

MAX PLANCK – UBC – UTokyo CENTRE FOR QUANTUM MATERIALS STUTTGART • VANCOUVER • TOKYO

Max Planck Institute for Solid State Research

Novel Proximity and Josephson effect with triplet superconductors

Dirk Manske

SPICE (Castle Waldthausen), September 27th, 2017

- Wei Chen (ETH Zürich)
- Gaetano Annunziata (MPI Stuttgart)
- Damien Terrade (MPI Stuttgart)
- Antony Epp (UBC Vancouver)
- Philip Brydon (U Otago, New Zealand)

- Manfred Sigrist + team (ETH Zurich)
- Mario Cuoco + team (CNR-SPIN Salerno)
- Yoshi Maeno + team (Kyoto)
- Tae Won Noh + team (IBS and SNU, Korea)

Motivation

Spin-Triplet Superconductors (TSC)

Spin-Singlet

$$\Delta_0 = V_{\text{eff}} \sum_k \langle c_{-k\downarrow} c_{k\uparrow} \rangle$$

Spin-Triplet

Spin-Singlet

$$\Delta(k) = \Delta_0 \cdot (\cos k_x + \cos k_y)$$

Spin-Triplet

 $\Delta(k) = \Delta_0$

$$\hat{\Delta}(k) = \begin{pmatrix} \Delta_{\uparrow\uparrow}(k) & \Delta_{\uparrow\downarrow}(k) \\ \Delta_{\downarrow\uparrow}(k) & \Delta_{\downarrow\downarrow}(k) \end{pmatrix} = \begin{pmatrix} -d_x(k) + id_y(k) & d_z + \Delta_0 \\ d_z - \Delta_0 & d_x + id_y \end{pmatrix} \qquad \begin{array}{l} \Delta(k) = \Delta_0 \cdot \sin k_x \\ \Delta(k) = \Delta_0 \cdot \sin k_y \\ \Delta(k) = \Delta_0 \cdot (\sin k_x + i \cdot \sin k_y) \end{array}$$

TFT Josephson junction

D.M. et al., PRL 2006, PRL 2009, PRL 2010, PRL 2013 (C) Sr₂RuO₄ SrRuO₃

M.S. Anwar et al.,

Applied Phys. Express 8, 015502 (2015)

5 nm

Sr₂RuO₄

Y. Maeno *et al.*, J. Phys. Soc. Japan **81**, 011009 (2012)

Outline

Introduction: what is the d-vector?

Theorie: the story begins

3 case studies of Josephson junctions:

- Triplet–Ferromagnet–Triplet (T-F-T)
- Triplet–Ferromagnet–Singlet (T-F-S)
- NoncentrosymmetricSC–Insulator–Singlet (NCS-I-S)
- Interface effects: good or bad?
- Experimental situation: the story begins
- Summary

Triplet Superconductivity: Theory reminder

 gap is a spin matrix and written in terms of the *d*-vector:

$$\Delta(\mathbf{k}) = \begin{bmatrix} -d_x + id_y & d_z \\ d_z & d_x + id_y \end{bmatrix}$$
$$= -i(\mathbf{d} \cdot \hat{\sigma})\hat{\sigma}_y$$

- the spin of the Cooper pair lies in the plane perpendicular to d
- equal spin pairing if *d* vector points along same axis for all *k*

Balian-Werthamer State $d_{BW} = \Delta_0 (\hat{x} k_x + \hat{y} k_y + \hat{z} k_z)$ Chiral State $d_{\pm} = \Delta_0 \hat{z} (k_x \pm i k_y)$

Triplet-Ferromagnet-Triplet Josephson Junction

- new degree of freedom in Josephson junction physics: the spin of the Cooper pair
- can be accessed using a magnetically-active tunneling barrier to couple to the Cooper pair spin
- Many exciting new discoveries:
 - current sign controlled by orientation of the barrier moment
 - current switches
 - interplay of charge and magnetic scattering
 - non-analyticities in the critical current
 - Josephson spin current
 - fractional flux quanta
 - functional tunneling barriers
- candidate junction material: Sr₂RuO₄

