Spin torque induced by triplet supercurrent and

Supercurrent induced noncollinear order

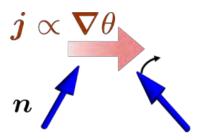
Rina Takashima

Kyoto Univ.

in collaboration with

T. Yokoyama (Tokyo Institute of Technology), S. Fujimoto (Osaka University) Y. Motome, Y. Kato (University of Tokyo), Y. Yanase (Kyoto University)

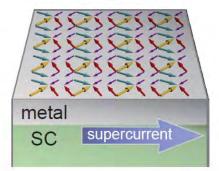
Spin-torque induced by spin-triplet supercurrent



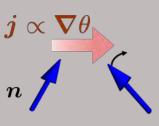
<u>R. Takashima</u>, S. Fujimoto, T. Yokoyama, PRB 96, 121203 (R) (2017)

Noncollinear magnetic order induced by supercurrent

<u>R. Takashima</u>, Y. Kato, Y. Yanase, Y. Motome (to be submitted)



Spin-torque induced by spin-triplet supercurrent



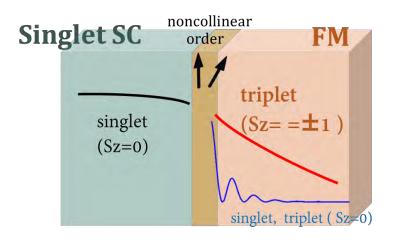
<u>R. Takashima</u>, S. Fujimoto, T. Yokoyama, arXiv: 1706.02296 (to appear in PRB(R))

- Result : general form of spin torque
- 3
- Application: Domain wall dynamics

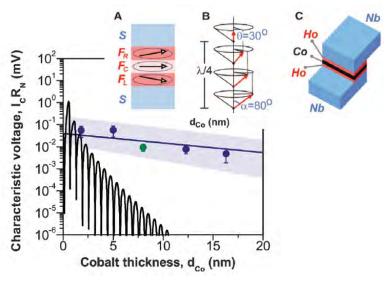
Triplet Cooper pairs

- Spin-triplet proximity effect inside ferromagnet
 - **triplet SC** | **FM** with Sr₂RuO₄ Anwar *et al.* Nat. commun. (2016)
 - singlet SC | noncollinear magnet | FM

Robinson *et al*, Science (2010) Khaire et al, PRL (2010)



Singlet-Triplet Conversion



Robinson et al, Science (2010)

Interplay of **spin-triplet pairing** and **magnetic moment**?

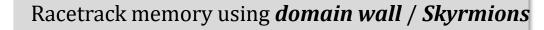
Current-induced torque in normal magnet

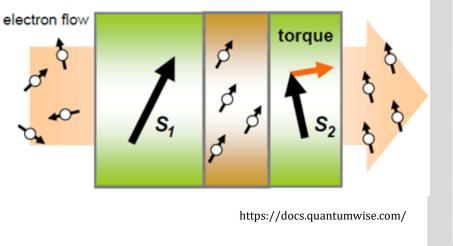
• Electric current in magnet exerts **spin-torque** on localized moment

(spin-transfer torque)

• Manipulation of spin \Rightarrow Application in magnetic devices

Spin angular momentum is transferred





Writing

RIKFN

News Letter No.404 (2015)

Motivation of our work

Question: How **triplet-correlation** changes **spin transfer torque?**

c.f.) early works for spin-torque in magnetic Josephson junction: Waintal& Brouwer PRB(2002), Y. Tserkovnyak &A. Brataas PRB (2002), etc

keypoint :

- Supercurrent-induced torque might realize **energetically efficient devices**
- Triplet order parameter (=**d** vector) might give **new type of torque** ?

$$\chi_{\mu\nu} = \chi_1 \delta_{\mu\nu} - \chi_2 \langle \hat{d}_\mu(\boldsymbol{k}) \hat{d}_\nu(\boldsymbol{k}) \rangle_{FS}$$

(spin susceptibility characterizes spin-transfer process)

