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Inter-vortex	distance		=		49.8nm@1T		– STM	scanner	calibration



SPICE, Mainz, Sept. 25th–28th 2017

Outlook

Elementary	excitations	and	vortex	in	superconducting	Pb-monolayers

Josephson	vortex	matter	in	proximity junctions

Long-range	Shiba bound	states	in	2D	limit

Unconventional	collective bound	states

Nat.	Phys.	(2014)

PRL	(2013),	PRX	(2014),	Nat.	Phys.	(2015)

Nat.	Phys.	(2015)

(2017)	to	be	published
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100nm Si	(111)	+	Pb-wetting layer	(1ML)

Pb-nanocrystals
(3-15	ML)

Mono-atomic steps
separating atomically

flat	terraces

Pb	growth on	7x7	Si(111)	in	UHV
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7x7	Si(111)	

What	is	important:

- Pressure	(vacuum)
- Temperature
- Source	cleanness
-Evaporation	rate
- Evaporated	amount
- Post-treatment

Pb	growth on	7x7	Si(111)	in	UHV

100nm
L.	Serrier-Garcia	et	al,	J.	Phys.	Chem.	C	119,	22	12651-12659	(2015)
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M.	Hupalo,	J.	Schmalian,	and	M.	C.	Tringides,	
Phys.	Rev.	Lett.	(2003)

Pb	growth on	7x7	Si(111)	in	UHV
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SIC-Pb √7	× √3-Pb

S.	Zhang	et	al.	Nature	Phys.	6,	104	(2010)

√7	× √3-In

1.33ML 1.2ML

Superconductivity in	atomically thin Pb/Si(111)
Discovery
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C.	Brun	et	al.	Nat.	Phys.	10,	444	(2014)	

Superconductivity in	atomically thin Pb/Si(111)
Influence	of	atomic disorder on	the	LDOS

ξeff
SIC

√7	× √3

1/4



SPICE, Mainz, Sept. 25th–28th 2017

(b)

√7x	√3	Pb	/	Si(111)√7x	√3	Pb	step (atomic resolution)

ideal √7x	√3	Pb	phase

Si-rich √7x	√3	Pb	protrusions

√7	× √3
Step structure

Superconductivity in	atomically thin Pb/Si(111)

C.	Brun	et	al.	Nat.	Phys.	10,	444	(2014)	
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√7	× √3

SIC

SC	Gap	near atomic steps
Superconductivity in	atomically thin Pb/Si(111)

C.	Brun	et	al.	Nat.	Phys.	10,	444	(2014)	
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√7	× √3

SC	Gap	near atomic steps
Superconductivity in	atomically thin Pb/Si(111)

C.	Brun	et	al.	Nat.	Phys.	10,	444	(2014)	
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protrusion

Sharp	Josephson	barrier
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Inverse
Proximity
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SC	Gap

ideal √7	× √3-Pb	phase	

C.	Brun	et	al.	Nat.	Phys.	10,	444	(2014)	

√7	× √3

SC	Gap	near atomic steps
Superconductivity in	atomically thin Pb/Si(111)1/4
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At B<40	mT the	vorex cores appear small;	they are	all	pinned at steps
At B>80	mT new	vortices appear on	terraces

TSTS=0.3K
Tc=1.5K

40mT 80mT0mT

C.	Brun	et	al.	Nat.	Phys.	10,	444	(2014)	

√7	× √3
Vortex	matter in	√7	× √3-Pb

Superconductivity in	atomically thin Pb/Si(111)1/4
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√7	× √3	:	Jstep< JCAbrikosov-Josephson	vortex			(A.	Gurevich,	1993)

Jc
step = JC

C.	Brun	et	al.	Nature	Phys.(2014)	

Abrikosov-Josephson	vortex	in	√7	× √3-Pb
Superconductivity in	atomically thin Pb/Si(111)1/4
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Abrikosov-Josephson	vortex	in	√7	× √3-In
Superconductivity in	atomically thin Pb/Si(111)1/4
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Conclusions	1/4