The TFT Junction

 $d_L \times d_R \neq 0 \Rightarrow$ intrinsic breaking of time-reversal-symmetry

Calculating the current

- superconductors described by weak-coupling theory use (a) tunneling Hamiltonian, or (b) Bogoliubov-de Gennes equations, or
- (c) calculate the quasiclassical Greens function
 G(r, τ; r', τ') for scattering across the junction, which is a 4×4 matrix in Nambu-spin space.
- equilibrium Josephson charge and spin-µ currents are then calculated:

$$I_{J}^{c} = -i\frac{e\hbar}{4m}\lim_{z'\to z=0} \left(\frac{\partial}{\partial z'} - \frac{\partial}{\partial z}\right)\frac{1}{\beta}\sum_{n}\int d\Omega \operatorname{Tr}\left\{\mathbb{G}(\mathbf{r},\mathbf{r}',i\omega_{n})\right\}$$

$$\tilde{f}_{J,\mu} = i\frac{\hbar^{2}}{8m}\lim_{z'\to z=0} \left(\frac{\partial}{\partial z'} - \frac{\partial}{\partial z}\right)\frac{1}{\beta}\sum_{n}\int d\Omega \operatorname{Tr}\left\{\mathbb{G}(\mathbf{r},\mathbf{r}',i\omega_{n})\left[\begin{array}{cc}\hat{\sigma}_{\mu} & \hat{0}\\ \hat{0} & \hat{\sigma}_{\mu}^{*}\end{array}\right]\right\}$$

The Orientation of the Moment Matters! 0.08 $T = 0.4 T_{c}$ α=0.5π $\boldsymbol{M} = \frac{g\mu_{B}m}{k_{E}\hbar^{2}}(\cos\alpha, \sin\alpha, \mathbf{0})$ α=0.4π Current $(2\pi e \Delta_0/h)$ 0.04 $\boldsymbol{d}_L = \boldsymbol{d}_B \boldsymbol{e}^{-i\phi} = \hat{\boldsymbol{x}} \Delta k_v$ 0.00 \mathbf{d}_{L} \mathbf{d}_{R} -0.04 α=0.2π $\Delta e^{i\phi}$ α=0

2

z < 0

z = 0

 The sign of the Josephson current is controlled by the orientation of the magnetic moment

1.5

 ϕ/π

• Universal effect!

0.5

-0.08

• Evidence that the magnetic moment is coupling to the spin of the tunneling Cooper pairs. Spin currents?

The 0- π Transition

• $T_{sf} \gg T_{sp}$ is true for large barrier moment $M \gg 1$:

 $I_J = -|I_0|\cos(2\alpha)\sin(\phi)$

- Prediction: π state for $0 \le \alpha < \frac{\pi}{4}$; 0 state for $\frac{\pi}{4} < \alpha \le \frac{\pi}{2}$
- Test: Use Bogoliubov-de Gennes theory to determine critical angle α_c for different symmetries:

Role of Andreev Bound States

$$M = 1, M = 2, M = 3, M = 4$$

What is happening at small T in the p_z and $p_z + ip_y$ junctions?

Andreev bound states form at the barrier in all junctions: absent in tunneling formalism; present in Bogoliubov-de Gennes

Tunneling through zero-energy Andreev bound states strongly modifies low-*T* current vs phase relation: these are present in p_z and $p_z + ip_y$ junction

Thickness of FM – More realistic calculations

Results - TFT Josephson Junctions (lattice model)