Model

metallic magnet (**s-d model**) with proximity induced **triplet pairing**

$$\begin{split} H &= -t \sum_{\langle i,j \rangle} c_{i\alpha}^{\dagger} c_{j\alpha} - \mu \sum_{i} c_{i\alpha}^{\dagger} c_{i\alpha} - J_{\rm sd} S \sum_{i} \boldsymbol{n}(\boldsymbol{r}_{i}) \cdot \boldsymbol{\sigma}_{\alpha\beta} c_{i\alpha}^{\dagger} c_{i\beta} \\ &+ \frac{\Delta_{0}}{2} \sum_{\langle i,j \rangle} e^{i\boldsymbol{\kappa} \cdot (\boldsymbol{r}_{i} + \boldsymbol{r}_{j})} c_{i\alpha}^{\dagger} \left[(\boldsymbol{d}_{ij} \cdot \boldsymbol{\sigma}) i \sigma_{y} \right] c_{j\beta}^{\dagger} + H.c, \end{split}$$
(square lattice)

 $c_{i\alpha}$: conduction electron (site *i*, spin α)

model

- n_i : localized moment (site i)
- d_{ij} : triplet order parameter (site i, j)

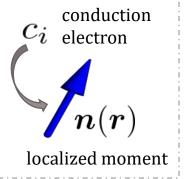
supercurrent flow is given by the spatial gradient of SC phase $e^{i\kappa \cdot (r_i + r_j)}$ $j = -2ten_s a^2 \kappa \quad (\kappa a \ll 1)$

ferromagnet

SC

(source of triplet)

Calculation of spin torque



• local spin torque : $\tau_{\text{STT}} = 2J_{\text{sd}}n \times \delta s_i$

 δs_i = local spin density of electrons under supercurrent

→ we calculate **spin density** within **linear response**

• We assume

- Localized moment varies smoothly
- Exchange splitting is large $~J_{
 m sd}S\gg\Delta_0$
 - \rightarrow we only take equal spin pairing ((anti)parallel to n)

Result: supercurrent-induced torque

• Obtained torque $\tau_{\text{STT}} = \sum_{\nu=x,y} \frac{-\tilde{P}_{\nu}a^3}{2eS} j_{\nu} \left(-\partial_{\nu}\boldsymbol{n} + \tilde{\beta}_{\nu}\boldsymbol{n} \times \partial_{\nu}\boldsymbol{n}\right).$

 j_{ν} : supercurrent density

$$\frac{\partial n}{\partial t} \sim \tau_{\text{STT}}$$

$$\begin{bmatrix} \tau_{\text{STT}} \propto -\partial_{\nu} n & : \text{ direct transfer of spin from neighboring sites} \\ (\sim ``adiabatic torque'') \\ \tau_{\text{STT}} \propto n \times \partial_{\nu} n & : \text{ deviation from direct transfer } (\sim ``\beta \text{ term''}) \\ \end{bmatrix}$$

$$\tilde{P}_{\nu} \sim \text{spin polarization of electrons}$$

 $\tilde{\beta}_{\nu} \quad \text{-originate in order parameter .} \quad \tilde{\beta}_{\nu} \propto |\Delta_0|^2$
- depend on the direction of *n* (spatial dependence)

$$\begin{aligned} \text{explicit form:} \quad \tilde{P}_{\nu} &= \frac{J_{\mathrm{sd}}S}{n_{e}a^{3}} \left[\frac{1}{2} \left(\pi_{\nu}^{xx} + \pi_{\nu}^{yy} \right) + \frac{1}{|\partial_{\nu}\boldsymbol{n}|^{2}} \left(-\pi_{\nu}^{(1)} \left((\partial_{\nu}\theta)^{2} - \sin^{2}\theta(\partial_{\nu}\phi)^{2} \right) + 2\pi_{\nu}^{(2)} \sin\theta\partial_{\nu}\theta\partial_{\nu}\phi \right) \right] \\ \tilde{\beta}_{\nu} &= -\frac{J_{\mathrm{sd}}S}{n_{e}a^{3}} \frac{1}{\tilde{P}_{\nu}} \frac{1}{|\partial_{\nu}\boldsymbol{n}|^{2}} \left(\pi_{\nu}^{(2)} \left((\partial_{\nu}\theta)^{2} + \sin^{2}\theta(\partial_{\nu}\phi)^{2} \right) + 2\pi_{\nu}^{(1)} \sin\theta\partial_{\nu}\theta\partial_{\nu}\phi \right), \end{aligned}$$

 $\pi_{\nu}^{xx}, \pi_{\nu}^{yy}, \pi_{\nu}^{(i)}$: spin-spin correlation

What causes β term?

