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Fig. 1. Crystal structure and electronic structure of TaAs. (A) Body-centered tetragonal structure of 
TaAs, shown as stacked Ta and As layers. The lattice of TaAs does not have space inversion symmetry. 
(B) STM topographic image of TaAs's (001) surface taken at the bias voltage -300 mV, revealing the 
surface lattice constant. (C) First-principles band structure calculations of TaAs without spin-orbit 
coupling. The blue box highlights the locations where bulk bands touch in the BZ. (D) Illustration of the 
simplest Weyl semimetal state that has two single Weyl nodes with the opposite ( 1± ) chiral charges in 
the bulk. (E) In the absence of spin-orbit coupling, there are two line nodes on the xk  mirror plane and 
two line nodes on the yk  mirror plane (red loops). In the presence of spin-orbit coupling, each line node 
reduces into six Weyl nodes (small black and white circles). Black and white show the opposite chiral 
charges of the Weyl nodes. (F) A schematic (not to-scale) showing the projected Weyl nodes and their 
projected chiral charges. (G) Theoretically calculated band structure (26) of the Fermi surface on the 
(001) surface of TaAs. (H) The ARPES measured Fermi surface of the (001) cleaving plane of TaAs. The 
high symmetry points of the surface BZ are noted. 
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fluenced by a TR symmetry-breaking magnetic field. Further
transport measurements (Roth et al., 2009) reported unique
nonlocal conduction properties due to the helical edge states.
The QSH insulator state is invariant under TR, has a charge

excitation gap in the 2D bulk, but has topologically pro-
tected 1D gapless edge states that lie inside the bulk insu-
lating gap. The edge states have a distinct helical prop-
erty: two states with opposite spin polarization counter-
propagate at a given edge (Kane and Mele, 2005; Wu et al.,
2006; Xu and Moore, 2006). For this reason, they are also
called helical edge states, i.e. the spin is correlated with the
direction of motion(Wu et al., 2006). The edge states come
in Kramers doublets, and TR symmetry ensures the crossing
of their energy levels at special points in the Brillouin zone.
Because of this level crossing, the spectrum of a QSH insu-
lator cannot be adiabatically deformed into that of a topo-
logically trivial insulator without helical edge states. There-
fore, in this precise sense, the QSH insulator represents a new
topologically distinct state of matter. In the special case that
SOC preserves a U(1)s subgroup of the full SU(2) spin rota-
tion group, the topological properties of the QSH state can be
characterized by the spin Chern number (Sheng et al., 2006).
More generally, the topological properties of the QSH state
are mathematically characterized by a Z2 topological invari-
ant (Kane and Mele, 2005). States with an even number of
Kramers pairs of edge states at a given edge are topologi-
cally trivial, while those with an odd number are topologically
nontrivial. The Z2 topological quantum number can also be
defined for generally interacting systems and experimentally
measured in terms of the fractional charge and quantized cur-
rent on the edge (Qi et al., 2008), and spin-charge separation
in the bulk (Qi and Zhang, 2008; Ran et al., 2008).
In this section, we shall focus on the basic theory of the

QSH state in the HgTe/CdTe system because of its simplicity
and experimental relevance, and provide an explicit and ped-
agogical discussion of the helical edge states and their trans-
port properties. There are several other theoretical propos-
als for the QSH state, including bilayer bismuth (Murakami,
2006), and the “broken-gap” type-II AlSb/InAs/GaSb quan-
tum wells (Liu et al., 2008). Initial experiments in the
AlSb/InAs/GaSb system already show encouraging signa-
tures (Knez et al., 2010). The QSH system has also been pro-
posed for the transition metal oxide Na2IrO3 (Shitade et al.,
2009). The concept of fractional QSH state was proposed
at the same time as the QSH (Bernevig and Zhang, 2006),
and has been investigated theoretically in more details re-
cently (Levin and Stern, 2009; Young et al., 2008).

A. Effective model of the two-dimensional time-reversal
invariant topological insulator in HgTe/CdTe quantum
wells

In this section we review the basic electronic structure of
bulk HgTe and CdTe, and present a simple model first in-
troduced by Bernevig, Hughes and Zhang (Bernevig et al.,

FIG. 2 (a) Bulk band structure of HgTe and CdTe; (b) schematic pic-
ture of quantum well geometry and lowest subbands for two different
thicknesses. From Bernevig et al., 2006.

2006) (BHZ) to describe the physics of those subbands of
HgTe/CdTe quantum wells that are relevant for the QSH ef-
fect. HgTe and CdTe crystallize in the zincblende lattice struc-
ture. This structure has the same geometry as the diamond
lattice, i.e. two interpenetrating face-centered-cubic lattices
shifted along the body diagonal, but with a different atom
on each sublattice. The presence of two different atoms per
lattice site breaks inversion symmetry, and thus reduces the
point group symmetry from Oh (cubic) to Td (tetrahedral).
However, even though inversion symmetry is explicitly bro-
ken, this only has a small effect on the physics of the QSH
effect. To simplify the discussion, we shall first ignore this
bulk inversion asymmetry (BIA).
For both HgTe and CdTe, the important bands near

the Fermi level are close to the Γ point in the Brillouin
zone [Fig. 2(a)]. They are a s-type band (Γ6), and a p-type
band split by SOC into a J = 3/2 band (Γ8) and a J = 1/2
band (Γ7). CdTe has a band ordering similar to GaAs with a s-
type (Γ6) conduction band, and p-type valence bands (Γ8,Γ7)
which are separated from the conduction band by a large en-
ergy gap (∼ 1.6 eV). Because of the large SOC present in
the heavy element Hg, the usual band ordering is inverted:
the negative energy gap of −300 meV indicates that the Γ8

band, which usually forms the valence band, is above the Γ6

band. The light-hole Γ8 band becomes the conduction band,
the heavy-hole band becomes the first valence band, and the
s-type band (Γ6) is pushed below the Fermi level to lie be-
tween the heavy-hole band and the spin-orbit split-off band
(Γ7) [Fig. 2(a)]. Due to the degeneracy between heavy-hole
and light-hole bands at the Γ point, HgTe is a zero-gap semi-
conductor.
When HgTe-based quantum well structures are grown, the

peculiar properties of the well material can be utilized to tune
the electronic structure. For wide QW layers, quantum con-
finement is weak and the band structure remains “inverted”.

8

The coefficients a, b, c, d can be determined by imposing the
open boundary condition ψ(0) = 0. Together with the nor-
malizability of the wave function in the region x > 0, the
open boundary condition leads to an existence condition for
the edge states: ℜλ1,2 < 0 (c = d = 0) or ℜλ1,2 > 0
(a = b = 0), where ℜ stands for the real part. As seen from
Eq. (15), these conditions can only be satisfied in the inverted
regime when M/B > 0. Furthermore, one can show that
when A/B < 0, we have ℜλ1,2 < 0, while when A/B > 0,
we haveℜλ1,2 > 0. Therefore, the wave function for the edge
states at the Γ point is given by

ψ0(x) =

{

a
(

eλ1x − eλ2x
)

φ+, A/B < 0;

c
(

e−λ1x − e−λ2x
)

φ−, A/B > 0.
(16)

The sign of A/B determines the spin polarization of the edge
states, which is key to determine the helicity of the Dirac
Hamiltonian for the topological edge states. Another im-
portant quantity characterizing the edge states is their decay
length, which is defined as lc = max

{

|ℜλ1,2|−1
}

.
The effective edge model can be obtained by projecting the

bulk Hamiltonian onto the edge states Ψ↑ and Ψ↓ defined in
Eq. (11). This procedure leads to a 2 × 2 effective Hamil-
tonian defined by Hαβ

edge(ky) = ⟨Ψα|
(

H̃0 + H̃1

)

|Ψβ⟩. To
leading order in ky , we arrive at the effective Hamiltonian for
the helical edge states:

Hedge = Akyσ
z . (17)

For HgTe QWs, we have A ≃ 3.6 eV·Å (König et al., 2008),
and the Dirac velocity of the edge states is given by v =
A/! ≃ 5.5× 105 m/s.
The analytical calculation above can be confirmed by exact

numerical diagonalization of the Hamiltonian (2) on a strip
of finite width, which can also include the contribution of
the ϵ(k) term [Fig. 4]. The finite decay length of the heli-
cal edge states into the bulk determines the amplitude for in-
teredge tunneling (Hou et al., 2009; Ström and Johannesson,
2009; Tanaka et al., 2009; Teo and Kane, 2009; Zhou et al.,
2008; Zyuzin and Fiete, 2010).