Current Densities on the Lattice

$$\begin{split} J(i) &= J_{\uparrow}(i) + J_{\downarrow}(i) \\ \text{with} \quad \mathbf{J}_{\sigma}(\mathbf{i}) &= it \sum_{k} \left[c^{\dagger}_{i+1,k\sigma} c_{i,k\sigma} - c^{\dagger}_{i,k\sigma} c_{i+1,k\sigma} \right] \end{split}$$

and
$$J_{s}^{\nu}(i) = \frac{it}{2} \sum_{k} \sum_{\sigma\sigma'} \left[c_{i+1,k\sigma}^{\dagger} \hat{\sigma}_{\sigma\sigma'}^{\nu} c_{i,k\sigma'} - c_{i,k\sigma}^{\dagger} \hat{\sigma}_{\sigma\sigma'}^{\nu} c_{i+1,k\sigma'} \right]$$

<u>Phase Diagrams</u> (chiral $p_x + ip_y$)

Oscillations lead to $0-\pi$ State Transitions

 \rightarrow Importance of \vec{M} orientation

- $\rightarrow \theta_c$ depends on |h| and L
- $\rightarrow \theta_c$ depends on the OPs symmetry
- $\rightarrow \theta_c$ is modified for 3D junctions

- \rightarrow Results with Self-Consistent Computations
- \rightarrow Results for 3D-Junctions
- \rightarrow Results for p_x , p_y and p_x + i p_y states

Results - Spin-Active Interface and Critical Current

With a spin-active interface ? (M_{int} in-plane)

Reduction of the π -state domains \leftarrow

Prediction for Experimental Measurements

Spin currents: 3 mechanisms

- spin-flipping tunneling barrier
- d-vector misalignment
- spin-filtering tunneling barrier

Spin flipping tunneling barrier

Spin current and time-reversal symmetry breaking

Spin current and time-reversal symmetry breaking

Spin current and time-reversal symmetry breaking

Fractional flux quanta

Free energy of the junction: $F(\phi) = F(0) + \frac{\hbar}{2e} \int_0^{\phi} d\phi' I_J(\phi')$

Fractional flux quanta

Free energy of the junction: $F(\phi) = F(0) + \frac{\hbar}{2e} \int_0^{\phi} d\phi' I_J(\phi')$

fractional flux quanta possible! (Φ-junction)

What happens in a non-magnetic junction?

Engineering the fractional state

- might it be possible to induce a magnetic moment in a tunneling barrier sufficiently close to a FM transition, using only the properties of the two superconductors?
- more generally, can the superconductors change the properties of the interface material?
- Must go beyond quasiclassical theory...

The Ginzburg-Landau perspective

Total free energy: magnetic and electronic contributions

$$F = F_{mag} + F_{el} = \frac{|M|^2}{2\chi} + F_{el}(0) + \frac{\hbar}{2e} \int_0^{\phi} d\phi' I_J(\phi'), \qquad \chi > 0$$

$$F = \frac{|\mathbf{M}|^2}{2\chi} - 2t\mathbf{d}_L \cdot \mathbf{d}_R \cos(\phi) + 2\gamma \mathbf{M} \cdot (\mathbf{d}_L \times \mathbf{d}_R) \sin(\phi)$$

- "normal" $M = \phi = 0$ state unstable when $\chi \gamma^2 |\mathbf{d}_L \times \mathbf{d}_R|^2 > t\mathbf{d}_L \cdot \mathbf{d}_R$
- microscopic calculation of the electronic free energy desired

Case II: T-F-S Josephson junction

- Y. Asano (Hokkaido)
- Philip Brydon (now U Maryland)
- Wei Chen (MPI)

Case III: NCS-I-S Josephson junction

 $CePt_3Si$ $T_c=0.75 K$

lack of inversion symmetry: $U(\mathbf{r}) \neq U(-\mathbf{r})$

antisymmetric spin-orbit coupling:

$$\boldsymbol{g}_{\mathbf{k}} \propto \int_{u.c.} d^3 r \, \mathbf{j}_{\mathbf{k}}(\mathbf{r}) \times \nabla_{\mathbf{r}} U(\mathbf{r})$$

tetragonal point group
$$C_{4v}$$
: $\mathbf{g}_{\mathbf{k}} = |\mathbf{g}_{\mathbf{k}}| \begin{pmatrix} -\sin k_y \\ \sin k_x \\ 0 \end{pmatrix}$

