoped sample (Tc ! 86.7 K down set) at 4.2 K at various
magnetic fields: 0, 0.2, 0.3, 0.4, 0.6, 1, 2, and 4 T (dashed)
applied parallel to the surface of the film along the c direction.
We note the gap feature at 16.7 mV and a ZBCP, which splits
as the field is increased. Inset: A focus on the conductance
behavior at low biases and at the same applied fields.

0.6 T; they both increase moderately from 0.6 to 2 T. At
fields higher than 2 T, the peak is suppressed while d
keeps increasing. We have also applied the magnetic
field parallel to the CuO2 planes (along the !1, 1, 0"
direction). No splitting is observed up to a field of a few
telsa. Beyond that field a small splitting appears, possibly
due to a small angle between the magnetic field and the
!1, 1, 0" direction. The d-wave gap feature, which appears
at 16–16.7 mV in the underdoped samples, is sensitive
to the magnetic field applied parallel to the CuO2 planes,
as well as to the magnetic field applied parallel to the c
direction.

The conductance versus voltage characteristics for an
overdoped sample (Tc ! 85.6 K down set) at 4.2 K, and
in various magnetic fields applied parallel to the surface
of the film along the c direction, are presented in Fig. 2.
The gap feature is at 15.6 mV on the positive bias side.
The magnitude of the gap feature is sensitive to the mag-
netic field (measured up to 6 T), but its position is not. A
focus on the conductance behavior at low bias and at vari-
ous magnetic fields applied parallel to the c direction is
presented in the inset of Fig. 2. One can observe a split-
ting (or a subgap) already at zero magnetic field. Here, at
zero field d#0$ ! 2.6 mV. The presence of the zero field
splitting is common to all the overdoped samples, while
its value, d#0$, is doping dependent. When the field is
applied parallel to the !1, 1, 0" direction, no effect on the
ZBCP is seen up to a field of few tesla. By contrast, the
d-wave gap feature is more sensitive to a magnetic field
applied in this direction than in the !0, 0, 1" direction. The
magnetic field behavior of the conductance characteristics
described above is common to all our overdoped samples.

FIG. 2. The conductance versus voltage characteristics for an
overdoped sample (Tc ! 85.6 K down set) at 4.2 K at various
magnetic fields: 0, 1 (dashed), and 6 T applied parallel to the
surface of the film along the c direction. We note a sharp gap
feature at 15.6 mV and a zero field splitting with a conductance
maximum at 2.6 mV; this splitting increases with increasing
magnetic field. Inset: A focus on the junction behavior at
low biases and at various magnetic fields: 0, 0.1, 0.2, 0.3, 0.4,
0.7, 1.5, 4, and 6 T.

The main modifications that occur upon increasing the de-
gree of overdoping are an increase in d#0$, a decrease of
x, and a decrease of the d-wave gap value.

In Fig. 3, we present the magnetic field dependence of
the ZBCP splitting d for samples having various doping
levels. A spontaneous splitting appears above the dop-
ing level at which the d-wave gap is maximum (Dd !
17.1 mV, down triangles). We note that x is then at
its maximum.

We show in Fig. 4 how d (squares) and x21 (circles)
vary as a function of !Dd#max$ 2 Dd "1%2 on the over-
doped side. It is known that the critical temperature and
the value of the d-wave gap follow the same variation
as a function of doping, as it increases beyond its opti-
mum value [15]: Tc#max$ 2 Tc ~ Dd#max$ 2 Dd . Since
Tc#max$ 2 Tc ~ !p#max$ 2 p"2, where p is the oxygen
content per unit cell, !Dd#max$ 2 Dd"1%2 is a parameter
representing the doping of the sample. We prefer to use
gap values, determined as shown in Ref. [13], rather than
Tc values, as an indication of the local level of doping. This
is because the doping level at the junction may be some-
what affected by the way in which it is produced, which
involves some diffusion of oxygen to form the tunnel bar-
rier [16]. For the sample having the maximum d-wave gap
value, Dd#max$, there is no spontaneous measurable zero
field splitting, d#0$ ! 0. Beyond the unknown, but close
to optimum, doping level of this sample, it can be seen
that d#0$ ~ !Dd#max$ 2 Dd"1%2. This indicates that there
is a change of symmetry of the order parameter beyond a
well-defined doping level, which involves the removal of
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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K12 > 0, which guarantees a positive sign of K1 þ 2K12 in
Eq. (4b), even though K1 < 0 at low temperatures.

To fully describe the phase diagram and elucidate the
structure of the new phases, we determine the transition
between the new phases and the qx ¼ 0 ‘‘uniform’’ con-
densate deep inside the SC state. We start with the state that
breaks translational symmetry and forms periodic modu-
lations of j!ðRÞj in the film’s plane. In this case, the
general form of the OP is similar to one in the FFLO
problem [25,26]. Near the normal state instability,
!ðx; yÞ % cosQxx cosQyy but becomes less harmonic and
more domainlike structured along x, as we increase film
thickness (Qy decreases). The distance between neighbor-
ing domains grows, and at some critical Qcrit

y the last
domain wall, that separates two degenerate states at x ¼
&1 with opposite OP profiles &!ðyÞ, disappears (square-
symbol line in Fig. 3). Note, that this transition occurs
below unphysical qx ¼ 0 line (thin dots in Fig. 3), as
compared with the FFLO problem [25,26]: there is no
first-order transition above the qx ¼ 0 line in this case—
thus the inhomogeneous phase must cover the entire ther-
modynamically unstable region. Energetically, the state
with the modulated amplitude of the OP gains energy
compared with the energy of uniform state from the reduc-
tion of pair breaking at the domain walls and the redis-
tribution of the Andreev bound states [17].