C. Physical properties of the helical edge states

1. Topological protection of the helical edge states

From the explicit analytical solution of the BHZ model,
there is a pair of helical edge states exponentially localized
at the edge, and described by the effective helical edge the-
ory (17). In this context, the concept of “helical” edge
state (Wu et al., 2006) refers to the fact that states with op-
posite spin counter-propagate at a given edge, as we see from
the edge state dispersion relation shown in Fig. 4(b), or the
real space picture shown in Fig. 1(b). This is in sharp contrast
to the “chiral” edge states in the QH state, where the edge
states propagate in one direction only, as shown in Fig. 1(a).
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FIG. 4 Energy spectrum of the effective Hamiltonian (2) in a cylin-
der geometry. In a thin QW, (a) there is a gap between conduction
band and valence band. In a thick QW, (b) there are gapless edge
states on the left and right edge (red and blue lines, respectively).
The dashed line stands for a typical value of the chemical potential
within the bulk gap. Adapted from Qi and Zhang, 2010.

In the QH effect, the chiral edge states can not be backscat-
tered for sample widths larger than the decay length of the
edge states. In the QSH effect, one may naturally ask whether
backscattering of the helical edge states is possible. It turns
out that TR symmetry prevents the helical edge states from
backscattering. The absence of backscattering relies on the
destructive interference between all possible backscattering
paths taken by the edge electrons.
Before giving a semiclassical argument why this is so,

we first consider an analogy from daily experience. Most
eyeglasses and camera lenses have an antireflective coating
[Fig. 5(a)], where light reflected from the top and bottom sur-
faces interfere destructively, leading to no net reflection and
thus perfect transmission. However, this effect is not robust,
as it depends on a precise matching between the wavelength
of light and the thickness of the coating. Now we turn to the
helical edge states. If a nonmagnetic impurity is present near
the edge, it can in principle cause backscattering of the heli-
cal edge states due to SOC. However, just as for the reflec-
tion of photons by a surface, an electron can be reflected by
a nonmagnetic impurity, and different reflection paths inter-
fere quantum-mechanically. A forward-moving electron with
spin up on the QSH edge can make either a clockwise or a
counterclockwise turn around the impurity [Fig. 5(b)]. Since
only spin down electrons can propagate backwards, the elec-
tron spin has to rotate adiabatically, either by an angle of π
or −π, i.e. into the opposite direction. Consequently, the two
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throughout the gap region. Symmetric resonances likely originate from 
Andreev bound states (21, 22), whereas non-resonant current indicates 
that the proximity gap has not fully developed (23). 

Figure 2 summarizes our main result. Figure 2A shows a set of 
dI/dV versus V traces taken at increasing B-fields in 10 mT steps from 
zero (lowest trace) to 490 mT (top trace), offset for clarity. We again 
observe the gap edges at ±250 �eV. When we apply a B-field between 
~100 and ~400 mT along the nanowire axis we observe a peak at V = 0. 
The peak has an amplitude up to ~0.05·2e2/h and is clearly discernible 
from the background conductance. Above ~400 mT we observe a pair 
of peaks. The color panel in Fig. 2B provides an overview of states and 
gaps in the plane of energy and B-field from U0.5 to 1 T. The observed 
symmetry around B = 0 is typical for all our data sets, demonstrating 
reproducibility and the absence of hysteresis. We indicate the gap edges 
with horizontal dashed lines (highlighted only for B < 0). A pair of res-
onances crosses zero energy at ~0.65 T with a slope of order EZ (high-
lighted by dotted lines). We have followed these resonances up to high 
bias voltages in (20) and identified them as Andreev states bound within 
the gap of the bulk, NbTiN superconducting electrodes (~2 meV). By 
contrast, the zero-bias peak sticks to zero energy over a range of �B ~ 
300 mT centered around ~250 mT. Again at ~400 mT we observe two 
peaks located at symmetric, finite biases. 

In order to identify the origin of these zero-bias peaks (ZBP) we 
need to consider various options, including the Kondo effect, Andreev 
bound states, weak antilocalization and reflectionless tunneling, versus a 
conjecture of Majorana bound states. ZBPs due to the Kondo effect (24) 
or Andreev states bound to s-wave superconductors (25) can occur at 
finite B. However, when changing B these peaks then split and move to 
finite energy. A Kondo resonance moves with twice Ez (24), which is 
easy to dismiss as the origin for our zero-bias peak because of the large 
g-factor in InSb. (Note that even a Kondo effect from an impurity with g 
= 2 would be discernible.) Reflectionless tunneling is an enhancement of 
Andreev reflection by time-reversed paths in a diffusive normal region 
(26). As in the case of weak antilocalization, the resulting ZBP is maxi-
mal at B = 0 and disappears when B is increased, see also (20). We thus 
conclude that the above options for a ZBP do not provide natural expla-
nations for our observations. We are not aware of any mechanism that 

could explain our observations, besides the conjecture of a Majorana. 
To further investigate the zero-biasness of our peak, we measure 

gate voltage dependences. Figure 3A shows a color panel with voltage 
sweeps on gate 2. The main observation is the occurrence of two oppo-
site types of behavior. First, we observe peaks in the density of states 
that change with energy when changing gate voltage (e.g., highlighted 
with dotted lines), these are the same resonances as shown in Fig. 2B 
and analyzed in (20). The second observation is that the ZBP from Fig. 
2, which we take at 175 mT, remains stuck to zero bias while changing 
the gate voltage over a range of several volts. Clearly, our gates work 
since they change the Andreev bound states by ~0.2 meV per Volt on the 
gate. Panels (B) and (C) underscore this observation with voltage sweeps 
on a different gate, number 4. (B) shows that at zero magnetic field no 
ZBP is observed. At 200 mT the ZBP becomes again visible in (C). 
Comparing the effect of gates 2 and 4, we observe that neither moves the 
ZBP away from zero. 

Initially, Majorana fermions were predicted in single-subband, one-
dimensional wires (8, 9), but further work extended these predictions to 
multi-subband wires (27530). In the nanowire section that is uncovered 
we can gate tune the number of occupied subbands from 0 to ~4 with 
subband separations of several meV. Gate tuning in the nanowire section 