c.f.) Normal system

Zhang& Li (2004), Tatara et al. (2008), Tserkovnyak et al(2008)

$$\boldsymbol{\tau}_{\text{nor}} = \sum_{\nu=x,y} \frac{-Pa^3}{2eS} j_{\nu}^{\text{nor}} \left(-\partial_{\nu} \boldsymbol{n} + \beta \boldsymbol{n} \times \partial_{\nu} \boldsymbol{n} \right).$$

- β is qualitatively important
- magnetic impurity scattering / mistracking $\rightarrow \beta$ term

With triplet-SC correlation

anisotropy in **spin susceptibility** \rightarrow deviation from direct transfer

$$\tilde{\beta}_{\mu} \neq 0 \quad \Longrightarrow \quad \pi^{xx} - \pi^{yy} \neq 0 \\ \pi^{xy} \neq 0 \quad n \quad \uparrow \uparrow$$

 π^{ab} : spin-spin correlation

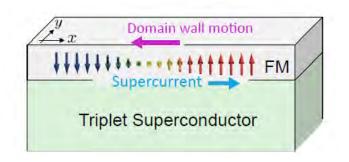
β term can be controlled by **triplet order parameters** (**d**-vector).

(⇔in normal metals, it depends on **extrinsic scattering**)

Application: Domain wall manipulation

- Domain wall texture in ferromagnetic metal
- Assume the *d*-vector

$$\boldsymbol{d}(\boldsymbol{k}) = (-\sin k_y, \sin k_x, \delta \sin k_x)$$



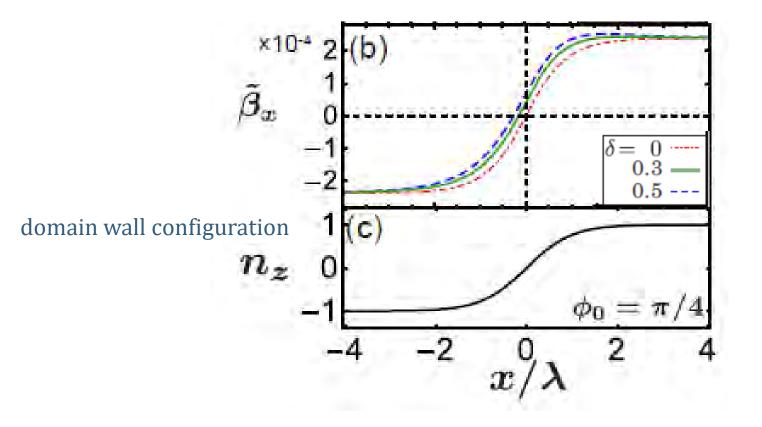
Possible origin: spin-orbit coupling due to structure inversion asymmetry $g_{so}(k) \cdot \sigma$ $d(k) \parallel g_{so}(k)$ is favored

- Apply a current (=phase gradient) → Domain wall moves
- EOM of collective coordinates (X: domain wall center)

$$\partial_t X = \frac{v_c}{(1+\alpha^2)} \left(\tau(\phi_0) j_x + \alpha F(\phi_0) j_x + \sin 2\phi_0 \right),$$

$$\partial_t \phi_0 = \frac{-1}{(1+\alpha^2)t_0} \left(\alpha \tau(\phi_0) j_x - F(\phi_0) j_x + \alpha \sin 2\phi_0 \right),$$

(detail) Spatial dependence of β

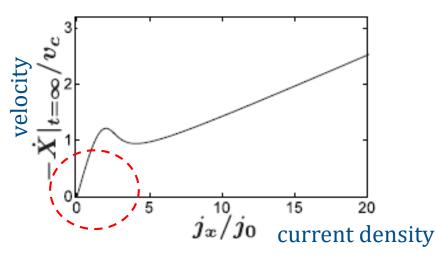


$\tilde{\beta}_{\nu}$ has strong spatial dependence

Domain wall dynamics

Under a constant supercurrent,

Current dependence of velocity at t =∞



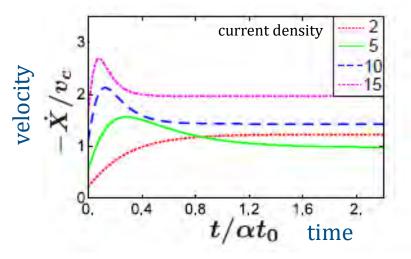
✓ No threshold current density

*without extrinsic pinning

 \Leftrightarrow w/o β terms, threshold current exists

* β terms arises from d-vector $ilde{eta}_{
u} \propto |\Delta_0|^2$

Time dependence of velocity



✓No oscillatory motion

⇔Normal metal, oscillation occurs

* β depends on space

Summary of 1st part <u>RT</u>, Fujimoto, Yokoyama, PRB 96, 121203 (R)