Next, we consider a state with phase modulation (super-
flow), !ðRÞ ¼ ! cosQyye

iQxx, that carries supercurrent
Js;xðyÞ ¼ 2NfT

P
"m
hvxðp̂Þgðy; p̂;"mÞi. We write down a

more general form of the OP, !ðx; yÞ ¼ !qxðyÞ expðiqxxÞ,
and self-consistently determine its amplitude profile and
the associated free energy density [27]:

"DðqxÞ ¼
Z D=2

'D=2

dy

D
!FDðqx; yÞ; (5)

as a function of qx and the film thicknessD. Key features of
this calculation are shown in Fig. 2. In the main panel, we
plot "D as a function of inverse film thickness for several
qx. States with finite superflow are stabilized in films
thinner than D?ðTÞ ¼ !=Q?

y ðTÞ. Moreover, their stability
region extends beyond that of the qx ¼ 0 state. Since finite
qx induces supercurrent, it can be the ground state only
when the total current in the film disappears: JDs;x (
"D
s ðqxÞqx ¼ @"DðqxÞ=@qx ¼ 0 [16]. The upper critical

width D? is determined by vanishing average superfluid
density "D?

s ð0Þ ¼ 0. These conditions are possible to sat-
isfy due to backflowing anomalous surface currents carried
by Andreev bound states (inset in Fig. 2) [11,14,28].

The complete phase diagram is presented in Fig. 3.
Below T) % 0:43Tc, two new ground states are possible
in superconducting films. The state with spontaneous cur-
rent and broken time-reversal symmetry takes a large part
of the phase space. Under the considered conditions, the
state with a modulated amplitude of the OP lies inside the
stability region of the current-carrying state and is not
realized. However, the relative energies of the two states

may be affected, e.g., by surface roughness. Also note that
within numerical precision the lower instability lineD?ðTÞ
is nearly straight and extrapolates to the origin.
The qualitative picture for the appearance of the longi-

tudinal modulations of the OP in the film is illustrated by
analogy with the FFLO state in Fig. 4. In the FFLO state,
modulations of the OP arise to minimize pair breaking
caused by pairing of electrons across Zeeman-split Fermi

FIG. 3 (color online). The phase diagram of a d-wave super-
conductor in a film. The shaded region marks the ground state
with flowing current. Suppression of this state would open access
to the state with broken translational symmetry.
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profile !ðyÞ and the current density Js;xðyÞ for small qx and D &
D?. The current has anomalous (paramagnetic) contributions
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D
s;x=qx vanishes.
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We demonstrate that films of an unconventional (d-wave) superconductor at temperatures T & 0:43Tc

can exhibit unusual superconducting phases. The new ground states beside the broken gauge and the point

group symmetries can spontaneously break (i) continuous translational symmetry and form periodic order

parameter structures in the plane of the film, or (ii) time-reversal symmetry and develop a supercurrent

flowing along the film. These states are the result of the strong transverse inhomogeneity present in films

with a thickness of several coherence lengths. We show a natural similarity between the formation of these

states and the Fulde-Ferrell-Larkin-Ovchinnikov state.
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Introduction.—The properties of a superconducting (SC)
state in confined geometry will have a defining influence
on the minimization of superconducting devices. This is
especially true of an unconventional superfluid with an
order parameter (OP) that breaks more than one of the
normal state symmetries [1–3] and which can be sup-
pressed by interfaces, forming new nonuniform ground
states [4]. Such states can exhibit new broken symmetries
and currently are the subject of broad theoretical and
experimental investigation [5]. They can arise in bulk
superconductors under the influence of an external field
or pressure. For example, a magnetic field breaks the time-
reversal symmetry by inducing supercurrents or, as in the
case of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state [6,7], results in an oscillating OP that breaks continu-
ous spatial translation symmetry. In unconventional super-
conductors, new ground states have been predicted to
appear spontaneously even in the absence of an externally
applied magnetic field. One origin of these states is the
interaction of a self-induced magnetic field, caused by
distortion of the OP, with the OP itself [8–12]. Other
current-carrying states arise near surfaces due to subdomi-
nant dþ is pairing that breaks time-reversal symmetry
[13,14]. Finally, new states with triplet structure may ap-
pear in quantum wires [15]. Ultimately, the origin of these
states lies in the appearance of Andreev states bound to
interfaces [4,11,16].

In this Letter, we propose the existence of new ground
states with nontrivially broken symmetries that require
neither the self-induced magnetic field nor complex sub-
dominant pairing. These states are induced by strong dis-
tortion of the OP shape. We consider this problem in the
context of a singlet d-wave superconductor, when distor-
tion of the OP is caused by confinement to a film or wire.
We assume that the thickness of the film is adjustable and
that by varying it we are able to drive transitions between
different ground states. The simplicity of this model makes
the problem more transparent yet allows one to draw
general conclusions about a connection of inhomogeneity

and spontaneous symmetry breaking in unconventional
pairing states, including superfluid 3He [17].
Free energy in a film.—We consider a film of a d-wave

superconductor with pair-breaking surfaces, such that the
OP in the film is very nonuniform. This is achieved by
orienting a gap node along the film (sketch in Fig. 1). We
assume a cylindrical Fermi surface and OP solutions uni-
form along its axis (z direction). Below the superconduct-
ing bulk temperature Tc, the OP can be continuously
suppressed to zero by reducing the thickness D of the
film, eventually reaching the normal state below a critical
value of D#ðTÞ [18]. Our goal is to look for states that have
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tion into a state with finite x modulation; (b) the envelope of
various qx curves gives the maximal confinement vector
Q#

yðT;QxÞ ¼ !=D#, plotted together with the corresponding
modulation vector QxðTÞ. The coherence length "0 ¼@vf=2!Tc.
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Introduction.—The properties of a superconducting (SC)
state in confined geometry will have a defining influence
on the minimization of superconducting devices. This is
especially true of an unconventional superfluid with an
order parameter (OP) that breaks more than one of the
normal state symmetries [1–3] and which can be sup-
pressed by interfaces, forming new nonuniform ground
states [4]. Such states can exhibit new broken symmetries
and currently are the subject of broad theoretical and
experimental investigation [5]. They can arise in bulk
superconductors under the influence of an external field
or pressure. For example, a magnetic field breaks the time-
reversal symmetry by inducing supercurrents or, as in the
case of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state [6,7], results in an oscillating OP that breaks continu-
ous spatial translation symmetry. In unconventional super-
conductors, new ground states have been predicted to
appear spontaneously even in the absence of an externally
applied magnetic field. One origin of these states is the
interaction of a self-induced magnetic field, caused by
distortion of the OP, with the OP itself [8–12]. Other
current-carrying states arise near surfaces due to subdomi-
nant dþ is pairing that breaks time-reversal symmetry
[13,14]. Finally, new states with triplet structure may ap-
pear in quantum wires [15]. Ultimately, the origin of these
states lies in the appearance of Andreev states bound to
interfaces [4,11,16].