Fig. 1. (A) Outline of theoretical proposals. (Top) Conceptual 
device layout with a semiconducting nanowire in proximity to an 
s-wave superconductor. An external B-field is aligned parallel to 
the wire. The Rashba spin-orbit interaction is indicated as an 
effective magnetic field, Bso, pointing perpendicular to the nan-
owire. The red stars indicate the expected locations of a 
Majorana pair. (Bottom) Energy, E, versus momentum, k, for a 
1D wire with Rashba spin-orbit interaction, which shifts the 
spin-down band (blue) to the left and spin-up band (red) to the 
right. Blue and red parabola are for B = 0. Black curves are for 
B � 0, illustrating the formation of a gap near k = 0 of size g�BB. 
(� is the Fermi energy with � = 0 defined at crossing of parabo-
las at k = 0). The superconductor induces pairing between 
states of opposite momentum and opposite spin creating a gap 
of size �. (B) Implemented version of theoretical proposals. 
Scanning electron microscope image of the device with normal 
(N) and superconducting (S) contacts. The S-contact only co-
vers the right part of the nanowire. The underlying gates, num-
bered 1 to 4, are covered with a dielectric. [Note that gate 1 
connects two gates and gate 4 connects four narrow gates; see 
(C).] (C) (Top) Schematic of our device. (Down) illustration of 
energy states. Green indicates the tunnel barrier separating the 
normal part of the nanowire on the left from the wire section 
with induced superconducting gap, �. [In (B) the barrier gate is 
also marked green.] An external voltage, V, applied between N 
and S drops across the tunnel barrier. Red stars again indicate 
the idealized locations of the Majorana pair. Only the left 
Majorana is probed in this experiment. (D) Example of differen-
tial conductance, dI/dV, versus V at B = 0 and 65 mK, serving 
as a spectroscopic measurement on the density of states in the 
nanowire region below the superconductor. Data from device 1. 
The two large peaks, separated by 2�, correspond to the quasi-
particle singularities above the induced gap. Two smaller 
subgap peaks, indicated by arrows, likely correspond to An-
dreev bound states located symmetrically around zero energy. 
Measurements are performed in dilution refrigerators using 
standard low-frequency lock-in technique (frequency 77 Hz, 
excitation 3 �V) in the four-terminal (devices 1 and 3) or two-
terminal (device 2) current-voltage geometry. 
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covered with superconductor is much less effective due to efficient 
screening. The number of occupied subbands in this part is unknown, but 
it is most likely multi-subband. As shown in figs. S9 and S11 of (20) we 
do have to tune gate 1 and the tunnel barrier to the right regime in order 
to observe the ZBP. 

We have measured in total several hundred panels sweeping various 
gates on different devices. Our main observations (20) are (i) ZBP exists 
over a substantial voltage range for every gate starting from the barrier 
gate until gate 4, (ii) we can occasionally split the ZBP in two peaks 
located symmetrically around zero, and (iii) we can never move the peak 
away from zero to finite bias. Data sets such as those in Figs. 2 and 3 
demonstrate that the ZBP remains stuck to zero energy over considerable 
changes in B and gate voltage Vg. 

Figure 3D shows the temperature dependence of the ZBP. We find 

that the peak disappears at around ~300 mK, providing a thermal energy 
scale of kBT ~ 30 �eV. The full-width at half-maximum at the lowest 
temperature is ~20 �eV, which we believe is a consequence of thermal 
broadening as 3.5·kBT(60 mK) = 18 �eV. 

Next we verify explicitly that all the required ingredients in the theo-
retical Majorana proposals (Fig. 1A) are indeed essential for observing 
the ZBP. We have already verified that a nonzero B-field is needed. 
Now, we test if spin-orbit interaction is crucial for the absence or pres-
ence of the ZBP. Theory requires that the external B has a component 
perpendicular to Bso. We have measured a second device in a different 
setup containing a 3D vector magnet such that we can sweep the B field 
in arbitrary directions. In Fig. 4 we show dI/dV versus V while varying 
the angle for a constant field magnitude. In Fig. 4A the plane of rotation 
is approximately equal to the plane of the substrate. We clearly observe 
that the ZBP comes and goes with angle. The ZBP is completely absent 
around �/2, which thereby we deduce as the direction of Bso. In Fig. 4B 
the plane of rotation is perpendicular to Bso. Indeed we observe that the 
ZBP is now present for all angles, because B is now always perpendicu-
lar to Bso. These observations are in full agreement with expectations for 
the spin-orbit direction in our samples (17, 31). We have further verified 
that this angle dependence is not a result of the specific magnitude of B 
or a variation in g-factor (20). 

As a last check we have fabricated and measured a device of identi-
cal design but with the superconductor replaced by a normal Au contact 
(i.e., a N-NW-N geometry). In this sample we have not found any signa-
ture of a peak that sticks to zero bias while changing both B and Vg (20). 

Fig. 3. Gate voltage dependence. (A) 2D color plot of dI/dV 
versus V and voltage on gate 2 at 175 mT and 60 mK. An-
dreev bound states cross through zero bias, for example 
near -5 V (dotted lines). The ZBP is visible from L10 to ~5 V 
(although in this color setting it is not equally visible every-
where). Split peaks are observed in the range of 7.5 to 10 V 
(20). In (B) and (C) we compare voltage sweeps on gate 4 
for 0 and 200 mT with the zero bias peak absent and pre-
sent, respectively. Temperature is 50 mK. [Note that in (C) 
the peak extends all the way to L10 V (19).] (D) Temperature 
dependence. dI/dV versus V at 150 mT. Traces have an off-
set for clarity (except for the lowest trace). Traces are taken 
at different temperatures (from bottom to top: 60, 100, 125, 
150, 175, 200, 225, 250, and 300 mK). dI/dV outside ZBP at 
V = 100 �eV is 0.12 ± 0.01·2e2/h for all temperatures. A full-
width at half-maximum of 20 �eV is measured between ar-
rows. All data in this figure are from device 1. 

Fig. 2. Magnetic field dependent spectroscopy. (A) dI/dV 
versus V at 70 mK taken at different B-fields (from 0 to 490 
mT in 10 mT steps; traces are offset for clarity, except for the 
lowest trace at B = 0). Data from device 1. (B) Color scale 
plot of dI/dV versus V and B. The zero-bias peak is highlight-
ed by a dashed oval. Dashed lines indicate the gap edges. At 
~0.6 T a non-Majorana state is crossing zero bias with a 
slope equal to ~3 meV/T (indicated by sloped dotted lines). 
Traces in (A) are extracted from (B). 

 o
n 

Ap
ril

 1
6,

 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 



materials devices
(n-terminal Josephson junctions)

Plissard
et al.
(2013)

complicated bandstructure
in  d dimensions

artificial material in  d = n – 1 dimensions ?

70.5°

f

g

i

h

b
a b c

d

f g h i

e

c

200

1 1 1−

1 1 1−

200

1 1 1−

1 1 1−

Figure 3 | Crystal structure of a single-crystalline nanocross. a, Low-resolution TEM image of a single-crystalline InSb nanocross. b,c, HR-TEM images just
below the droplet for both branches. Scale bars, 5 nm. d,e, FFT patterns corresponding to b and c, respectively. The crystalline directions are perfectly
superposed, proving the nanocross in a is a single crystal. f–i, HR-TEM images of each corner of the nanocross and the corresponding FFT pattern showing a
single-crystalline orientation. Scale bars, 5 nm.
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et al.
(2013)

discrete Andreev spectrum 
in a junction with few channels

The analogy
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Figure 2 | Flux dependence of the ABS. a, Differential conductance of the
tunnel probe at a fixed gate voltage as a function of the bias voltage V of
the probe junction (vertical axis) and of the current in a coil (top axis) that
controls the flux � through the loop. The sharp resonances are the
signature of the ABS, and the periodicity of the pattern demonstrates that
ABS coherently connect the two end contacts and are sensitive to their
superconducting phase difference � (bottom axis). The solid colour traces
correspond to cross-sections of the data at the flux indicated by the dashed
line. G0 = 2e2/h denotes the conductance quantum. b, DOS in the CNT as
deconvolved from the data in a, assuming a Bardeen–Cooper–Schrieffer
DOS in the tunnel probe. The device can be operated as a d.c.-current
SQUID magnetometer by biasing it at a point that maximizes ⌅ I/⌅�, as
indicated by a red circle. The fact that the phase is not zero at zero current
in the coil is due to a residual magnetic field in our set-up.

play a central role in mesoscopic superconductivity and can be seen
as the superconducting counterpart of the Landauer channels for
the normal state: in both cases, only a handful of them suffices to ac-
count for all of the transport properties of complex many-electron
systems such as atomic contacts or CNTs. In effect, the ABS concept
quantitatively explains the Josephson effect in atomic contacts10; it
also explains tunnelling spectroscopy of vortex cores and surface
states in some superconductors11. However, there has been so far
no detailed direct spectroscopic observation of individual ABS.
Interest in such spectroscopy has increased with recent proposals
for using ABS as quantum bits8, and Andreev reflection as a source
of entangled spin states6.