Rashba coupling

$$\hat{H} = \sum_{\mathbf{k}\sigma\sigma'} \hat{c}^{\dagger}_{\mathbf{k}\sigma} \left[\xi_{\mathbf{k}} \delta_{\sigma\sigma'} + \mathbf{g}_{\mathbf{k}} \cdot \boldsymbol{\tau}_{\sigma\sigma'} \right] \hat{c}_{\mathbf{k}\sigma'}$$

 $g_{\mathbf{k}} = -g_{-\mathbf{k}}$

Case III: NCS-I-S Josephson junction

Kramers degeneracy is lifted by the ASOC.

band basis: $\xi_{\pm} = \xi_{\mathbf{k}} \pm |oldsymbol{g}_{\mathbf{k}}|$

spin space: $\mathbf{\Delta}_{\mathbf{k}} = [\psi_{\mathbf{k}}(T)\mathbf{1} + \mathbf{d}_{\mathbf{k}}(T) \cdot \boldsymbol{\tau}] i \tau^{y}$

 $igcup_{\pm}$ unitary transformation; $\mathbf{d_k}||m{g_k}|$ [Sigrist *et al.*, 2004] $\Delta_{\pm}=m{\psi}\pmm{d}|m{g_k}|$

L. Klam, D. Einzel, and D. Manske, Phys. Rev. Lett. **102**, 027004 (2009) E. Bauer and M. Sigrist (Eds.), *Non-centrosymmetric Superconductors*, Lecture Notes in Physics **847** (Springer, 2012)

Case III: NCS-I-S Josephson junction

NCS-I-S Josephson junction

- Wei Chen (MPI)
- Toni Epp (now UBC)

Closer inspection on the interface

Interplay between and the Spin of the Cooper pairs at the interface

1) FM - Chiral State Interface OP spatial variations and magnetic stability

2) FM – Helical State Interface Control of the helical currents

1) FM – Chiral State Interface

Lattice Model

Extended Tight-Binding Model

$$H_{0} = -\sum_{\langle ij\rangle,\sigma} t_{i\sigma}(c_{i\sigma}^{\dagger}c_{j\sigma} + h.c.) - \mu \sum_{i\sigma} n_{i\sigma}$$
$$+ \sum_{\langle ij\rangle} V_{i}(n_{i\uparrow}n_{j\downarrow} + n_{i\downarrow}n_{j\uparrow}) + \sum_{\langle ij\rangle} V_{i}'(n_{i\uparrow}n_{j\uparrow} + n_{i\downarrow}n_{j\downarrow})$$

K. Kuboki, J. Phys. Soc. Jpn. **70**, 2698 (2001)

K. Kuboki and H. Takahashi, Phys. Rev. B. **70**, 214524 (2004)

M. Cuoco *et al.*, Phys. Rev. B. **78**, 054503 (2008)

<u>TSC</u>

$$V_i n_{i\sigma} n_{j\sigma'} \simeq V [F_{ij}^{\sigma\sigma'} c_{j\sigma'}^{\dagger} c_{i\sigma}^{\dagger} + F_{ij}^{\sigma\sigma'*} c_{i\sigma} c_{j\sigma'} - |F_{ij}|^2$$

 $F_{ij}^{\sigma\sigma'} = \langle c_{i\,\sigma} c_{j\,\sigma'} \rangle$

\underline{FM}

$$H_M = \sum_i \vec{h_i} \cdot \vec{s_i}$$

$$\vec{s_i} = \sum_{i\sigma\sigma'} c^{\dagger}_{i\sigma} \vec{\sigma}_{\sigma\sigma'} c_{i\sigma'}$$