In this Letter, we propose the existence of new ground
states with nontrivially broken symmetries that require
neither the self-induced magnetic field nor complex sub-
dominant pairing. These states are induced by strong dis-
tortion of the OP shape. We consider this problem in the
context of a singlet d-wave superconductor, when distor-
tion of the OP is caused by confinement to a film or wire.
We assume that the thickness of the film is adjustable and
that by varying it we are able to drive transitions between
different ground states. The simplicity of this model makes
the problem more transparent yet allows one to draw
general conclusions about a connection of inhomogeneity

and spontaneous symmetry breaking in unconventional
pairing states, including superfluid 3He [17].
Free energy in a film.—We consider a film of a d-wave

superconductor with pair-breaking surfaces, such that the
OP in the film is very nonuniform. This is achieved by
orienting a gap node along the film (sketch in Fig. 1). We
assume a cylindrical Fermi surface and OP solutions uni-
form along its axis (z direction). Below the superconduct-
ing bulk temperature Tc, the OP can be continuously
suppressed to zero by reducing the thickness D of the
film, eventually reaching the normal state below a critical
value of D#ðTÞ [18]. Our goal is to look for states that have
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FIG. 1 (color online). A d-wave superconductor confined to a
film with pair-breaking surfaces. (a) The SC-normal (N) tran-
sition as a function of temperature for several qx-modulated
states. At low temperature, transition into a uniform (qx ¼ 0)
SC state shows reentrant behavior and is preempted by a transi-
tion into a state with finite x modulation; (b) the envelope of
various qx curves gives the maximal confinement vector
Q#

yðT;QxÞ ¼ !=D#, plotted together with the corresponding
modulation vector QxðTÞ. The coherence length "0 ¼@vf=2!Tc.
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K12 > 0, which guarantees a positive sign of K1 þ 2K12 in
Eq. (4b), even though K1 < 0 at low temperatures.

To fully describe the phase diagram and elucidate the
structure of the new phases, we determine the transition
between the new phases and the qx ¼ 0 ‘‘uniform’’ con-
densate deep inside the SC state. We start with the state that
breaks translational symmetry and forms periodic modu-
lations of j!ðRÞj in the film’s plane. In this case, the
general form of the OP is similar to one in the FFLO
problem [25,26]. Near the normal state instability,
!ðx; yÞ % cosQxx cosQyy but becomes less harmonic and
more domainlike structured along x, as we increase film
thickness (Qy decreases). The distance between neighbor-
ing domains grows, and at some critical Qcrit

y the last
domain wall, that separates two degenerate states at x ¼
&1 with opposite OP profiles &!ðyÞ, disappears (square-
symbol line in Fig. 3). Note, that this transition occurs
below unphysical qx ¼ 0 line (thin dots in Fig. 3), as
compared with the FFLO problem [25,26]: there is no
first-order transition above the qx ¼ 0 line in this case—
thus the inhomogeneous phase must cover the entire ther-
modynamically unstable region. Energetically, the state
with the modulated amplitude of the OP gains energy
compared with the energy of uniform state from the reduc-
tion of pair breaking at the domain walls and the redis-
tribution of the Andreev bound states [17].

Next, we consider a state with phase modulation (super-
flow), !ðRÞ ¼ ! cosQyye

iQxx, that carries supercurrent
Js;xðyÞ ¼ 2NfT

P
"m
hvxðp̂Þgðy; p̂;"mÞi. We write down a

more general form of the OP, !ðx; yÞ ¼ !qxðyÞ expðiqxxÞ,
and self-consistently determine its amplitude profile and
the associated free energy density [27]:

"DðqxÞ ¼
Z D=2

'D=2

dy

D
!FDðqx; yÞ; (5)

as a function of qx and the film thicknessD. Key features of
this calculation are shown in Fig. 2. In the main panel, we
plot "D as a function of inverse film thickness for several
qx. States with finite superflow are stabilized in films
thinner than D?ðTÞ ¼ !=Q?

y ðTÞ. Moreover, their stability
region extends beyond that of the qx ¼ 0 state. Since finite
qx induces supercurrent, it can be the ground state only
when the total current in the film disappears: JDs;x (
"D
s ðqxÞqx ¼ @"DðqxÞ=@qx ¼ 0 [16]. The upper critical

width D? is determined by vanishing average superfluid
density "D?

s ð0Þ ¼ 0. These conditions are possible to sat-
isfy due to backflowing anomalous surface currents carried
by Andreev bound states (inset in Fig. 2) [11,14,28].

The complete phase diagram is presented in Fig. 3.
Below T) % 0:43Tc, two new ground states are possible
in superconducting films. The state with spontaneous cur-
rent and broken time-reversal symmetry takes a large part
of the phase space. Under the considered conditions, the
state with a modulated amplitude of the OP lies inside the
stability region of the current-carrying state and is not
realized. However, the relative energies of the two states

may be affected, e.g., by surface roughness. Also note that
within numerical precision the lower instability lineD?ðTÞ
is nearly straight and extrapolates to the origin.
The qualitative picture for the appearance of the longi-

tudinal modulations of the OP in the film is illustrated by
analogy with the FFLO state in Fig. 4. In the FFLO state,
modulations of the OP arise to minimize pair breaking
caused by pairing of electrons across Zeeman-split Fermi

FIG. 3 (color online). The phase diagram of a d-wave super-
conductor in a film. The shaded region marks the ground state
with flowing current. Suppression of this state would open access
to the state with broken translational symmetry.
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y , the
states with superflow have lower energy than the qx ¼ 0 state.
The inset shows self-consistently calculated order parameter
profile !ðyÞ and the current density Js;xðyÞ for small qx and D &
D?. The current has anomalous (paramagnetic) contributions
near the edges due to Andreev bound states, and Q?