Nanotubes are particularly good candidates for the observation
of ABS. First, CNT–superconductor hybrid systems are expected
to show a small number of ABS, and the typical millielectronvolt
energy scales involved in nanotube devices are comparable
to conventional superconducting gaps. These are favourable
conditions for a well-resolved spectroscopy experiment. Second,
given the length of CNTs, it is possible to introduce a tunnel
probe that enables straightforward tunnelling spectroscopy12.

Furthermore, CNTs are of fundamental interest as nearly ideal,
tunable one-dimensional systems in which a wealth of phenomena
(for example Luttinger-liquid behaviour13, Kondo effects3,14 and
spin–orbit coupling15) has been observed and the rich interplay
of these effects with superconducting coupling has attracted
a lot of interest16–22.

Our sample is described in Fig. 1. A CNT is well connected
to two superconducting metallic contacts 0.7 µm apart, leaving
enough space to place aweakly coupled tunnel electrode in between.
The electrodes are made of aluminium with a few nanometres
of titanium as a sticking layer (see Supplementary Information
for details); they become superconducting below �1K. The two
outer contacts are reconnected, forming a loop. A magnetic
flux � threaded through the loop produces a superconducting
phase difference � = (2e/h̄)� across the tube. By measuring the
differential conductance of the tunnel contact at low temperature
(T � 40mK) we observe (see Figs 2a and 3a) well-defined
resonances inside the superconducting gap. The energies of these
resonances strongly depend on the voltage applied on the backgate
of the device, and vary periodically with the phase difference
across the CNT, a signature of ABS. From the raw measurement
of the differential conductance between the tunnel probe and
the loop we can extract the density of states (DOS) in the tube
(see for example Fig. 2b) through a straightforward deconvolution
procedure (see Supplementary Information). Figure 2 shows the
dependence of the ABS spectrum on the flux in the loop at a fixed
gate voltage. By d.c.-biasing this device at a point that maximizes
⌅I/⌅� (see Fig. 2a), it can be used as a SQUID magnetometer that
combines the advantages of refs 23 and 3. Being nanotube-based,
our SQUID should be able to detect the reversal of magnetic
moments of only a few Bohr magnetons3. At the same time, the
present device can be read out with a d.c. current measurement
(similar to ref. 23) and requires a single gate voltage, making it
easier to operate than ref. 3. The gate-voltage dependence of the
DOS shows a pattern of resonance lines (Fig. 3b) that is more or
less intricate depending on the strength of the coupling to the leads
(see Supplementary Information).

We now show that the ABS observed in this device arise from
the discrete molecular levels in the CNT. For this we describe
our nanotube phenomenologically as a quantum dot coupled
to superconducting leads (see Supplementary Information for a
detailed discussion of the model). The essential physics of ABS
in this system is already captured when one considers a single
orbital of the quantum dot filled with either one or two electrons.
Owing to the Pauli exclusion principle, these two electrons have
opposite spins and can thus be coupled by Andreev reflection.
Furthermore, the doubly occupied state is higher in energy by
an effective charging energy Ũ that can be determined from the
experimental data. Hence, the minimal effective model consists of
a spin-split pair of levels (SSPL), the parameters of which are the
splitting Ũ , the mean position E of the SSPL relative to the Fermi
level (which is controlled by the gate voltage) and the coupling
to the leads (see Supplementary Fig. S1a). Previous theoretical
work24,25 has shown that there can be up to four ABS, symmetric (in
position, but not in intensity) about the Fermi Level. For sufficiently
large Ũ (respectively, E), however, the two outer (respectively,
all) ABS merge with the continuum and are no longer visible
in the spectrum24–26.

We now discuss the dependence of the ABS energies on the gate
voltageVg. TheABS appear as facing pairs of bell-shaped resonances
centred at E(Vg)= 0 and with their bases resting against opposite
edges of the superconducting gap (see the green dashed curves
in Fig. 3b.) For large enough Ũ the inner resonances cross at the
Fermi energy, forming a loop (Fig. 3b). Such loops are a distinct
signature of SSPL in this model (spin-degenerate levels (Ũ = 0)
cannot give loops). Most of the features observed in Fig. 3b can
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Andreev bound states in supercurrent-carrying
carbon nanotubes revealed
J-D. Pillet1, C. H. L. Quay1†, P. Morfin2, C. Bena3,4, A. Levy Yeyati5 and P. Joyez1*
Carbon nanotubes (CNTs) are not intrinsically superconducting
but they can carry a supercurrent when connected to super-
conducting electrodes1–4. This supercurrent is mainly trans-
mitted by discrete entangled electron–hole states confined
to the nanotube, called Andreev bound states (ABS). These
states are a key concept in mesoscopic superconductivity as
they provide a universal description of Josephson-like effects
in quantum-coherent nanostructures (for example molecules,
nanowires, magnetic or normal metallic layers) connected to
superconducting leads5. We report here the first tunnelling
spectroscopy of individually resolved ABS, in a nanotube–
superconductor device. Analysing the evolution of the ABS
spectrum with a gate voltage, we show that the ABS arise from
the discrete electronic levels of the molecule and that they
reveal detailed information about the energies of these levels,
their relative spin orientation and the coupling to the leads.
Such measurements hence constitute a powerful new spectro-
scopic technique capable of elucidating the electronic structure
of CNT-based devices, including those with well-coupled leads.
This is relevant for conventional applications (for example,
superconducting or normal transistors, superconducting quan-
tum interference devices3 (SQUIDs)) and quantum information
processing (for example, entangled electron pair generation6,7,
ABS-based qubits8). Finally, our device is a new type of d.c.-
measurable SQUID.

First conceived of four decades ago9, ABS are electronic ana-
logues of the resonant states in a Fabry–Pérot resonator. The cavity
is here a nanostructure and its interfaceswith superconducting leads
play the role of the mirrors. Furthermore, these ‘mirrors’ behave
similarly to optical phase-conjugate mirrors: because of the super-
conducting pairing, electrons in the nanostructure with energies
below the superconducting gap are reflected as their time-reversed
particle—a process known as Andreev reflection. As a result, the
resonant standing waves—the ABS—are entangled pairs of time-
reversed electronic states, which have opposite spins (Fig. 1a); they
form a set of discrete levels within the superconducting gap (Fig. 1b)
and have fermionic character. Changing the superconducting phase
difference � between the leads is analogous to moving the mir-
rors and changes the energies En(�) of the ABS. In response, a
populated ABS carries a supercurrent (2e/h̄)(⌅En(�)/⌅�) through
the device, whereas states in the continuous spectrum (outside the
superconducting gap) have negligible or minor contributions in
most common cases5. Therefore, the finite set of ABS generically
determines Josephson-like effects in such systems. As such, ABS
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Figure 1 | Principle of ABS and experimental set-up. a, Generic schematic

for an ABS in a nanostructure between two superconducting leads, which

have DOS with a gap �, and with respective superconducting phases �1,2.

At energies within the superconducting gap (grey band) the Andreev

reflection process (which reflects an electron (e) as a hole (h)—its

time-reversed particle—and vice versa) leads to the formation of

discrete resonant states of entangled e–h pairs confined between the

superconductors. These states—the ABS—are electronic analogues to

the resonances in an optical Fabry–Pérot cavity. b, The local DOS in the
nanostructure is thus expected to exhibit a set of resonances in the gap

at the energies of the ABS. The energies of the ABS should depend

periodically on the superconducting phase difference � = �1–�2, which

is analogous to the optical cavity length. c, Colour-enhanced scanning

electron micrograph of a device fabricated for the spectroscopy of ABS

in a CNT which appears here as the thin vertical grey line. The substrate

consists of highly doped silicon serving as a backgate (shown here in

violet), with a 1-µm-thick surface oxide layer. A grounded superconducting

fork (green) is well connected to the tube, forming a loop. The

measurement of the differential conductance ⌅ I/⌅V of a superconducting

tunnel probe (red) weakly connected to the tube gives access to the DOS in

the CNT, where ABS are confined. The energies of the ABS can be tuned by

varying the gate voltage Vg and the magnetic flux � threading the loop.
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The analogy

2-terminal junctions:
simplest case: Josephson energy

in general:
Andreev bound states (ABS) (+ continuum)

® n-terminal junctions: EA
(i)(f1 , f2 , …, fn-1)

ABS energy  =  periodic fct of  n – 1 phase differences

analogy:
n-terminal junction ® d = n – 1 dimensional material
Andreev spectrum ® band structure
phase differences ® quasi-momenta  kx , ky , kz , ...