Spin-transfer torque by triplet supercurrent

✓ We obtain the spin-torque given by

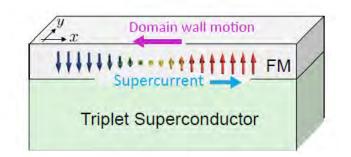
$$\boldsymbol{\tau}_{\text{STT}} = \sum_{\nu=x,y} \frac{-\tilde{P}_{\nu}a^3}{2eS} j_{\nu} \left(-\partial_{\nu}\boldsymbol{n} + \tilde{\beta}_{\nu}\boldsymbol{n} \times \partial_{\nu}\boldsymbol{n} \right)$$

 \checkmark a new type of β term : **Interplay** of *d*-vector and magnetic moment *n*

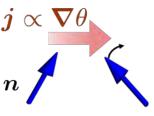
triplet correlation changes spin susceptibility of electrons (~spin transfer process)

✓ domain wall manipulation

- threshold current density is lowerd
- No oscillatory motion



Spin-torque induced by spin-triplet supercurrent

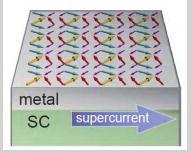


R. Takashima, S. Fujimoto, T. Yokoyama, arXiv: 1706.02296 (to appear in PRB(R))

Noncollinear magnetic order

controlled by spin-singlet supercurrent

R. Takashima, Y. Kato, Y. Yanase, Y. Motome (to be submitted)



Noncollinear magnetism and SC proximity effect

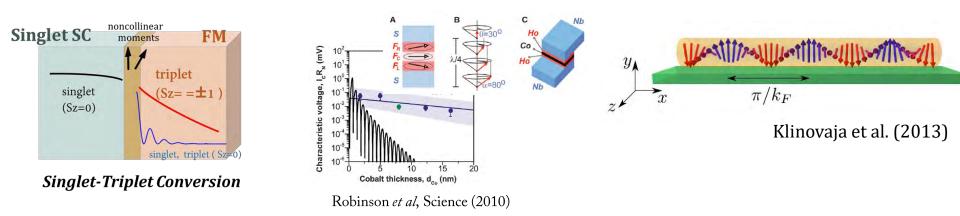
Noncollinear magnetic order : Spins are not in parallel/antiparallel

Noncollinear magnetic order is important in physics of SC proximity effects

• Singlet-triplet pairing conversion

Keizer et al, Nat. Lett. (2006) Robinson *et al*, Science (2010)

• Topological superconductor **w/o spin-orbit coupling** Klinovaja et al. (2013)



Motivation of our work

Question: Can we **switch/control** noncollinear magnetic order in the presence of SC proximity effect?

➡ can be used

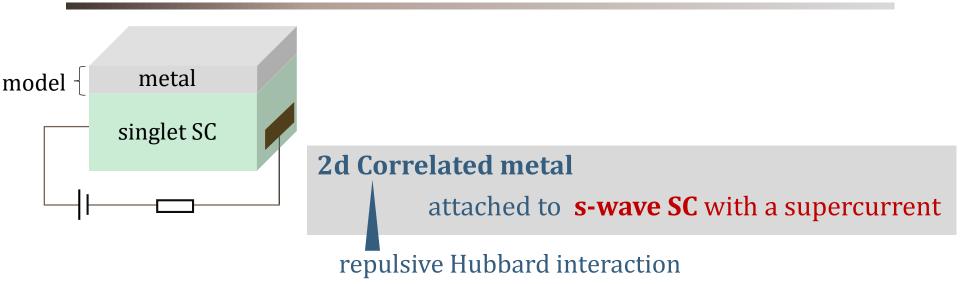
to switch /optimize the singlet-triplet conversion