y marks the
point where the average superfluid density in the film "s (
limqx!0J

D
s;x=qx vanishes.
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Introduction.—The properties of a superconducting (SC)
state in confined geometry will have a defining influence
on the minimization of superconducting devices. This is
especially true of an unconventional superfluid with an
order parameter (OP) that breaks more than one of the
normal state symmetries [1–3] and which can be sup-
pressed by interfaces, forming new nonuniform ground
states [4]. Such states can exhibit new broken symmetries
and currently are the subject of broad theoretical and
experimental investigation [5]. They can arise in bulk
superconductors under the influence of an external field
or pressure. For example, a magnetic field breaks the time-
reversal symmetry by inducing supercurrents or, as in the
case of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state [6,7], results in an oscillating OP that breaks continu-
ous spatial translation symmetry. In unconventional super-
conductors, new ground states have been predicted to
appear spontaneously even in the absence of an externally
applied magnetic field. One origin of these states is the
interaction of a self-induced magnetic field, caused by
distortion of the OP, with the OP itself [8–12]. Other
current-carrying states arise near surfaces due to subdomi-
nant dþ is pairing that breaks time-reversal symmetry
[13,14]. Finally, new states with triplet structure may ap-
pear in quantum wires [15]. Ultimately, the origin of these
states lies in the appearance of Andreev states bound to
interfaces [4,11,16].

In this Letter, we propose the existence of new ground
states with nontrivially broken symmetries that require
neither the self-induced magnetic field nor complex sub-
dominant pairing. These states are induced by strong dis-
tortion of the OP shape. We consider this problem in the
context of a singlet d-wave superconductor, when distor-
tion of the OP is caused by confinement to a film or wire.
We assume that the thickness of the film is adjustable and
that by varying it we are able to drive transitions between
different ground states. The simplicity of this model makes
the problem more transparent yet allows one to draw
general conclusions about a connection of inhomogeneity

and spontaneous symmetry breaking in unconventional
pairing states, including superfluid 3He [17].
Free energy in a film.—We consider a film of a d-wave

superconductor with pair-breaking surfaces, such that the
OP in the film is very nonuniform. This is achieved by
orienting a gap node along the film (sketch in Fig. 1). We
assume a cylindrical Fermi surface and OP solutions uni-
form along its axis (z direction). Below the superconduct-
ing bulk temperature Tc, the OP can be continuously
suppressed to zero by reducing the thickness D of the
film, eventually reaching the normal state below a critical
value of D#ðTÞ [18]. Our goal is to look for states that have
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FIG. 1 (color online). A d-wave superconductor confined to a
film with pair-breaking surfaces. (a) The SC-normal (N) tran-
sition as a function of temperature for several qx-modulated
states. At low temperature, transition into a uniform (qx ¼ 0)
SC state shows reentrant behavior and is preempted by a transi-
tion into a state with finite x modulation; (b) the envelope of
various qx curves gives the maximal confinement vector
Q#

yðT;QxÞ ¼ !=D#, plotted together with the corresponding
modulation vector QxðTÞ. The coherence length "0 ¼@vf=2!Tc.
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Introduction.—The properties of a superconducting (SC)
state in confined geometry will have a defining influence
on the minimization of superconducting devices. This is
especially true of an unconventional superfluid with an
order parameter (OP) that breaks more than one of the
normal state symmetries [1–3] and which can be sup-
pressed by interfaces, forming new nonuniform ground
states [4]. Such states can exhibit new broken symmetries
and currently are the subject of broad theoretical and
experimental investigation [5]. They can arise in bulk
superconductors under the influence of an external field
or pressure. For example, a magnetic field breaks the time-
reversal symmetry by inducing supercurrents or, as in the
case of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state [6,7], results in an oscillating OP that breaks continu-
ous spatial translation symmetry. In unconventional super-
conductors, new ground states have been predicted to
appear spontaneously even in the absence of an externally
applied magnetic field. One origin of these states is the
interaction of a self-induced magnetic field, caused by
distortion of the OP, with the OP itself [8–12]. Other
current-carrying states arise near surfaces due to subdomi-
nant dþ is pairing that breaks time-reversal symmetry
[13,14]. Finally, new states with triplet structure may ap-
pear in quantum wires [15]. Ultimately, the origin of these
states lies in the appearance of Andreev states bound to
interfaces [4,11,16].

In this Letter, we propose the existence of new ground
states with nontrivially broken symmetries that require
neither the self-induced magnetic field nor complex sub-
dominant pairing. These states are induced by strong dis-
tortion of the OP shape. We consider this problem in the
context of a singlet d-wave superconductor, when distor-
tion of the OP is caused by confinement to a film or wire.
We assume that the thickness of the film is adjustable and
that by varying it we are able to drive transitions between
different ground states. The simplicity of this model makes
the problem more transparent yet allows one to draw
general conclusions about a connection of inhomogeneity

and spontaneous symmetry breaking in unconventional
pairing states, including superfluid 3He [17].
Free energy in a film.—We consider a film of a d-wave

superconductor with pair-breaking surfaces, such that the
OP in the film is very nonuniform. This is achieved by
orienting a gap node along the film (sketch in Fig. 1). We
assume a cylindrical Fermi surface and OP solutions uni-
form along its axis (z direction). Below the superconduct-
ing bulk temperature Tc, the OP can be continuously
suppressed to zero by reducing the thickness D of the
film, eventually reaching the normal state below a critical
value of D#ðTÞ [18]. Our goal is to look for states that have
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FIG. 1 (color online). A d-wave superconductor confined to a
film with pair-breaking surfaces. (a) The SC-normal (N) tran-
sition as a function of temperature for several qx-modulated
states. At low temperature, transition into a uniform (qx ¼ 0)
SC state shows reentrant behavior and is preempted by a transi-
tion into a state with finite x modulation; (b) the envelope of
various qx curves gives the maximal confinement vector
Q#

yðT;QxÞ ¼ !=D#, plotted together with the corresponding
modulation vector QxðTÞ. The coherence length "0 ¼@vf=2!Tc.
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,