Topology: more information in the wavefunctions than in the spectrum!
SPICE Workshop, Mainz - September 28, 2017 5
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Main result
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topologically-protected Weyl singularities
in the ABS spectrum of junctions with  n ¸ 4  terminals

f1



Main result

SPICE Workshop, Mainz - September 28, 2017 7

p

0

-p

- 2 e
2

p —
2 e2
p —

f3

s12

-p0p

f1

-p0p

f2

-p

0

p

f3�3 �3

(a) (b)�1(a) (b)

�2

�3 �3

G12

2e2/⇡~�1 1
⇡

0

�⇡
�⇡0⇡

�⇡

0

⇡
⇡�⇡

+

�

�

+

-3

-2

-1

 0

 1

 2

 3

-pi -pi/2 0 pi/2 pi⇡�⇡ �⇡/2 ⇡/20

0
1

�1

�2

2

3

�3

C

�3

C12

(c)

topologically-protected Weyl singularities
in the ABS spectrum of junctions with  n ¸ 4  terminals

manifestations:
quantized transconductance
between 2 voltage-biased terminals
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Outline

• Weyl singularities

• Andreev bound state (ABS) spectrum of multi-terminal junctions

• Quantized transconductance

• Beyond the adiabatic regime

• Conclusion
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Weyl singularities

• topologically protected zero-energy states

3D Weyl Hamiltonian:

where  si 2 x 2 Pauli matrices:
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HW =
X

i,j=x,y,z

vijki�j

�x =

✓
0 1
1 0

◆
, �y =

✓
0 �i
i 0

◆
, �z =

✓
1 0
0 �1

◆



= sign det[{vij}] = ±1

� =
1

2⇡

I
dS(k) ·B(k)

Weyl singularities

• topologically protected zero-energy states

3D Weyl Hamiltonian:

Weyl points carry a topological charge:

• Weyl points are monopoles of Berry curvature

Weyl semimetals have been discovered recently (TaAs …)
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HW =
X

i,j=x,y,z

vijki�j

B(k) = �rk ⇥=h (k)|rk| (k)i



C =
1

2⇡

I

2D BZ
(dk)Bz(k) 2 Z

� =
1

2⇡

I
dS(k) ·B(k)

Weyl singularities

• topologically protected zero-energy states

3D Weyl Hamiltonian:

Weyl points carry a topological charge:

• Weyl points are monopoles of Berry curvature

vs Chern number:
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HW =
X

i,j=x,y,z

vijki�j

= sign det[{vij}] = ±1



C =
1

2⇡

I

2D BZ
(dk)Bz(k)

Weyl singularities

• topologically protected zero-energy states

3D Weyl Hamiltonian:

Weyl points carry a topological charge:

• Weyl points are monopoles of Berry curvature

® Chern number changes
when crossing a Weyl Point: 
C1 = C0 + c1

C2 = C1 + c2 =  C0 + c1 + c2
SPICE Workshop, Mainz - September 28, 2017 12

HW =
X
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c1 c2

C0              C1              C2

ky
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Weyl singularities

• topologically protected zero-energy states

3D Weyl Hamiltonian:

Weyl points carry a topological charge:

• Weyl points are monopoles of Berry curvature

non-zero Chern number
® edge states
® quantum Hall effect
Thouless et al. (1982)
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HW =
X

i,j=x,y,z

vijki�j

c1 c2

C0              C1              C2
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charge transfer between a “non-superconductor” and a superconductor 
at  e < D:

• no quasi-particle states
• only transfer of Cooper pairs

superconductor

Andreev reflection

SPICE Workshop, Mainz - September 28, 2017 14

electron

hole

Andreev 1964



ABS spectrum of multi-terminal junctions

generalization of the scattering problem:

SPICE Workshop, Mainz - September 28, 2017 15



ABS spectrum of multi-terminal junctions

• ABS spectrum
determined by

Beenakker (1991)

• normal scattering in the contact:
scattering matrix  SN

• Andreev reflection:
scattering matrix  SA (f1, … , fn-1; E)

• particle-hole symmetry: states come in pairs at energies  §E
• Weyl singularities: doubly degenerate zero-energy states at  F(0)

SPICE Workshop, Mainz - September 28, 2017 16
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Weyl-Hamiltonian

• Weyl singularities: doubly degenerate zero-energy states at  F(0)

• in the vicinity of the zero-energy solution at  F(0) :
effective low-energy Weyl Hamiltonian
in the subspace of the 2 orthogonal eigenstates:
HW = åa, i Mai dfa ti where  ti 2x2 Pauli matrices

SPICE Workshop, Mainz - September 28, 2017 17

ϕi - ϕi
(0)

EABS



Weyl-Hamiltonian

• Weyl singularities: doubly degenerate zero-energy states at  F(0)

• topological charge of the Weyl point in a 3D subspace:
c = sign det [{Mai}]

• total topological charge = 0
• time-reversal symmetry: Weyl point at  F(0)

® Weyl point with the same topological charge at  –F(0)

• Weyl points come in multiples of 4
SPICE Workshop, Mainz - September 28, 2017 18
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ABS spectrum

SPICE Workshop, Mainz - September 28, 2017 19

p

0

-p

- 2 e
2

p —
2 e2
p —

f3

s12

-p0p

f1

-p0p

f2

-p

0

p

f3�3 �3

(a) (b)�1(a) (b)

�2

�3 �3

G12

2e2/⇡~�1 1
⇡

0

�⇡
�⇡0⇡

�⇡

0

⇡
⇡�⇡

+

�

�

+

-3

-2

-1

 0

 1

 2

 3

-pi -pi/2 0 pi/2 pi⇡�⇡ �⇡/2 ⇡/20

0
1

�1

�2

2

3

�3

C

�3

C12

(c)

(f2,f3) = (f2
(0),f3

(0))

(f2,f3) ¹ (f2
(0),f3

(0))

example: 4-terminal junction
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ABS spectrum

Chern number:
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4-terminal junctions: Occurence of Weyl points

• 4 single-channel terminals:  
– ~ 5% of random scattering matrices possess Weyl points
– simple toy models  X

• 4 multi-channel terminals:
example:  Na = 12, 11, 10, 9
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Figure 2: Topological characterization of the 4-terminal junction, for both the single- and

multi-channel case. a) Position of the four Weyl points in the space of �1,2,3 of the single-
channel 4-terminal junction, the colour code indicating the respective charge. b) The resulting
transconductance G12 indicating the Chern number, as a function of �3 for the same single chan-
nel junction as in panel a). c) Chern number as a function of �3 for a multi-channel 4-terminal
junction, where the contacts 1, 2, 3, and 0 contain 12, 11, 10, and 9 channels, respectively. In
this particular example, the junction hosts 36 Weyl points.
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Figure S2: Histogram displaying the occurrence of random scattering matrices yielding N

Weyl points for the four-terminal multi-channel junction.

onal matrix. A random symmetric scattering matrix was then generated as S = UT
U. For each

S , we numerically checked the existence of zeros of the function
���det[1 + A(�̂)]

��� in the space of

phases.