• to externally control topological SC and Majorana zero modes
etc

In our work:

We propose a new way to induce **noncollinear magnetic order** by a **supercurrent**

Model

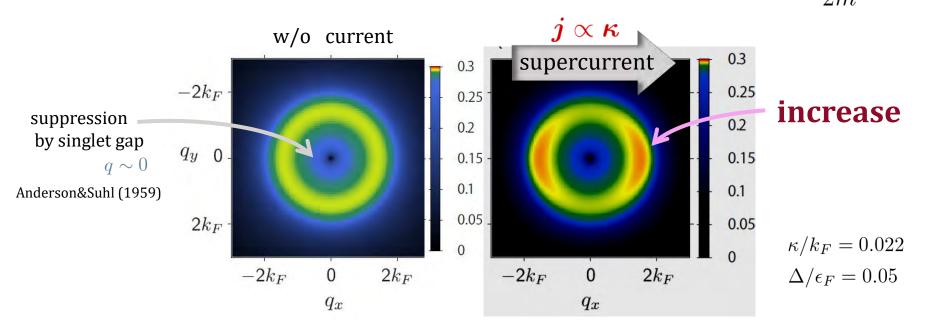


$$H = \sum_{k\sigma} \xi_k c_{k\sigma}^{\dagger} c_{k\sigma} - \frac{2U}{3} \sum_i \boldsymbol{m}_i \cdot (c_{i\sigma}^{\dagger} \boldsymbol{\sigma}_{\sigma\sigma'} c_{i\sigma'}) + \sum_i (\Delta e^{2i\boldsymbol{\kappa}\cdot\boldsymbol{r}_i} c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} + \text{h.c.}) + \frac{2U}{3} \sum_i |\boldsymbol{m}_i|^2$$

$$\begin{pmatrix} \bullet \text{ mean field of spin density} \\ \boldsymbol{m}_i = \frac{1}{2} \langle c_{i\sigma}^{\dagger} \boldsymbol{\sigma}_{\sigma\sigma'} c_{i\sigma'} \rangle \\ \boldsymbol{m}_i = \frac{1}{2} \langle c_{i\sigma}^{\dagger} \boldsymbol{\sigma}_{\sigma\sigma'} c_{i\sigma'} \rangle \end{pmatrix} \quad \left(\begin{array}{c} \bullet \text{ singlet supercurrent } \boldsymbol{j} \propto \boldsymbol{\kappa} \\ \bullet \text{ spatial gradient of SC phase } \end{array} \right)$$

Magnetic instability

• bare spin susceptibility $\chi(\boldsymbol{q})$ in the continuum model : $\xi_{\boldsymbol{k}} = \frac{k^2}{2m} - \epsilon_F$



$$\chi(\boldsymbol{q}) - \chi_{\boldsymbol{\kappa}=\boldsymbol{0}}(q) = \frac{a^2 |\boldsymbol{\kappa}|^2}{\epsilon_F} f\left(\frac{q}{k_F}, \frac{|\Delta|}{\epsilon_F}\right) + \frac{a^2 (\boldsymbol{\kappa} \cdot \hat{\boldsymbol{q}})^2}{\epsilon_F} g\left(\frac{q}{k_F}, \frac{|\Delta|}{\epsilon_F}\right) + O\left((\kappa/k_F)^4\right)$$

