Electron interference effects in cuprate superconductor/graphene junctions

Javier E. Villegas Unité Mixte de Physique CNRS/Thales, France

Acknowledgements

F. Cuellar Postdoc D. Perconte PhD

M. Piquemal, R. Galcerán, B. Dlubak, A. Sander, P. Seneor Unité Mixte de Physique CNRS/Thales

Palaiseau, France

C. Ulysse C2N, CNRS Orsay, France

R. Kidambi, M-.B. Martin, S. Hofmann Cambridge University *Cambridge, UK*

THALES

UNIVERSITÉ

Outline

Electron interferences at high-T_c S/graphene interfaces

$\rightarrow \text{KLEIN TUNNELING OF HIGH-T}_{c} \text{ PAIRS}$ $\rightarrow \text{ELECTROSTATIC CONTROL}$

Proximity effect mechanism: Andreev reflection

→ ELECTRON/HOLE SUPERCONDUCTING PAIRS → METAL BECOMES SUPERCONDUCTING OVER ξ

\rightarrow INTRA-BAND OR INTER-BAND PROCESS: TUNABLE BY DOPING

C.W.J. Beenakker PRL 97 067007, (2006)

\rightarrow INTRA-BAND OR INTER-BAND PROCESS: TUNABLE BY DOPING

C.W.J. Beenakker PRL 97 067007, (2006)

 $\mathsf{E}(K)=\hbar v_{\mathsf{F}}K$

→ LINEAR DISPERSION: WAVE-VECTOR INDEPENDENT VELOCITY

→ INTRA-BAND OR INTER-BAND PROCESS: TUNABLE BY DOPING

C.W.J. Beenakker PRL 97 067007, (2006)

 $E(K) = \hbar v_F K$

→ LINEAR DISPERSION: WAVE-VECTOR INDEPENDENT VELOCITY

 \rightarrow LOW CARRIER DENSITY

 \rightarrow NEW PHYSICS \rightarrow POSSIBILITIES ABSENT IN ORDINARY JOSEPHSON JUNCTIONS

→NEW PHYSICS

 \rightarrow POSSIBILITIES ABSENT IN ORDINARY JOSEPHSON JUNCTIONS

Experiments with low-T_c superconductors

Heersche et al. Nature (2007)

Efetov et al. Nat. Phys. (2015)

$\rightarrow E_F$ INHOMOGENEITY MUST BE SMALLER THAN SUPERCONDUCTING GAP \triangle !!!!

\rightarrow LIMITED TO LOW TEMPERATURES (~ 1K) \rightarrow PRISTINE EFFECTS ONLY WITH ULTRA-CLEAN GRAPHENE

Motivation for high-T_c superconductor/graphene

→ DIRECTIONAL EFFECTS DUE TO D-WAVE SYMMETRY

Linder et al. PRB (2008)

SUPERCONDUCTING GAP Δ ~ 10-30 meV INSTEAD OF Δ ~ 1 meV

→ SUPERCONDUCTING EFFECTS ROBUST AGAINST GRAPHENE INHOMOGENEITIES

Recent work on high-T_c/graphene

high-T_c superconductor/graphene "complications"