2 NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

The transition in to the T-broken state 
becomes independent of size for  
                D≳4πξ0

D
L≫D

→ → →



Mikael Fogelström, Applied Quantum Physics Laboratory

T-breaking is driven by a rearrangement of the qp-spectrum
T>T* T<T*



Mikael Fogelström, Applied Quantum Physics Laboratory

T-breaking is driven by a rearrangement of the qp-spectrum
T>T* T<T* (x=S,y)

ε
| |

+0.5kBTc-0.5kBTc

|
0



Mikael Fogelström, Applied Quantum Physics Laboratory

SQUARE GRAIN: CURRENTS

I Circulating and counter-circulating currents appear along edges

x/⇠0

y
/
⇠

0
|j (x, y)|/jd, T = 0.1Tc

 � ⇠ 6⇠0 �!0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Rearrangement of the qp-spectrum give local currents

ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS3383

0.0

αβ

-b-br-brbrbrr-b-- okokeokekenkenkenoo
SCCCSC

SC

N

0.2

0.4

0.6

0.2 0.4
T/TT TcT

π 
 0

/D

0.6 0.8 1.0

+

+

−

−

2
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Figure 2 | Temperature-dependent density of states. a, Density of states integrated over the grain area at temperatures T =0.25Tc (red dashed line) and
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Figure 3 | Local spectral-current densities. a,b, Spectral currents along the two cross-sections of the grain shown by dashed white lines in Fig. 1a. The
currents near the edge (a) are carried by the subgap part of the spectrum (Andreev surface states), whereas further away from the edge at y=5.4⇠0 (b)
the currents are carried by continuum states.

the vortex phase is una�ected. The vortices formed spontaneously
have a radius of a few coherence lengths, much smaller than the
penetration depth—which, for instance, for YBa2Cu3O7�� (YBCO)
is of the order of �0 ⇠ 100⇠0. The staggered ordering of these
vortices means that there is always only a very small e�ect from
including the electrodynamics self-consistently in the calculation.
We expect corrections only for weak type-II superconductors, where
screening e�ects are more e�cient (possibly other unconventional
superconductors than the cuprates).

In Fig. 4a we plot the magnitude of the currents close to the
edge. The typical distance between current nodes (neighbouring
vortex cores) near the grain edge is just over 5 ⇠0. The magnetic-
field pattern is shown in 4b. We find that the magnetic flux per
vortex is ⇠ 10�5�0. The maximum magnetic field in the centre
of each fractional vortex can then be estimated for YBCO to be
1.5 ⇥ 10�5�0/⇠

2
0 ⇠ 70 G (for ⇠0 ⇡ 2 nm). In Fig. 4c we plot the

low-energy part of the LDOS along a cut at y = 2.2⇠0, marked

with the black dotted line in a. The spectrum is split into two
branches, which meander between positive and negative energies.
These two branches consists of Andreev states carrying opposite
currents along the edge, as also shown in Fig. 3. In the symmetry-
broken phase, the Andreev edge states are pushed away from zero
energy by the Doppler shifts. The Andreev states at zero energy
(for T > Tcv) are associated with an order parameter suppressed
to zero at the edge. As T-symmetry is broken, the d-wave order
parameter partially heals, as shown in Fig. 4d. At the same time, its
magnitude is oscillating along the edge, following the meandering
of the Andreev states in the vortex pattern. These Doppler shifts of
the Andreev bound states lead to a lowering of the free energy that
is the microscopic mechanism behind the T-symmetry breaking.

The low-energy states, positioned at "A, come at a cost in free
energy. If the bound states are located near the Fermi energy, "A !0,
it is energetically favourable to shift the states to finite energies. If
the low-energy states have a substantial spectral weight, additional
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Figure 2 | Temperature-dependent density of states. a, Density of states integrated over the grain area at temperatures T =0.25Tc (red dashed line) and
T =0.1Tc (black line, filled area). Both are for a pure d-wave order-parameter state but evaluated at two di�erent temperatures; one above and one below
the transition temperature into the T-symmetry-breaking state. The grain size is 90⇠0 ⇥90⇠0. b, Points on the edge of the grain shown in Fig. 1a, where the
local density of states are evaluated in c and d. c, Local density of states at a point where the current density vanishes. d, Local density of states at a point
where the current density is at its maximum.
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Figure 3 | Local spectral-current densities. a,b, Spectral currents along the two cross-sections of the grain shown by dashed white lines in Fig. 1a. The
currents near the edge (a) are carried by the subgap part of the spectrum (Andreev surface states), whereas further away from the edge at y=5.4⇠0 (b)
the currents are carried by continuum states.

the vortex phase is una�ected. The vortices formed spontaneously
have a radius of a few coherence lengths, much smaller than the
penetration depth—which, for instance, for YBa2Cu3O7�� (YBCO)
is of the order of �0 ⇠ 100⇠0. The staggered ordering of these
vortices means that there is always only a very small e�ect from
including the electrodynamics self-consistently in the calculation.
We expect corrections only for weak type-II superconductors, where
screening e�ects are more e�cient (possibly other unconventional
superconductors than the cuprates).

In Fig. 4a we plot the magnitude of the currents close to the
edge. The typical distance between current nodes (neighbouring
vortex cores) near the grain edge is just over 5 ⇠0. The magnetic-
field pattern is shown in 4b. We find that the magnetic flux per
vortex is ⇠ 10�5�0. The maximum magnetic field in the centre
of each fractional vortex can then be estimated for YBCO to be
1.5 ⇥ 10�5�0/⇠

2
0 ⇠ 70 G (for ⇠0 ⇡ 2 nm). In Fig. 4c we plot the

low-energy part of the LDOS along a cut at y = 2.2⇠0, marked

with the black dotted line in a. The spectrum is split into two
branches, which meander between positive and negative energies.
These two branches consists of Andreev states carrying opposite
currents along the edge, as also shown in Fig. 3. In the symmetry-
broken phase, the Andreev edge states are pushed away from zero
energy by the Doppler shifts. The Andreev states at zero energy
(for T > Tcv) are associated with an order parameter suppressed
to zero at the edge. As T-symmetry is broken, the d-wave order
parameter partially heals, as shown in Fig. 4d. At the same time, its
magnitude is oscillating along the edge, following the meandering
of the Andreev states in the vortex pattern. These Doppler shifts of
the Andreev bound states lead to a lowering of the free energy that
is the microscopic mechanism behind the T-symmetry breaking.