In the single-channel case, we ran the check for 965 randomly generated matrices S , out of

which 46 gave rise to zero-energy solutions. Thus, we found that a total of roughly 5% of all

scattering matrices yield Weyl points, while the remaining 95% provide a trivial junction.

When increasing the number of channels in each terminal, we found that the maximal num-

ber of Weyl points scales with the number of channels, and that the probability of a junction

without Weyl points decreases significantly. A total of 324 random scattering matrices were

generated for a junction with four terminals, where the terminals have 12,11,10, and 9 chan-

nels, respectively. In Fig. S2 we show the histogram displaying the occurrence of randomly

generated scattering matrices that provide N zero-energy Weyl points. Only 4 scattering ma-

trices gave rise to a junction without zero-energy Weyl points. Note that our algorithm has a

small, but finite probability to miss some zeros. As a consequence, while the number of Weyl

points has to be a multiple of 4 because of time-reversal symmetry (see main text), the algorithm

misidentifies a few cases as having an odd multiple of 2 Weyl points.
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• current operator:

• use instantaneous eigenbasis
to compute expectation value for time-dependent phases:

contribution of ABS

adiabatic supercurrent Iav
0(t)

first correction:

with Berry curvature

EA⌫(t) | ⌫(t)i = Ĥ(t) | ⌫(t)i

Consequences of Weyl singularities: The current
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We note that there is the possibility of Weyl singularities at finite energy. Due to particle-

hole symmetry, they appear in pairs at energies ±E with the same charge. Because of particle-

hole symmetry and spin degeneracy, solutions at energy �E can be ascribed to solutions at

energy E in the opposite spin sector 2. Thus, zero-energy Weyl points are singly degenerate,

while finite energy Weyl points are doubly degenerate. As the finite energy Weyl singularities

do not a↵ect the ground state Chern numbers used to characterize the system, we do not discuss

them any further. Note that the outgoing wavefunctions in particle-hole space used to compute

the Chern numbers are given as | ±
k
i = (| ±

k
i, e�i�

U
†
| ±

k
i)T . Furthermore, | k�i is identified

with | +
k
i in the corresponding spin sector �.

Derivation of the current

In the following, we establish the connection between the current and the Berry curvature for

phases that change slowly in time.

The current operator through lead ↵ is defined as

Î↵ = 2e
@Ĥ

@�↵
, (S7)

where Ĥ is the Bogoliubov-de Gennes Hamiltonian. In order to calculate its expectation value

for time-dependent phases �̂(t), we introduce the basis of instantaneous wave functions of the

time-dependent Bogoliubov-de Gennes Hamiltonian Ĥ(t), such that Ek(t)|'k�(t)i = Ĥ(t)|'k�(t)i.

Solving the time-dependent equation i~|'̇i = Ĥ(t)|'i in that basis, up to first order in phase

velocity �̇, we obtain the current contribution from state k with spin � as

I↵k(t) ⇡ 2e

"
1
~

@Ek(t)
@�↵

� i
@ h'k�(t)|
@�↵

|'̇k�(t)i + ih'̇k�(t)|
@ |'k�(t)i
@�↵

#
. (S8)

Note that I↵k does not depend on spin. The first term corresponds to the adiabatic supercur-

rent. Introducing the Berry curvature B
↵�
k
= �2Im

h
@�↵h'k�|@�� |'k�i

i
, the second term reads

2Note that in the main text we restrict ourselves to positive energies while keeping both spin sectors.
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• total current:

• consider 2 voltage-biased leads:  fa = 2eVat
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• total current:

• consider 2 voltage-biased leads:  fa = 2eVat

® phase sweeps 2D “Brillouin zone”
(Va,b ¿ D  incommensurate)

Quantized transconductance
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• total current:

• consider 2 voltage-biased leads:  fa = 2eVat

® phase sweeps 2D “Brillouin zone”
® time-averaged current in the ground state (nks = 0):

where integer

= Chern number

Quantized transconductance
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replaced by its average value. Thus, we find that the dc current is linear in the voltages, and the

transconductance is defined by the Chern number

I↵ = G
↵�
V� with G

↵� = �2e2

⇡~ C
↵�
. (5)

Equation (5) shows that multi-terminal junctions exhibit a dc current response typical for the

quantum Hall effect, although based on different physics. The transconductance quantum is

four times bigger than in the quantum Hall effect, which can be traced to the 2e charge of the

superconducting Cooper pairs. To extract the small dc signal, the averaging time needs to be

sufficiently long. The relevant time scale is determined by the low-frequency current noise

(supplementary online text). Note that quantum Hall-like conductance quantization has also

been proposed in superconducting devices with finite charging energy and hosting quantum

phase slips (22). Furthermore, superconducting junctions with a gate-tunable charging energy

may realize topologically-protected discrete charge pumping (23).

We now focus on a 4-terminal junction and investigate the energy spectrum as a function

of the three independent phases �1,2,3. As mentioned above, such a 3D bandstructure may host

Weyl points with positive or negative topological charge. The Nielsen-Ninomiya theorem (24)

implies that the total topological charge of the system is zero, such that the number of Weyl

points is always even. Furthermore, time-reversal invariance corresponds to a mapping from �̂

to ��̂, hence a Weyl point at �̂(0) has a counterpart at ��̂
(0) with the same topological charge.

Thus, Weyl points come in groups of 4.

In the simplest case, where each contact contains only one channel, the system may realize 0

or 4 Weyl points, corresponding to a topologically trivial or nontrivial 3D material, respectively.

If a scattering matrix yielding Weyl points is found, small changes in the scattering matrix only

modify their position, but cannot gap them. Namely, as the Weyl points carry a topological

charge, individual Weyl points are stable and annihilation is possible only when two Weyl points

6
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experimental manifestation:
quantized transconductance

Chern number
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experimental manifestation:
quantized transconductance

Chern number

Multiterminal junctions as topological matter
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Ī↵ = G↵�V� with G↵� =
4e2

h
C↵�

Ī↵ = �4e2

h
V�

X

k

C↵�
k (nk" + nk# � 1)

ground state:  nks = 0
® poisoning ? (Landau-Zener …)



• Landau-Zener processes:

Beyond the adiabatic regime

SPICE Workshop, Mainz - September 28, 2017 28



• Landau-Zener processes:

empty states

occupied states
inelastic relaxation
necessary
to quickly recover
equilibrium occupations

Beyond the adiabatic regime
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PLZ(V)



• multiple Andreev reflections

® compute the currents using (Floquet) scattering theory

• account for inelastic relaxation with a Dynes parameter  G in the leads

Beyond the adiabatic regime
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• multiple Andreev reflections

® compute the currents using (Floquet) scattering theory

specific scattering matrix 
with Weyl points at  ±(1.7, -1.9, -2.8, 0) and  ±(2.7, -1.8, 1.0, 0)

• choose 

• commensurate voltages  ® average over  c
• obtain conductances from 2 sets of voltages:  (n1, n2) = (1, 3) and  (2, 3)

Beyond the adiabatic regime

SPICE Workshop, Mainz - September 28, 2017 31

�1 = 2en1V t+ �

�2 = 2en2V t

✓
I1
I2

◆
=

✓
G11 G12

G21 G22

◆✓
V1

V2

◆

�1

�2



Beyond the adiabatic regime
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(n1, n2) = (1, 3)

(n1, n2) = (2, 3)

currents as a fct of  V at fixed  f0 ( G = 0.002D ):

f0 = 2.21 (topological) f0 = 0  (trivial)



Beyond the adiabatic regime
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conductances as a fct of  V at fixed  f0 = 2.21 ( G = 0.002D ):

normal state conductances
(G12 = G21)

multiple Andreev reflections

quantized
transconductances



Beyond the adiabatic regime
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conductances as a fct of  V at fixed  f0 = 2.21 ( G = 0.002D ):

quantized
transconductances EA = min

�1,�2

EA(�0,�1,�2)

quantization requires fixed parity:

where

1/⌧LZ = eV e�EA/eV < �

! eV < eV? ⇠ EA

log(EA/�)



conductances as a fct of  V at fixed  f0 = 2.21 ( G = 0.002D ):

for comparison: f0 = 0 

Beyond the adiabatic regime
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quantized
transconductances



conductances as a fct of  f0 at fixed  V = 0.0003D/e :