much smaller than g

>0 and peak at $q/k_F \sim 2$

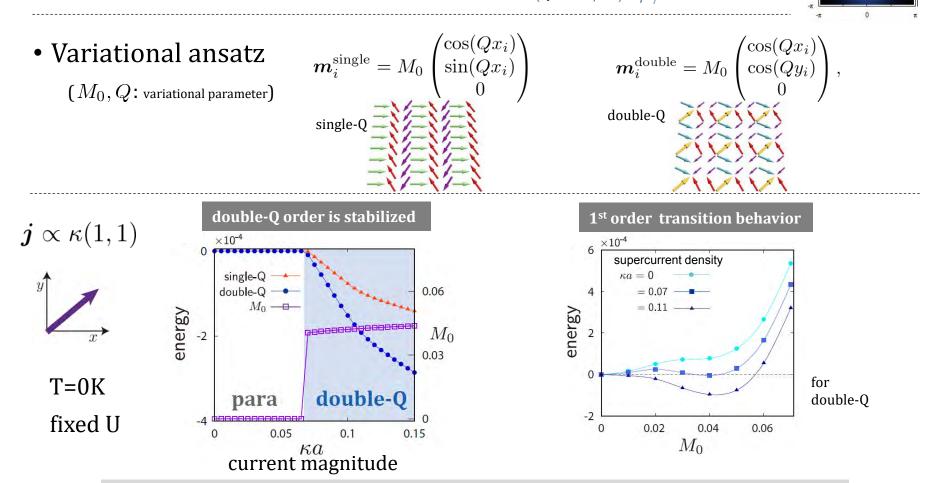
 $g(x,y) = \frac{x^2}{\pi^2} \int_0^{\infty} \int_0^{2\pi} \bar{k} d\bar{k} d\theta \frac{\sqrt{(\bar{\xi}_1^2 + y^2)(\bar{\xi}_2^2 + y^2)} - \bar{\xi}_1 \bar{\xi}_2 - y^2}{\sqrt{(\bar{\xi}_1^2 + y^2)(\bar{\xi}_2^2 + y^2)} (\sqrt{(\bar{\xi}_1^2 + y^2)} + \sqrt{(\bar{\xi}_2^2 + y^2)})^3}$

Supercurrent leads to magnetic instability

Magnetic order in lattice system

• square lattice model : $\xi_k = -2t(\cos(k_x a) + \cos(k_y a)) - \mu$

Instability: $m_{q=(\pm Q,0)}, m_{q=(0,\pm Q)}$ $(Q \sim 2\pi/3a) \ \mu/t = -2.96$

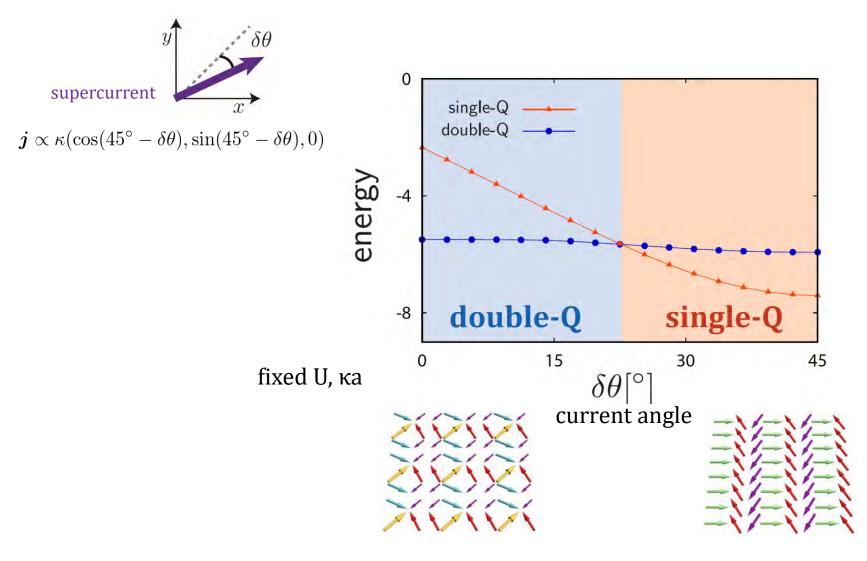


Supercurrent induces first-order transition to double-Q state

w/o current

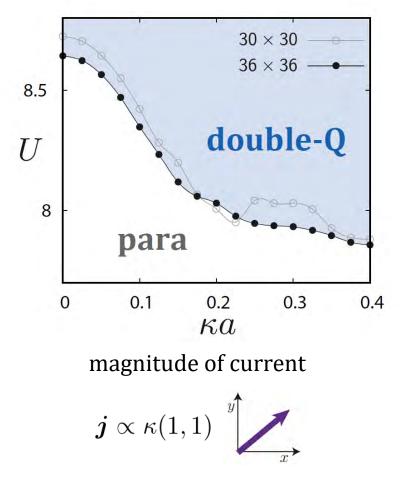
Switch to single-Q magnetic order

We can **switch** magnetic state by the **direction of supercurrent**

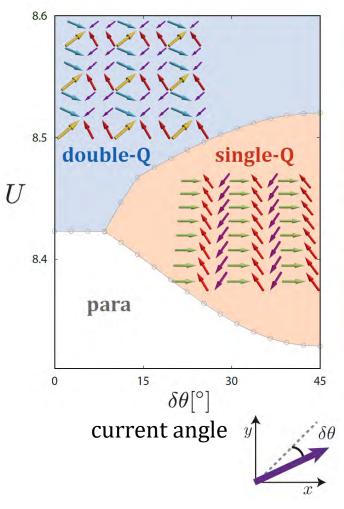


Phase diagram (T=0K)