The low-energy states, positioned at "A, come at a cost in free
energy. If the bound states are located near the Fermi energy, "A !0,
it is energetically favourable to shift the states to finite energies. If
the low-energy states have a substantial spectral weight, additional
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Figure 2 | Temperature-dependent density of states. a, Density of states integrated over the grain area at temperatures T =0.25Tc (red dashed line) and
T =0.1Tc (black line, filled area). Both are for a pure d-wave order-parameter state but evaluated at two di�erent temperatures; one above and one below
the transition temperature into the T-symmetry-breaking state. The grain size is 90⇠0 ⇥90⇠0. b, Points on the edge of the grain shown in Fig. 1a, where the
local density of states are evaluated in c and d. c, Local density of states at a point where the current density vanishes. d, Local density of states at a point
where the current density is at its maximum.
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Figure 3 | Local spectral-current densities. a,b, Spectral currents along the two cross-sections of the grain shown by dashed white lines in Fig. 1a. The
currents near the edge (a) are carried by the subgap part of the spectrum (Andreev surface states), whereas further away from the edge at y=5.4⇠0 (b)
the currents are carried by continuum states.

the vortex phase is una�ected. The vortices formed spontaneously
have a radius of a few coherence lengths, much smaller than the
penetration depth—which, for instance, for YBa2Cu3O7�� (YBCO)
is of the order of �0 ⇠ 100⇠0. The staggered ordering of these
vortices means that there is always only a very small e�ect from
including the electrodynamics self-consistently in the calculation.
We expect corrections only for weak type-II superconductors, where
screening e�ects are more e�cient (possibly other unconventional
superconductors than the cuprates).

In Fig. 4a we plot the magnitude of the currents close to the
edge. The typical distance between current nodes (neighbouring
vortex cores) near the grain edge is just over 5 ⇠0. The magnetic-
field pattern is shown in 4b. We find that the magnetic flux per
vortex is ⇠ 10�5�0. The maximum magnetic field in the centre
of each fractional vortex can then be estimated for YBCO to be
1.5 ⇥ 10�5�0/⇠

2
0 ⇠ 70 G (for ⇠0 ⇡ 2 nm). In Fig. 4c we plot the

low-energy part of the LDOS along a cut at y = 2.2⇠0, marked

with the black dotted line in a. The spectrum is split into two
branches, which meander between positive and negative energies.
These two branches consists of Andreev states carrying opposite
currents along the edge, as also shown in Fig. 3. In the symmetry-
broken phase, the Andreev edge states are pushed away from zero
energy by the Doppler shifts. The Andreev states at zero energy
(for T > Tcv) are associated with an order parameter suppressed
to zero at the edge. As T-symmetry is broken, the d-wave order
parameter partially heals, as shown in Fig. 4d. At the same time, its
magnitude is oscillating along the edge, following the meandering
of the Andreev states in the vortex pattern. These Doppler shifts of
the Andreev bound states lead to a lowering of the free energy that
is the microscopic mechanism behind the T-symmetry breaking.

The low-energy states, positioned at "A, come at a cost in free
energy. If the bound states are located near the Fermi energy, "A !0,
it is energetically favourable to shift the states to finite energies. If
the low-energy states have a substantial spectral weight, additional
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Figure 3 | Local spectral-current densities. a,b, Spectral currents along the two cross-sections of the grain shown by dashed white lines in Fig. 1a. The
currents near the edge (a) are carried by the subgap part of the spectrum (Andreev surface states), whereas further away from the edge at y=5.4⇠0 (b)
the currents are carried by continuum states.

the vortex phase is una�ected. The vortices formed spontaneously
have a radius of a few coherence lengths, much smaller than the
penetration depth—which, for instance, for YBa2Cu3O7�� (YBCO)
is of the order of �0 ⇠ 100⇠0. The staggered ordering of these
vortices means that there is always only a very small e�ect from
including the electrodynamics self-consistently in the calculation.
We expect corrections only for weak type-II superconductors, where
screening e�ects are more e�cient (possibly other unconventional
superconductors than the cuprates).

In Fig. 4a we plot the magnitude of the currents close to the
edge. The typical distance between current nodes (neighbouring
vortex cores) near the grain edge is just over 5 ⇠0. The magnetic-
field pattern is shown in 4b. We find that the magnetic flux per
vortex is ⇠ 10�5�0. The maximum magnetic field in the centre
of each fractional vortex can then be estimated for YBCO to be
1.5 ⇥ 10�5�0/⇠

2
0 ⇠ 70 G (for ⇠0 ⇡ 2 nm). In Fig. 4c we plot the

low-energy part of the LDOS along a cut at y = 2.2⇠0, marked

with the black dotted line in a. The spectrum is split into two
branches, which meander between positive and negative energies.
These two branches consists of Andreev states carrying opposite
currents along the edge, as also shown in Fig. 3. In the symmetry-
broken phase, the Andreev edge states are pushed away from zero
energy by the Doppler shifts. The Andreev states at zero energy
(for T > Tcv) are associated with an order parameter suppressed
to zero at the edge. As T-symmetry is broken, the d-wave order
parameter partially heals, as shown in Fig. 4d. At the same time, its
magnitude is oscillating along the edge, following the meandering
of the Andreev states in the vortex pattern. These Doppler shifts of
the Andreev bound states lead to a lowering of the free energy that
is the microscopic mechanism behind the T-symmetry breaking.