Amorphous	Pb/SI(111)	is	not	SC	down	to	300mK

Among		>	20	reported	Pb/Si(111)	crystalline	phases	only	SIC	and	√7	× √3	were	
studied	and	found	SC

Below	Tc≈1.5-1.8K	both	SIC	and	√7	× √3	layers	are	phase	coherent	at	least	on	a	
mesoscopic scale	– they	are	“real”	superconductors

The	SC	wavefunction is	localized	at	Pb/Si	interface	within	2-3	atomic	layers

√7	× √3	:	Atomic	steps	are	native	Josephson	junctions	linking	SC	terraces

√7	× √3	:	Vortex	phase:	Abrikosov-Josephson	vortices	are	revealed	at	steps

Remaining	questions:	
Why	is	it	SC?	What	is	the	origin	of	short	range	DOS	variations?	
That	of	the	Gap	filling	in	√7	× √3	?

1/4
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Outlook

Elementary	excitations	and	vortex	in	superconducting	Pb-monolayers

Josephson	vortex	matter	in	proximity junctions

Long-range	Shiba bound	states	in	2D	limit

Unconventional	collective bound	states

Nat.	Phys.	(2014)

PRL	(2013),	PRX	(2014),	Nat.	Phys.	(2015)

Nat.	Phys.	(2015)

(2017)	to	be	published
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(	PRL	2013,	Phys.	Rev.	X,	2014)

Josephson	vortex	matter	in	lateral	proximity	junctions

The	wetting	layer	could	be	made:
- fully	non-superconducting,	TC≈	0	K	

or	
-superconducting at	TC≈	1.5-2	K

The	islands	are	SC	at	TC≈	6.2K.	

Possibility	to	realize	atomically	sharp	S-N	and	S-S’	interfaces

2/4
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2.1.	S-S’:	Low temperature regime:	T<TC1,TC2

(Phys.	Rev.	X,	2014)

Josephson	vortex	matter	in	lateral	proximity	junctions2/4
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2.2.	S-S’:	High	temperature regime:	TC2<T<TC1

deGennes’	prediction (1968)	– experimentally demonstrated 2013
(Phys.	Rev.	X,	2014)

Josephson	vortex	matter	in	lateral	proximity	junctions2/4
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2.3.	S-N:		Lateral	proximity	effect	in	a	disordered	metal

Josephson	vortex	matter	in	lateral	proximity	junctions2/4
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L.	Serrier-Garcia	et	al.	
PRL	(2013);	PRX	(2014)

Coll.	J.-C.	Cuevas,	Madridξ	=(ћD/ ΔPb )1/2 ≈	15nm

2.3.	S-N:		Lateral	proximity	effect	in	a	disordered	metal

Josephson	vortex	matter	in	lateral	proximity	junctions2/4
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CWL=80aF

DCB	fit

2.3.	S-N:		Lateral	proximity	effect	in	a	disordered	metal

Josephson	vortex	matter	in	lateral	proximity	junctions2/4
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Josephson	vortex	matter	in	lateral	proximity	junctions2/4
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2.4.	Lateral	SNS	Josephson	junctions
Josephson	vortex	matter	in	lateral	proximity	junctions2/4
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D.	Roditchev et	al.	
Nat.	Phys.	11,	332	

(2015)	

D.	Roditchev et	al.	
Nat.	Phys.	11,	332	

(2015)	

Josephson	vortex	matter	in	lateral	proximity	junctions2/4
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D.	Roditchev et	al.	
Nat.	Phys.	11,	332	

(2015)	

Josephson	vortex	matter	in	lateral	proximity	junctions2/4
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120mT 180mT

D.	Roditchev et	al.	
Nat.	Phys.	11,	332	

(2015)	

Josephson	vortex	matter	in	lateral	proximity	junctions2/4



SPICE, Mainz, Sept. 25th–28th 2017

D.	Roditchev et	al.	
Nat.	Phys.	11,	332	

(2015)	