Results - Superconducting Order Parameter

- $\rightarrow \text{ Damped oscillatory behavior} \\ \text{depending on magnetization angle } \theta$
- \rightarrow No induced spin-singlet components
- \rightarrow Oscillation period depends on |h| and v_{F}

Cooper pairs entering in the FM region

E.A. Demler *et al.*, Phys. Rev. B **55**, 15174 (1997)

Induced Equal-Spin-Pairing

Induced Pairing Amplitudes

Phys. Rev. B. 88, 054516 (2013)

Results – Influence of spin-orbital coupling

Spin-flip scattering \rightarrow spin-orbital coupling

PRL 111, 097003 (2013)

 h_{ex} \Leftrightarrow exchange field couples to chiral symmetry

1) FM – Chiral State Interface plus Spin-Active Interface

Results - Energy Stability & Magnetic Profile

Evaluation of the free energy G

$$G = -\frac{1}{\beta} \ln \operatorname{Tr}[e^{-\beta H_{\rm HF}}]$$
$$E_{\rm op} = -\left(\frac{2}{L_z}\right) \sum_{i_z > 0} \left[|F_{p_x}(i_z)|^2 + |F_{p_y}(i_z)|^2\right]$$

→ \vec{M} tends to be perpendicular to the *d*-vector → The TSC favours an antiparallel configuration → Induced spin-active interface (weak FM)

Free Interfaced Layer

 \vec{M} in bulk fixed in a given direction

(misalignment, induced)

(pinned)

2) FM – Helical State Interface

Helical Edge-States and Dissipationless Edge Currents

Fermi Surface and Edge States

$$\xi_{\mathbf{k}} = -2t \left[\cos(k_x a) + \cos(k_y a) \right] - \mu$$
$$\vec{d} = \left(\sin(k_y), \sin(k_x), 0 \right)$$

- \rightarrow N₀ gapless helical edge states
- $\rightarrow N_0^{\circ}$ depends on the Fermi Surface
- \rightarrow Carry Edge Currents

Results - Charge and Spin Current

Results - Tuning of the Edge Currents

Total Edge Currents

$$J_{\sigma}^{tot} = \sum_{i_x \in TTSC} J_{\sigma}(i_x)$$
$$J_s^{tot} = J_{\uparrow}^{tot} - J_{\downarrow}^{tot},$$

<u>Spectral Functions:</u> \vec{M} // c-axis

- → Spin and Charge Edge Currents depend on N_0
- → Variations associated to the hybridization of the gapless edge states

Experimental situation: Current development

Experiment: the story begins (1)

PRL 103, 057201 (2009)

PHYSICAL REVIEW LETTERS

week ending 31 JULY 2009

Fundamental Thickness Limit of Itinerant Ferromagnetic SrRuO₃ Thin Films

Young Jun Chang,¹ Choong H. Kim,² S.-H. Phark,¹ Y. S. Kim,¹ J. Yu,² and T. W. Noh^{1,*}

¹ReCOE & FPRD, Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea ²CSCMR & FPRD, Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea (Received 21 February 2009; published 30 July 2009)

We report on a fundamental thickness limit of the itinerant ferromagnetic oxide SrRuO₃ that might arise from the orbital-selective quantum confinement effects. Experimentally, SrRuO₃ films remain metallic even for a thickness of 2 unit cells (uc), but the Curie temperature T_C starts to decrease at 4 uc and becomes zero at 2 uc. Using the Stoner model, we attributed the T_C decrease to a decrease in the density of states (N_o). Namely, in the thin film geometry, the hybridized Ru $d_{yz,zx}$ orbitals are terminated by top and bottom interfaces, resulting in quantum confinement and reduction of N_o .