The low-energy states, positioned at "A, come at a cost in free
energy. If the bound states are located near the Fermi energy, "A !0,
it is energetically favourable to shift the states to finite energies. If
the low-energy states have a substantial spectral weight, additional

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 3

NATURE PHYSICS DOI: 10.1038/NPHYS3383 ARTICLES

0
−3 −2 −1 0

/kBTcε

/kBTcε

1 2 3

c

d
1N/

N F

0
−2 0 2

2

4

6

N/
N F

/kBTcε

0
−2 0 2

2

4

6

N/
N F

2

a

c d

b

Figure 2 | Temperature-dependent density of states. a, Density of states integrated over the grain area at temperatures T =0.25Tc (red dashed line) and
T =0.1Tc (black line, filled area). Both are for a pure d-wave order-parameter state but evaluated at two di�erent temperatures; one above and one below
the transition temperature into the T-symmetry-breaking state. The grain size is 90⇠0 ⇥90⇠0. b, Points on the edge of the grain shown in Fig. 1a, where the
local density of states are evaluated in c and d. c, Local density of states at a point where the current density vanishes. d, Local density of states at a point
where the current density is at its maximum.
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the vortex phase is una�ected. The vortices formed spontaneously
have a radius of a few coherence lengths, much smaller than the
penetration depth—which, for instance, for YBa2Cu3O7�� (YBCO)
is of the order of �0 ⇠ 100⇠0. The staggered ordering of these
vortices means that there is always only a very small e�ect from
including the electrodynamics self-consistently in the calculation.
We expect corrections only for weak type-II superconductors, where
screening e�ects are more e�cient (possibly other unconventional
superconductors than the cuprates).

In Fig. 4a we plot the magnitude of the currents close to the
edge. The typical distance between current nodes (neighbouring
vortex cores) near the grain edge is just over 5 ⇠0. The magnetic-
field pattern is shown in 4b. We find that the magnetic flux per
vortex is ⇠ 10�5�0. The maximum magnetic field in the centre
of each fractional vortex can then be estimated for YBCO to be
1.5 ⇥ 10�5�0/⇠

2
0 ⇠ 70 G (for ⇠0 ⇡ 2 nm). In Fig. 4c we plot the

low-energy part of the LDOS along a cut at y = 2.2⇠0, marked

with the black dotted line in a. The spectrum is split into two
branches, which meander between positive and negative energies.
These two branches consists of Andreev states carrying opposite
currents along the edge, as also shown in Fig. 3. In the symmetry-
broken phase, the Andreev edge states are pushed away from zero
energy by the Doppler shifts. The Andreev states at zero energy
(for T > Tcv) are associated with an order parameter suppressed
to zero at the edge. As T-symmetry is broken, the d-wave order
parameter partially heals, as shown in Fig. 4d. At the same time, its
magnitude is oscillating along the edge, following the meandering
of the Andreev states in the vortex pattern. These Doppler shifts of
the Andreev bound states lead to a lowering of the free energy that
is the microscopic mechanism behind the T-symmetry breaking.

The low-energy states, positioned at "A, come at a cost in free
energy. If the bound states are located near the Fermi energy, "A !0,
it is energetically favourable to shift the states to finite energies. If
the low-energy states have a substantial spectral weight, additional
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where the current density is at its maximum.
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the vortex phase is una�ected. The vortices formed spontaneously
have a radius of a few coherence lengths, much smaller than the
penetration depth—which, for instance, for YBa2Cu3O7�� (YBCO)
is of the order of �0 ⇠ 100⇠0. The staggered ordering of these
vortices means that there is always only a very small e�ect from
including the electrodynamics self-consistently in the calculation.
We expect corrections only for weak type-II superconductors, where
screening e�ects are more e�cient (possibly other unconventional
superconductors than the cuprates).

In Fig. 4a we plot the magnitude of the currents close to the
edge. The typical distance between current nodes (neighbouring
vortex cores) near the grain edge is just over 5 ⇠0. The magnetic-
field pattern is shown in 4b. We find that the magnetic flux per
vortex is ⇠ 10�5�0. The maximum magnetic field in the centre
of each fractional vortex can then be estimated for YBCO to be
1.5 ⇥ 10�5�0/⇠

2
0 ⇠ 70 G (for ⇠0 ⇡ 2 nm). In Fig. 4c we plot the

low-energy part of the LDOS along a cut at y = 2.2⇠0, marked

with the black dotted line in a. The spectrum is split into two
branches, which meander between positive and negative energies.
These two branches consists of Andreev states carrying opposite
currents along the edge, as also shown in Fig. 3. In the symmetry-
broken phase, the Andreev edge states are pushed away from zero
energy by the Doppler shifts. The Andreev states at zero energy
(for T > Tcv) are associated with an order parameter suppressed
to zero at the edge. As T-symmetry is broken, the d-wave order
parameter partially heals, as shown in Fig. 4d. At the same time, its
magnitude is oscillating along the edge, following the meandering
of the Andreev states in the vortex pattern. These Doppler shifts of
the Andreev bound states lead to a lowering of the free energy that
is the microscopic mechanism behind the T-symmetry breaking.

The low-energy states, positioned at "A, come at a cost in free
energy. If the bound states are located near the Fermi energy, "A !0,
it is energetically favourable to shift the states to finite energies. If
the low-energy states have a substantial spectral weight, additional
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Figure 1 | Phase diagram of small d-wave superconductor grains. a, A square grain of a d-wave superconductor including a hole in the centre. The crystal
ab-axes are rotated by 45� relative to the grain edges. At low temperatures (here T =0.1Tc) T-symmetry is spontaneously broken, as manifested by
fractional vortices near the edges. The colour scale shows the magnitude of the circulating currents in units of the depairing current defined in the text.
b, Phase diagram for pure d-wave superconducting grains as a function of temperature and inverse grain size D along one side (for instance along y, with
constant size 60⇠0 along x). We find that the low-temperature phase breaks T-symmetry. The circles mark a transition into a state that breaks only
T-symmetry. For large D the state also breaks translational symmetry along the edge and the transition is marked by diamonds. The transition between the
two states is not distinct, as indicated by the colour gradient. The transition (solid line) between the normal state (N) and the superconducting states (SC)
is taken from ref. 21. c, Phase diagram along a horizontal cut in b at D=90⇠0, including a subdominant s-wave pairing channel of varying strengths
quantified by its bare transition temperature, Tcs. For small Tcs, or high temperature, the vortex phase (�) wins, whereas for a su�ciently strong
subdominant component, or low temperature, a homogeneous (along one grain edge) T-symmetry-broken phase (� ) wins. d, Temperature dependence of
the magnitude of the currents integrated over the grain area. For large grains, here D=60⇠0, the transition temperature Tcv ⇡0.18Tc is rather sharp and
independent of D. e, The free energy of the grain in a as a function of temperature. The dashed curve corresponds to the meta-stable state with conserved
T-symmetry.