Beyond the adiabatic regime
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topological
regime

topological
regime

large dissipation
close to Weyl points



3-terminal junctions

• only 2 independent phases
• add magnetic flux through the junctions area

® break time-reversal symmetry

example:  U = 0.1, t = 1
minimal gap as a function of  s
® 4 Weyl points
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3-terminal junctions

• only 2 independent phases
• add magnetic flux through the junctions area

® break time-reversal symmetry

preliminary results:

V = 0.01D, G = 0.01D

(using 
only 1 voltage  V1 = §V
&  averaging over  f2)
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3-terminal junctions

• only 2 independent phases
• add magnetic flux through the junctions area

® break time-reversal symmetry

preliminary results: = Chern number
of the Andreev bound state

V = 0.01D, G = 0.01D

(using 
only 1 voltage  V1 = §V
&  averaging over  f2)

® continuum contributes to the topological properties of the junction!
SPICE Workshop, Mainz - September 28, 2017 39
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Conclusion

• Weyl singularities in ABS spectrum
of multi-terminal Josephson junctions 
without any fine-tuning

• superconducting phases = quasi-momenta

• transconductance
between 2 voltage-biased terminals
probes Chern number

multi-terminal Josephson junction
= topological material

R.-P. Riwar et al., Nat. Commun. 7, 11167 (2016);
E. Eriksson et al., PRB 95, 075417 (2017);
JSM & M. Houzet, PRL ... (2017) SPICE Workshop, Mainz - September 28, 2017 40

replaced by its average value. Thus, we find that the dc current is linear in the voltages, and the

transconductance is defined by the Chern number

I↵ = G
↵�
V� with G

↵� = �2e2

⇡~ C
↵�
. (5)

Equation (5) shows that multi-terminal junctions exhibit a dc current response typical for the

quantum Hall effect, although based on different physics. The transconductance quantum is

four times bigger than in the quantum Hall effect, which can be traced to the 2e charge of the

superconducting Cooper pairs. To extract the small dc signal, the averaging time needs to be

sufficiently long. The relevant time scale is determined by the low-frequency current noise

(supplementary online text). Note that quantum Hall-like conductance quantization has also

been proposed in superconducting devices with finite charging energy and hosting quantum

phase slips (22). Furthermore, superconducting junctions with a gate-tunable charging energy

may realize topologically-protected discrete charge pumping (23).

We now focus on a 4-terminal junction and investigate the energy spectrum as a function

of the three independent phases �1,2,3. As mentioned above, such a 3D bandstructure may host

Weyl points with positive or negative topological charge. The Nielsen-Ninomiya theorem (24)

implies that the total topological charge of the system is zero, such that the number of Weyl

points is always even. Furthermore, time-reversal invariance corresponds to a mapping from �̂

to ��̂, hence a Weyl point at �̂(0) has a counterpart at ��̂
(0) with the same topological charge.

Thus, Weyl points come in groups of 4.

In the simplest case, where each contact contains only one channel, the system may realize 0

or 4 Weyl points, corresponding to a topologically trivial or nontrivial 3D material, respectively.

If a scattering matrix yielding Weyl points is found, small changes in the scattering matrix only

modify their position, but cannot gap them. Namely, as the Weyl points carry a topological

charge, individual Weyl points are stable and annihilation is possible only when two Weyl points

6
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Conclusion

• Weyl singularities in ABS spectrum
of multi-terminal Josephson junctions 
without any fine-tuning

• superconducting phases = quasi-momenta

• transconductance
between 2 voltage-biased terminals
probes Chern number

multi-terminal Josephson junction
= topological material

R.-P. Riwar et al., Nat. Commun. 7, 11167 (2016);
E. Eriksson et al., PRB 95, 075417 (2017);
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replaced by its average value. Thus, we find that the dc current is linear in the voltages, and the

transconductance is defined by the Chern number

I↵ = G
↵�
V� with G

↵� = �2e2

⇡~ C
↵�
. (5)

Equation (5) shows that multi-terminal junctions exhibit a dc current response typical for the

quantum Hall effect, although based on different physics. The transconductance quantum is

four times bigger than in the quantum Hall effect, which can be traced to the 2e charge of the

superconducting Cooper pairs. To extract the small dc signal, the averaging time needs to be

sufficiently long. The relevant time scale is determined by the low-frequency current noise

(supplementary online text). Note that quantum Hall-like conductance quantization has also

been proposed in superconducting devices with finite charging energy and hosting quantum

phase slips (22). Furthermore, superconducting junctions with a gate-tunable charging energy

may realize topologically-protected discrete charge pumping (23).

We now focus on a 4-terminal junction and investigate the energy spectrum as a function

of the three independent phases �1,2,3. As mentioned above, such a 3D bandstructure may host

Weyl points with positive or negative topological charge. The Nielsen-Ninomiya theorem (24)

implies that the total topological charge of the system is zero, such that the number of Weyl

points is always even. Furthermore, time-reversal invariance corresponds to a mapping from �̂

to ��̂, hence a Weyl point at �̂(0) has a counterpart at ��̂
(0) with the same topological charge.

Thus, Weyl points come in groups of 4.

In the simplest case, where each contact contains only one channel, the system may realize 0

or 4 Weyl points, corresponding to a topologically trivial or nontrivial 3D material, respectively.

If a scattering matrix yielding Weyl points is found, small changes in the scattering matrix only

modify their position, but cannot gap them. Namely, as the Weyl points carry a topological

charge, individual Weyl points are stable and annihilation is possible only when two Weyl points

6

The crosses grow as single crystals of high mobility, comparable to
single InSb nanowires25.

We start with a qualitative description of the process we devel-
oped for the formation of crossed wires. The procedure includes
four steps, which are presented schematically in the insets in
Fig. 1, accompanied by corresponding scanning electron
microscopy (SEM) images. The first step is the fabrication of
uniform InP–InAs stems (Fig. 1a) according to the method
described in ref. 25. In step 2, the structure is thermally annealed
at 470 8C in a reactor chamber without any precursor, resulting in
partial evaporation of the InAs nanowire and indium enrichment
in the Au–In droplet. Because the particle volume increases and
the InAs nanowire diameter decreases, the droplet falls to one of
the three {112} InAs side facets (Fig. 1b, Supplementary Fig. S3).
It is then possible to start the growth of InSb nanowires in a hori-
zontal direction, parallel to the substrate (Fig. 1c), using the
optimal growth conditions (Supplementary Fig. S2) developed in
ref. 25 for high-mobility wires2,26. If an optimal diameter and
density of gold colloids are used, InSb nanowires growing from
different stems can meet and merge into nanostructures with T or
X shapes (Fig. 1d).

The merging of the wires will now be discussed in more detail. To
describe the nanowire intersection, three angles are defined
(Fig. 2b,c). c corresponds to the angle between the vertical stem
and the growth direction of the InSb nanowire, w is the in-plane
angle of the InSb nanowire, and g is the rotation angle of the

InSb nanowire around its long axis. Interestingly, these different
angles are not random, as will be shown below.

SEM side-view inspection of the samples shows that c is close to
908, implying that the tapering of the InAs nanowires is minimal. To
investigate the exact crystalline orientation of the InSb wires, X-ray
diffraction (XRD) measurements were performed in a symmetric
2u–v configuration. Figure 2a shows a diffraction spectrum of the
sample, where the (111) peaks of InP, InAs and InSb originate
from the stems and a thin layer on the substrate. Importantly, a
fourth peak also appears around the InSb(220) Bragg angle
(39.38). The intensity is rather weak due to the small volume of
material, but it is still detectable with a standard set-up, and the
2u full-width at half-maximum is !0.48. This peak originates
from InSb nanowires having one of their {110} side facets parallel
to the substrate surface. The fact that no other sets of InSb lattice
planes perpendicular to the k111l growth direction (for example,
(422)) show up in the XRD pattern proves that c and g are fixed
to 908 and 08, respectively (Supplementary Section S2). Because
stems and substrate have no horizontal k111l crystalline directions,
this demonstrates that the InSb nanowires have no epitaxial relation
with the InP–InAs stems, and the stems only serve as a
mechanical support.