0 +π/2
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Josephson	vortex	matter	in	lateral	proximity	junctions2/4
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2.5.	Modelling:	GL	theory	+	correlation	function

M.	Milosevic	&	T.	Cren in	Nat.	Phys.	(2015)	

with gauge-invariant	phase	difference:

GL	theory

Josephson	vortex	matter	in	lateral	proximity	junctions2/4
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Gauge-Independent	Phase	Difference
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Self-Consistent	location	of	Josephson	vortices

Since the	islands are	independent,	their gauge-independent phase	portraits	also are.	
There	is an	arbitrary global	phase	difference between each pair	of	islands.	It	decides
where JV	are	located inside junctions.
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For	each	pair	of	islands	the	total	current	crossing	each	junction	and	corresponding	kinetic	
energy	are	calculated	as	a	function	of	global	phase	difference	∆φ0.	The	exact	position	of	JV	
is	obtained	when		jTOT=0 and	EC=Min{Ec(∆φ0)}.

J4

J4

Self-Consistent	location	of	Josephson	vortices
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D.	Roditchev et	al.	
Nat.	Phys.	11,	332	

(2015)	

Modelling vs Experiment:	Result
Josephson	vortex	matter	in	lateral	proximity	junctions2/4
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Suggested	SNS	nano-device

D.	Roditchev et	al.	
Nat.	Phys.	11,	332	

(2015)	

Josephson	vortex	matter	in	lateral	proximity	junctions2/4
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Cores	of	Josephson	vortices	are	revealed	in	lateral	SNS	proximity	
junctions.	The	Josephson	vortices	have	purely	interference	origin.

Similarly	to	vortices	in	thin	superconductors	(Pearl		vortex),	
Josephson	vortices	do	not	require	magnetic	screening	to	exist	–
novel	phase-controlled	devices

Josephson	vortices	in	SIS	junctions	may	also	have	cores	!

2/4

Conclusions	2/4
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Outlook

Elementary	excitations	and	vortex	in	superconducting	Pb-monolayers

Josephson	vortex	matter	in	proximity junctions

Long-range	Shiba bound	states	in	2D	limit

Unconventional	collective bound	states

Nat.	Phys.	(2014)

PRL	(2013),	PRX	(2014),	Nat.	Phys.	(2015)

Nat.	Phys.	(2015)

(2017)	to	be	published
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Two	terms	hamiltonian:	magnetic	and	non-magnetic	scattering

where

𝑆 𝑆 ⋅ 𝑠%& > 0

𝑆 ⋅ 𝑠%& < 0

Long-range	Shiba bound	states3/4

Yu-Shiba-Rusinov (YSR) problem:
3D scattering on a classical spin 𝑆
L. Yu. Acta Phys. Sin (1965)

A. I. Rusinov JETP Lett. (1969)

H. Shiba. Prog. Th. Phys. (1968)

valid for		𝑘+	𝑟 ≫ 1

Δ
ℏ𝑣+

≈ 𝜉56
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Long-range	Shiba bound	states3/4

valid for		𝑘+	𝑟 ≫ 1

D.-J. Choi et al. Nat. Comm. (2017)

Cr on Pb(111) (300nm)

Shuai-Hua Ji, PRL (2008)

Mn and Cr on Pb(111) (20ML)

1nm

Mn on Nb(110) (bulk)

A. Yazdani et al. Science (1997)

1nm
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20	nm

Magnetic	impurities:	
175	ppm of	Fe,	
54	ppm of	Cr	
22	ppm of	Mn

Long-range	Shiba bound	states	– 2H-NbSe23/4
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In-gap	spectroscopy	reveals	large	scale	star	shaped	features

20	nm

G.	Menard	et	al,	Nat.	Phys.	(2015)

3/4 Long-range	Shiba bound	states	– 2H-NbSe2
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There	are	2	Shiba peaks.	They	oscillate	in	space	with	a	phase	shift.

Fe	impurity

3/4 Long-range	Shiba bound	states	– 2H-NbSe2
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The	phase	shift	is	directly	related	to	the	position	of	the	Shiba peaks.