In Fig. 1d we show the magnitude of the spontaneous currents
integrated over the grain area as a function of temperature. The
temperature of the transition below which the currents appear
is around 0.18Tc, independent of grain size as long as D& 4⇡⇠0,
see the phase diagram in Fig. 1b. This state is stable for edge-to-
crystal misorientations from 45� down to ⇠ 23�. The temperature
dependence of the free energy (measured relative to the free energy
of the non-superconducting state) for a grain of size D⇡ 60⇠0 is
shown in Fig. 1e. Its temperature derivative (entropy di�erence
between normal and superconducting states) is shown as an inset.
The vortex phase is energetically favourable and the phase transition
is of second order.

At high temperatures, the grain-area-integrated density of states
(DOS) has a large peak at the Fermi level (see red dashed curve in
Fig. 2a). The peak is due to the well-known zero-energy (midgap)
states formed by Andreev scattering o� order-parameter lobes of
di�erent signs17. In the symmetry-broken state the low-energy states
are rearranged such that the spectral weight is shifted symmetrically
away from the Fermi level (see black curve in Fig. 2a). This shifting
of spectral weight away from the Fermi level is due to the sponta-
neous currents appearing in an area close to the edge. These currents
are driven by finite local phase gradients of the order parameter,
quantified by a superfluid momentum ps(R)= (~/2)r�(R), which
leads to Doppler shifts vF · ps(R) of quasiparticle states (vF is the
Fermi velocity, �(R) is the phase of the order parameter, andR is the
spatial coordinate). TheDoppler shifts are the source of the lowering
of the free energy in the T-symmetry-broken state. The transition
temperature Tcv is limited only by the maximum Doppler shifts the
superconductor can sustain, which corresponds to phase gradients
and currents of the order of the depairing current, jd =2⇡eNfkBTc,
near the edges where the order parameter is suppressed. Nf is the
normal-state density of states on the Fermi level.

The shape of the local density of states (LDOS) varies with
position along the edge of the grain. If the LDOS is measured at a

point of vanishing edge-current density, it contains Andreev states
narrowly centred around the Fermi level. This is the case shown in
Fig. 2c. At other points along the edge where the current density is
finite, the Andreev states are shifted to finite energies owing to the
large Doppler shifts vF ·ps(R). In Fig. 2d the LDOS is shown for a
point with maximal Doppler shifts that move the spectral weight
towards twomajor peaks in the spectrum at "⇡±0.5kBTc. The total
surface-integrated LDOS is an average over spectra that interpolate
between the two shown in Fig. 2c and d. The DOS obtained by
integrating the LDOS over the whole grain surface area contains a
broad peak around zero energy (see Fig. 2a).

The spectral rearrangements in the vortex phase also lead to
interesting rearrangements of the spectral-current density, as shown
in Fig. 3a,b. The currents near the edges are carried by the subgap
part of the spectrum and the direction along the edge alternates,
as seen by the meandering of the quasiparticle states along the
interface. The colour scale includes both positive currents (jx > 0,
blue colour) and negative currents (jx <0, red colour). In panel 3b
we show the local spectral-current density at 5.4⇠0 from the edge.
The currents inside the grain are carried by continuum states close
to the gap energy. These currents flow in the opposite direction to
the currents right at the edge and they are carried by the condensate.
Together, these spectral currents lead to the circulating current flow
pattern shown in Fig. 1a. The rearrangement of the spectrum above
the gap energy, " & |1max|, due to the local phase gradients in the
order parameter, also gives rise to fine structure in the DOS shown
in Fig. 2a.

There is no external magnetic field in the calculation, but
the Maxwell equations for the vector potential should be solved
self-consistently with the order parameter when the spontaneous
magnetic field appears in the T-symmetry-broken state. For small
grains D⌧�0, where �0 is the London penetration depth at T =0,
the influence of this self-consistency is very small and can safely
be neglected. We have also checked that for grains of sizes D& �0,
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Discussion: Experimental verification?

Direct observation: Nano-SQUIDS

Indirect observation
-measurement:

Local minimum

Loss of paramagnetic
response

-measurement:

A

B

Bridges

Nb or Pb

Quartz tube
Au

D. Vasyukov et al.,
Nat. Nanotechnol. 8, 639 (2013)

A: 46 nm tip

B: ~10 nm

M. Pelliccione et al.,
Nat. Nanotechnol. 11, 700 (2016)

Diamond cantilever
NV centre

Sample

532 nm excitation

Vortex area:

(YBCO: 10x10 nm)

(YBCO: 12-17 K)

Temperatures:

(YBCO: 9 mT)Vortex field:

holmvall@chalmers.se (120) Probing a new time-reversal symmetry breaking phase... 9 / 14
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The experimental consequences of our findings are as follows:  

A. Finding evidence of a Ƭ-symmetry breaking state does not necessarily imply a 
multicomponent superconducting order-parameter 

B. A hallmark of a d-wave superconductor is a conductance peak at zero bias and this peak 
should narrow as temperature is decreased. This is not seen experimentally, instead the 
conductance peak width saturates at~10-20% of the full gap scale, a width consistent 
with the modifications of the local spectrum of quasiparticles caused by the Ƭ-breaking 
state we find. It might well be that the phase we describe has been repeatedly seen in 
NIS-tunnelling experiments 

C. The magnetic trace of an inhomogeneous, Ƭ-symmetry broken state, can only be 
detected if the experimental probe can resolve a magnetic flux variation on length scales 
~10 nm (for YBCO). State-of-the-art nano-SQUIDS may do that. Also, measurement of 
the total magnetisation should show a non-monotonous temperature dependence at small 
fields

Conclusions

M. Håkansson et al, Nature Physics 11 755 (2015)
P. Holmvall et al submitted (arXiv:1706:06165) and in manuscript 


