Spin dymanics in out-ofequilibrium superconductors

Charis <u>Quay</u> Huei Li

Laboratoire de Physique des Solides

Université Paris-Sud

SPICE – Mainz – 25-28 September 2017

Collaborators

Maximilian Weideneder

Marco Aprili

Marko Kuzmanović (N presenting poster

Bi-Yi Wu (National Taiwan)

)u,

Denis Chevallier, Mircea Trif, Clément Dutre Yann Chiffaudel, Baptiste Jost, Cristina Bena Christoph Strunk (Regensburg)...

Funding

European Research Council

Freek Massee presenting poster on STM noise measurements NanoSciences LE - DE - FRANCE

Spin physics in out-ofequilibrium superconductors

'STATICS' (intro)

- Spinful excitations in superconductors
- Quasiparticle spin resonance
- Spin-dependent recombination DYNAMICS dynamics (ongoing work)

Excitations in Superconductors

Quasiparticle Diffusion

Quasiparticles ↔ Condensate

Z. Zheng et al., PRB 62, 14326 (2000) / C. S. Owen & D. J. Scalapino, PRL 28, 1559 (1972)

Quasiparticle Charge

SCs vs. 'normal' metals

Charge imbalance experiments

J Clarke, PRL 28, 1363 (1972) / M Tinkham and J Clarke, op. cit. 1366.

Charge imbalance experiments

J Clarke, PRL 28, 1363 (1972) / M Tinkham and J Clarke, op. cit. 1366.

Mesoscopic samples

D Beckmann et al., PRL 93, 19 (2004) P Cadden-Zimansky et al., NJP 9, 116 (2007)

J Clarke, PRL 28, 1363 (1972)

normal probe

Np

✓ Josephson

junctions

S

s'

Spin imbalance device

Materials/fabrication details

S = superconductor (6-10nm Al + oxide) F = ferromagnet (50nm Co/5nm Al) N = normal (100nm Al, H_c ~400G)

Typical junction restances: 5kΩ for both junctions

Zeeman effect gives spin imbalance

Zeeman splitting @ injector

M. Weideneder et al., in preparation.

Polarisation can reach 100%

M. Weideneder et al., in preparation.

C. H. L. Quay et al., PRB 93, 220501(R) (2016).

C. H. L. Quay et al., Nature Physics, 9, 84–88 (2013) / PRB 93, 220501(R) (2016).

C. H. L. Quay et al., Nature Physics, 9, 84–88 (2013) / PRB 93, 220501(R) (2016).

spin imbalance lifetime $T_1 \sim 10$ ns (confirmed by frequency domain measurements) \gg charge imbalance lifetime ~ 10 ps

C. H. L. Quay et al., Nature Physics, 9, 84-88 (2013) / PRB 93, 220501(R) (2016).

Related work on spin imbalance

Spin imbalance length of almost 10µm at 1.7T.

F. Hübler et al., PRL 109 (20), 207001 (2012) / M. J. Wolf et al., PRB 87 (2), 024517 (2013)

Spin physics in out-ofequilibrium superconductors

Spinful excitations in superconductors	'STATICS' (intro)
Quasiparticle spin resonance	
 Spin-dependent recombination dynamics (ongoing work) 	- DYNAMICS

Quasiparticle spin resonance

,

QSR in superconductors: challenges Inhomogeneous magnetic field

$$\lambda = \sqrt{\frac{\hbar}{\mu_0 \pi \sigma \Delta}}$$

- λ penetration depth
- σ conductivity
- Δ superconducting gap

In 6-8.5nm aluminium films

 \rightarrow field homogeneous to $\lesssim 1.5\%$

Sensitive powermetres required

→ on-chip power detection

Student putting a macroscopic sample Into a macroscopic ESR cavity

QSR measurement

On-chip detection

On-chip detection

C. H. L. Quay et al., Nature Communications, 6, 8660 (2015)

Resonance in conduction

Frequency dependence

Landé g-factor and T₂

 $g = 1.95 \pm 0.2$ $T_2 = 95 \pm 20$ ps

Both methods compared

C. H. L. Quay et al., Nature Communications, 6, 8660 (2015)

Thickness dependence

Spin physics in out-ofequilibrium superconductors

 Spinful excitations in superconductors 	'STATICS' (intro)
Quasiparticle spin resonance	
Spin-dependent recombination dynamics (ongoing work)	DYNAMICS

Recombination dynamics (no spin yet)

Devices for recombination dynamics

Injector-Detector distances

250nm, 350nm, 1400nm, 2250nm, 3250nm

Materials/fabrication details

S = superconductor (6nm Al + oxide layer) S' = superconductor (8.5nm Al)

N = normal metal (100nm Al, normal at ~50mT)

Typical S'IS junction resistance: $30k\Omega$ Typical NIS junction resistance: $12k\Omega$

N

injection

magnetic field direction

1µm

S'IS Detector Signal

M. Kuzmanović et al., in preparation.

$\Delta + \Delta'$ (field, injection, space)

M. Kuzmanović et al., in preparation.

$\Delta + \Delta'$: a closer look in field

Spin-dependent recombination

 $\frac{\Delta}{\Delta_0} \sim \left(1 - \frac{2N_{QP}}{N_{CP}}\right) \dots \text{ or does } \Delta(N_{QP}) \text{ have some spin dependence?}$

Quasiparticles ↔ Condensate

No or minimal *direct* spin effect on the gap Λ

S Bhattacharjee & M Sardar, PRB 62, R6139 (2000)

Proximity-induced gap change

Likely $\Delta(x)$, $N_{QP}(x)$

Andreev processes also have to be taken into account.

Focus on f(E, x = detector)

f(E) is non-Fermi-Dirac...

f(E) from deconvolution & fits

- Deconvolution of detector G(V)
- Spinful fit

$$f_{\uparrow}(E) = a_{\uparrow} f_{FD}(T_{\uparrow}, \mu_{\uparrow})$$

$$f_{\downarrow}(E) = a_{\downarrow} f_{FD}(T_{\downarrow}, \mu_{\downarrow}) \qquad E > 0$$

Spinless fit

 $f(E) = a_1 f_{FD}(T_1, \mu_1) + a_2 f_{FD}(T_2, \mu_2)$

• Effective temperature fit $f(E) = f_{FD}(T^*, 0)$

Assumptions: $\Delta_S = \Delta_{det}, f_S(E) = f_{det}(E)$

D. R. Heslinga & T. M. Klapwijk, PRB, 47, 5157 (1993)

f(E) from deconvolution & fits

Problems with f(E) determination

- Strong assumptions
- Does not work for all samples

Samples in preparation

- Thicker injector to keep injector at equilibrium
- Al/Pt/Al detector to remove Zeeman splitting in detector, spinless/spinful fit ambiguity
- More resistive detector barrier

Likely spatial dependence of f(E)

Summary

Perspectives

Perspectives

spin injection by acoustically excited ferromagnetic resonances

Spin current determined by RF drive power

M Weiler et al., PRL 106, 117601 (2011) / M Weiler et al., PRL 108, 176601 (2012)

Perspectives

spin injection by acoustically excited ferromagnetic resonances

Collaboration with Peter Leek (Oxford)

F Ben Chaabane internship report

Questions?

Effects of magnetic field

- Both present in parallel field (due to finite sample thickness)
- Diffusion dependence on energy in orbital field unknown
- Perpendicular (purely orbital) field can disentangle effects

Parallel field

Parallel vs perpendicular field

Parallel vs perpendicular field

Perpendicular field