Two	char.	scales:

kF and	ξ

Fe	impurity

3/4 Long-range	Shiba bound	states	– 2H-NbSe2
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The	phase	shift	is	directly	related	to	the	position	of	the	Shiba peaks.

Cr	(or	Mn)	impurity

3/4 Long-range	Shiba bound	states	– 2H-NbSe2

𝜓± =
1

𝑁𝜋𝑘+𝑟
� sin 𝑘+𝑟 −
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± 𝑒5 EFG HI5HJ KL/ℏNO

𝐸Q = Δ cos 𝛿T − 𝛿5 ; tan 𝛿± = 𝐾𝜈Z ±
𝐽𝑆
2 𝜈Z
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Long-range	Shiba bound	states	– Pb-ML/Si(111)3/4

𝟕� × 𝟑� 	Pb

𝑺𝑰𝑪	Pb
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Long-range	Shiba bound	states3/4

Experimental geometry (coupling, screening):

3D SC, magnetic atoms at the surface

2D SC, magnetic atoms in the matrix

3D

2D

Lower dimensionality -> larger extents of YSR bound states
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The	relatively	long	range	of	the	observed	Shiba states	originates	
from:
- lower	dimensionality	(2D	or	even	quasi-1D)
- direct	coupling	of	the	imbedded	impurity	with	the	SC	(instead	

of	a	coupling	via	localized	atomic	orbitals)

The	interference	pattern	is	observed	owing	clean	limit	regime

The	theoretical	description	of	YSR	is	confirmed	by	experimental	
determination	of	phase/energy	relation

Long	range	=>	hope	to	put	several	Shiba states	in	interaction

3/4
Conclusions	3/4
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Outlook

Elementary	excitations	and	vortex	in	superconducting	Pb-monolayers

Josephson	vortex	matter	in	proximity junctions

Long-range	Shiba bound	states	in	2D	limit

Unconventional	collective bound	states

Nat.	Phys.	(2014)

PRL	(2013),	PRX	(2014),	Nat.	Phys.	(2015)

Nat.	Phys.	(2015)

(2017)	to	be	published
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Unconventional	collective	bound	states4/4

Yet larger concentration of Co-atoms in 𝟕� × 𝟑� 	-Pb/Si(111) –
Formation of Co-islands under Pb

Model

Experiment

Pb (√7x√3)

Si(111)

Co

STM TEM

20nm2nm

G. Menard et al., arXiv:1607.06353v1 (2016)
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STS zero-bias 𝑑𝐼/𝑑𝑉(𝑥, 𝑦) map 

Unconventional	collective	bound	states4/4

Individual Co-island under	 𝟕� × 𝟑� 	-Pb

STM “topography”

G. Menard et al., arXiv:1607.06353v1 (2016)

Type I states
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Type I states:

Feature 1: No influence of disorder at 𝑉 = 0

Unconventional	collective	bound	states4/4

Individual Co-island under	 𝟕� × 𝟑� 	-Pb

G. Menard et al., arXiv:1607.06353v1 (2016)

Type I states
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Type I states: 

Feature 2: Spatial ordering of the Shiba-like state energies (Shiba band)

Unconventional	collective	bound	states4/4

G. Menard et al., arXiv:1607.06353v1 (2016)

Individual Co-island under	 𝟕� × 𝟑� 	-PbType I states
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We	observe	dispersive	in-gap	states		at	the	interface	between	a	
superconducting	domain	made	of	a	single	atomic	layer	of	Pb
covering	magnetic	islands	of	Co/Si(111)	and	the	surrounding	
superconducting	√7	x	√3	– Pb monolayer.	

The	states	demonstrate	a	surprising	spatial	protection	from	the	
structural	disorder.	The	states	at	EF appear	perfectly	protected.

We	speculate	the	observed	continuous	dispersion	across	the	
superconducting	gap	to	result	from	a	spatial	topological	
transition.

For	further	details:	arXiv:1607.06353v1 (2016)

4/4
Conclusions