Critical U decreases as current increases

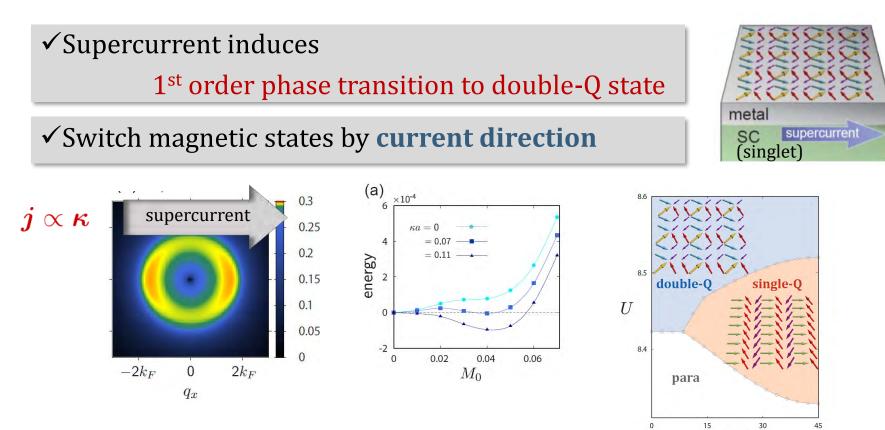


"switch" of magnetic states



Summary of 2nd part

We propose a new way to control **noncollinear order** by supercurrent



Remark

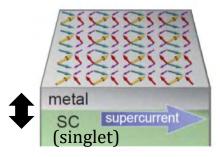
First-order transition→ metastable state of magnetic order w/o supercurrent
 Different lattices/pairing ⇒ a wide range of magnetic states, e.g. skyrmion
 Rashba Spin-orbit coupling

 $\delta\theta[\circ]$

Rashba spin orbit coupling

• Rashba SOC at the interface

$$H_{so} = \alpha \sum_{\mathbf{k}} g(\mathbf{k}) \cdot (c^{\dagger}_{\mathbf{k}\sigma_1} \boldsymbol{\sigma} c_{\mathbf{k}\sigma_2}),$$



• Energy functional

 $oldsymbol{j} \propto oldsymbol{\kappa}$

$$E[\{\boldsymbol{m}\}] = \frac{2UN}{3} \sum_{\boldsymbol{q}} \left(1 - \frac{2U}{3} \chi^{\mu\nu}(\boldsymbol{q})\right) m^{\mu}_{-\boldsymbol{q}} m^{\nu}_{\boldsymbol{q}} + F \sum_{i} (\hat{\boldsymbol{z}} \times \boldsymbol{\kappa}) \cdot \boldsymbol{m}_{\boldsymbol{i}},$$

(1) spin-spiral plane is locked (2) Inverse-Edelstein effect

➡ in-plane magnetic field

Realized magnetic states would be modulated

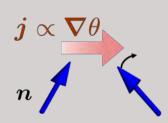
cf) w/o SOC $E[\{\boldsymbol{m}\}] = \frac{2UN}{3} \sum_{\boldsymbol{q}} \left(1 - \frac{2U}{3}\chi(\boldsymbol{q})\right) |\boldsymbol{m}_{\boldsymbol{q}}|^2,$

Conclusion

1st part

Background experiments on triplet-proximity effect in magnet

Model metallic magnet + triplet pairing potential



Spin-triplet supercurrent give a new type of spin-transfer-torque

<u>RT</u>, Fujimoto, Yokoyama, PRB 96, 121203 (R)

2nd part

Background Rich physics arise from interplay of noncollinear order and SC

Model 2d correlated metal + singlet pairing potential

Supercurrent induce double-Q/single-Q magnetic order

<u>R. Takashima</u>, Y. Kato, Y. Yanase, Y. Motome (to be submitted)