To investigate w, we measured the angle Dw between two legs
for T- and X-shaped nanostructures (Fig. 2e,f ). For this study,
more than 100 InSb crosses were transferred onto a SiO2 sub-
strate and imaged from the top to provide a perpendicular
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Figure 2 | Merging process for two InSb nanowires. a, Symmetrical (2u–v ) XRD measurement on an as-grown sample. b,c, Side view (b) and top view (c)
schemes of the InSb nanowires grown horizontally. The three angles defining the InSb growth direction are c, w and g. c corresponds to the angle between
the vertical stem and the growth direction of the InSb nanowire, w is the in-plane angle of the InSb nanowire with respect to the k1!10l direction of the
InP(111)B substrate, and g is the rotation angle of the InSb nanowire around its long axis, taking the alignment of the (220) InSb planes with the substrate
surface as a reference. d, High-resolution SEM image of an InP/InAs stem bent during the merging process. e, Statistics about the Dw angle between two
crossing InSb nanowires. f, Example of a branched structure: the two InSb nanowires should have a slight difference in altitude in order to merge into a
nanocross. All scale bars, 200 nm.
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InSb nanocrosses ?
Plissard et al. (2013)



Outlook

• specific realizations ?

• higher-dimensional “materials” ?

• more complex topologies ?

• edges ?
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Thank you!
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Conclusion

• Weyl singularities in ABS spectrum
of multi-terminal Josephson junctions 
without any fine-tuning

• superconducting phases = quasi-momenta

• transconductance
between 2 voltage-biased terminals
probes Chern number

multi-terminal Josephson junction
= topological material

R.-P. Riwar et al., Nat. Commun. 7, 11167 (2016);
E. Eriksson et al., PRB 95, 075417 (2017);
JSM & M. Houzet, PRL ... (2017) SPICE Workshop, Mainz - September 28, 2017 44

replaced by its average value. Thus, we find that the dc current is linear in the voltages, and the

transconductance is defined by the Chern number

I↵ = G
↵�
V� with G

↵� = �2e2

⇡~ C
↵�
. (5)

Equation (5) shows that multi-terminal junctions exhibit a dc current response typical for the

quantum Hall effect, although based on different physics. The transconductance quantum is

four times bigger than in the quantum Hall effect, which can be traced to the 2e charge of the

superconducting Cooper pairs. To extract the small dc signal, the averaging time needs to be

sufficiently long. The relevant time scale is determined by the low-frequency current noise

(supplementary online text). Note that quantum Hall-like conductance quantization has also

been proposed in superconducting devices with finite charging energy and hosting quantum

phase slips (22). Furthermore, superconducting junctions with a gate-tunable charging energy

may realize topologically-protected discrete charge pumping (23).

We now focus on a 4-terminal junction and investigate the energy spectrum as a function

of the three independent phases �1,2,3. As mentioned above, such a 3D bandstructure may host

Weyl points with positive or negative topological charge. The Nielsen-Ninomiya theorem (24)

implies that the total topological charge of the system is zero, such that the number of Weyl

points is always even. Furthermore, time-reversal invariance corresponds to a mapping from �̂

to ��̂, hence a Weyl point at �̂(0) has a counterpart at ��̂
(0) with the same topological charge.

Thus, Weyl points come in groups of 4.

In the simplest case, where each contact contains only one channel, the system may realize 0

or 4 Weyl points, corresponding to a topologically trivial or nontrivial 3D material, respectively.

If a scattering matrix yielding Weyl points is found, small changes in the scattering matrix only

modify their position, but cannot gap them. Namely, as the Weyl points carry a topological

charge, individual Weyl points are stable and annihilation is possible only when two Weyl points

6

The crosses grow as single crystals of high mobility, comparable to
single InSb nanowires25.

We start with a qualitative description of the process we devel-
oped for the formation of crossed wires. The procedure includes
four steps, which are presented schematically in the insets in
Fig. 1, accompanied by corresponding scanning electron
microscopy (SEM) images. The first step is the fabrication of
uniform InP–InAs stems (Fig. 1a) according to the method
described in ref. 25. In step 2, the structure is thermally annealed
at 470 8C in a reactor chamber without any precursor, resulting in
partial evaporation of the InAs nanowire and indium enrichment
in the Au–In droplet. Because the particle volume increases and
the InAs nanowire diameter decreases, the droplet falls to one of
the three {112} InAs side facets (Fig. 1b, Supplementary Fig. S3).
It is then possible to start the growth of InSb nanowires in a hori-
zontal direction, parallel to the substrate (Fig. 1c), using the
optimal growth conditions (Supplementary Fig. S2) developed in
ref. 25 for high-mobility wires2,26. If an optimal diameter and
density of gold colloids are used, InSb nanowires growing from
different stems can meet and merge into nanostructures with T or
X shapes (Fig. 1d).

The merging of the wires will now be discussed in more detail. To
describe the nanowire intersection, three angles are defined
(Fig. 2b,c). c corresponds to the angle between the vertical stem
and the growth direction of the InSb nanowire, w is the in-plane
angle of the InSb nanowire, and g is the rotation angle of the

InSb nanowire around its long axis. Interestingly, these different
angles are not random, as will be shown below.

SEM side-view inspection of the samples shows that c is close to
908, implying that the tapering of the InAs nanowires is minimal. To
investigate the exact crystalline orientation of the InSb wires, X-ray
diffraction (XRD) measurements were performed in a symmetric
2u–v configuration. Figure 2a shows a diffraction spectrum of the
sample, where the (111) peaks of InP, InAs and InSb originate
from the stems and a thin layer on the substrate. Importantly, a
fourth peak also appears around the InSb(220) Bragg angle
(39.38). The intensity is rather weak due to the small volume of
material, but it is still detectable with a standard set-up, and the
2u full-width at half-maximum is !0.48. This peak originates
from InSb nanowires having one of their {110} side facets parallel
to the substrate surface. The fact that no other sets of InSb lattice
planes perpendicular to the k111l growth direction (for example,
(422)) show up in the XRD pattern proves that c and g are fixed
to 908 and 08, respectively (Supplementary Section S2). Because
stems and substrate have no horizontal k111l crystalline directions,
this demonstrates that the InSb nanowires have no epitaxial relation
with the InP–InAs stems, and the stems only serve as a
mechanical support.

To investigate w, we measured the angle Dw between two legs
for T- and X-shaped nanostructures (Fig. 2e,f ). For this study,
more than 100 InSb crosses were transferred onto a SiO2 sub-
strate and imaged from the top to provide a perpendicular
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Figure 2 | Merging process for two InSb nanowires. a, Symmetrical (2u–v ) XRD measurement on an as-grown sample. b,c, Side view (b) and top view (c)
schemes of the InSb nanowires grown horizontally. The three angles defining the InSb growth direction are c, w and g. c corresponds to the angle between
the vertical stem and the growth direction of the InSb nanowire, w is the in-plane angle of the InSb nanowire with respect to the k1!10l direction of the
InP(111)B substrate, and g is the rotation angle of the InSb nanowire around its long axis, taking the alignment of the (220) InSb planes with the substrate
surface as a reference. d, High-resolution SEM image of an InP/InAs stem bent during the merging process. e, Statistics about the Dw angle between two
crossing InSb nanowires. f, Example of a branched structure: the two InSb nanowires should have a slight difference in altitude in order to merge into a
nanocross. All scale bars, 200 nm.
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