Experiment: the story begins (2)

Applied Physics Express 8, 015502 (2015)

http://dx.doi.org/10.7567/APEX.8.015502

Ferromagnetic SrRuO₃ thin-film deposition on a spin-triplet superconductor Sr₂RuO₄ with a highly conducting interface

M. S. Anwar^{1*}, Yeong Jae Shin^{2,3}, Seung Ran Lee^{2,3}, Sung Jin Kang^{2,3}, Yuske Sugimoto¹, Shingo Yonezawa¹, Tae Won Noh^{2,3}, and Yoshiteru Maeno¹

¹Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan ²Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 151-747, Republic of Korea ³Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Republic of Korea E-mail: anwar@scphys.kyoto-u.ac.jp; m.s.anwar476@gmail.com

Received August 25, 2014; accepted November 19, 2014; published online December 10, 2014

Ferromagnetic $SrRuO_3$ thin films are deposited on the *ab* surface of single crystals of the spin-triplet superconductor (TSC) Sr_2RuO_4 as substrates using pulsed laser deposition. The films are under a severe in-plane compressive strain. Nevertheless, the films exhibit ferromagnetic order with the easy axis along the *c*-direction below the Curie temperature of 158 K. The electrical transport reveals that the $SrRuO_3/Sr_2RuO_4$ interface is highly conducting, in contrast with the interface between other normal metals and the *ab* surface of Sr_2RuO_4 . Our results stimulate investigations on proximity effects between a ferromagnet and a TSC. © 2015 The Japan Society of Applied Physics

Experiment: the story begins (3)

ARTICLE

Received 14 Feb 2016 | Accepted 13 Sep 2016 | Published 26 Oct 2016

DOI: 10.1038/ncomms13220

OPEN

Direct penetration of spin-triplet superconductivity into a ferromagnet in Au/SrRuO₃/Sr₂RuO₄ junctions

M.S. Anwar¹, S.R. Lee^{2,3}, R. Ishiguro^{4,5,6}, Y. Sugimoto¹, Y. Tano⁴, S.J. Kang^{2,3}, Y.J. Shin^{2,3}, S. Yonezawa¹, D. Manske⁷, H. Takayanagi⁴, T.W. Noh^{2,3} & Y. Maeno¹

TIT

Experiment: the story begins (4)

Y. Krockenberger et al., APL 97, 082502 (2010), Kawasaki lab.

Summary (1): charge current

- spin-preserving tunneling (usual)
- spin-flip tunneling (due to FM moment) NEW!
- reflection at tunneling barrier

Summary (2): spin current

- spin-flipping tunneling barrier
- d-vector misalignment (only T-F-T)
- spin-filtering tunneling barrier (only T-F-T)

Summary (3)

What we have discovered from T-F-T junctions (general view):

- interdependence of spin and charge degrees of freedom; charge and spin currents; 'universal' 0- π transition
- fractional state with $I_J \neq 0$ at $\phi = 0$

Summary (3)

What we have discovered from T-F-T junctions (general view):

- instability of the tunneling barrier to a magnetic state; fractional flux quanta at the junction
- novel functionality of the barrier material

Summary (3)

What we have discovered from T-F-T junctions (general view):

- Cooper pair spin opens a new degree of freedom in Josephson physics \Rightarrow superconductor spintronics
- proposed a prototypical magnetic triplet Josephson junction \Rightarrow playground for new physics

Summary (4): interface effects

Proximity Effects

 → Spatial Variations of the Induced OPs (with or without oscillations)
 → Induced Non-Trivial Magnetic Profile

Inverse Proximity Effects

- \rightarrow Reorientation of the *d*-vector
- \rightarrow Induced Spin-Polarization
- \rightarrow Modification of the Edge States

Experimental Predictions

- \rightarrow Oscillating or Monotonous decreasing of the Critical Current: Evidence of the 0- π Transitions
- \rightarrow Existence of an induced Spin-Active Interface
- \rightarrow Tuning of the Edge Currents at the TTSC interface
- \rightarrow Modulation of the Total Spin-Polarization

MAX PLANCK – UBC – UTokyo CENTRE FOR QUANTUM MATERIALS STUTTGART • VANCOUVER • TOKYO

Thank you!