-DEPOSITION OF OXIDE SUPERCONDUCTOR ON GRAPHENE NOT POSSIBLE - OXIDE SUPERCONDUCTOR PRONE TO DEGRADATION

→ NEW FABRICATION APPROACH REQUIRED

high-T_c superconductor/graphene devices

YBCO/Au on STO + CVD graphene

→ ION IRRADIATION TO DEFINE PLANAR DEVICE

high-T_c superconductor/graphene devices

→ ION IRRADIATION TO DEFINE PLANAR DEVICE

Two different devices studied

Two different devices studied

\rightarrow ONLY GRAPHENE ON INSULATOR IS DOPED

→ ONLY GRAPHENE ON INSULATOR IS DOPED → FRINGE FIELDS: INHOMOGENEOUS DOPING

→ DOPING PROPORTIONAL TO V_G → HIGH NATIVE DOPING ~10¹³ cm⁻²

→ VERY FAR FROM DIRAC POINT → $E_{F} >> \Delta$

Measuring geometry

\rightarrow CONDUCTANCE GRAPHENE/S - GRAPHENE/N

Temperature dependent conductance

→ SAMPLE-DEPENDENT INTERFACE TRANSPARENCY

Gate dependent conductance

→ PERIODIC MODULATION OF CONDUCTANCE

Gate dependent conductance

→ PERIODIC MODULATION OF CONDUCTANCE

Theoretical grounds

PHYSICAL REVIEW B 77, 064507 (2008)

Tunneling conductance in s- and d-wave superconductor-graphene junctions: Extended Blonder-Tinkham-Klapwijk formalism

Jacob Linder and Asle Sudbø

Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway (Received 21 August 2007; revised manuscript received 1 November 2007; published 14 February 2008)

FIG. 11. (Color online) Conductance spectra for a N-I-S graphene junction with $E'_F/\Delta = E_F/\Delta = 100$, using *s*-wave pairing. We reproduce the same results as Ref. 12 with a π periodicity in the parameter χ . However, we obtain a phase shift of $\pi/2$ in χ compared to their results. We believe that this difference pertains to a minor sign error in the wave functions used in Ref. 12.

FIG. 13. (Color online) Conductance spectra for a N-I-S graphene junction with $E'_{\rm F}/\Delta = E_{\rm F}/\Delta = 100$, using *d*-wave pairing.

See also Bhattacharjee et al Phys. Rev. Lett. 97, 217001 (2006) for s-wave 27

Superconducting / normal graphene interface model

Superconducting / normal graphene interface model

Superconducting / normal graphene interface model

 \rightarrow BARRIER U₀ SETS FERMI WAVELENGTH

Model simulations

Theory vs. experiment

 E'_F =0.4 eV $\alpha = \alpha/4$

Gate tuning of superconducting carriers

→ FRACTION OF SUPERCARRIERS TUNABLE BY GATING

Conclusions

→ HIGH-T_c SUPERCONDUCTOR / GRAPHENE DEVICES
→ GATE TUNABLE PROXIMITY IN CVD GRAPHENE
→ ROBUST QUANTUM INTERFERENCE EFFECTS

Theory vs. Experiment disagreement

Funded by the Horizon 2020 Framework Programme of the European Union

http://www.cost.eu/COST_Actions/ca/CA16218

→ €€ for short term visits → €€ for conferences and workshops

GET IN TOUNCH WITH THE NATIONAL PROPOSERS

FIG. 2: Klein-like quantum tunneling in graphene systems. Transmission probability T through a 100-nm-wide barrier as a function of the incident angle for (a) single- and (b) bi-layer graphene. The electron concentration n outside the barrier is chosen 0.5×10^{12} cm⁻² for all cases. Inside the barrier, hole concentrations p are 1×10^{12} and 3×10^{12} cm⁻² for red and blue curves, respectively (such concentrations are most typical in experiments with graphene). This corresponds to the Fermi energy E of incident electrons ≈ 80 and 17 meV for single- and bi-layer graphene, respectively, and $\lambda \approx 50$ nm. The barrier heights V_0 are (a) 200 and (b) 50 meV (red curves) and (a) 285 and (b) 100 meV (blue curves).

Katsnelson et al. Nat. Phys (2006)

VOLUME 49, NUMBER 17

Dielectric properties of sputtered SrTiO₃ films

H.-M. Christen,* J. Mannhart, E.J. Williams, and Ch. Gerber IBM Research Division, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland (Received 8 November 1993)

 $\varepsilon_{\text{STO}} \sim 10^4 \ d_{STO} = 500 \ \mu\text{m}$ $\varepsilon_{\text{STO}} \sim 10^4 \ d_{YBCO} = 50 \ \text{nm}$

$$\frac{\delta n}{\delta V_G} = \varepsilon_0 \left[\left(\frac{d_{STO}}{\varepsilon_{STO}} + \frac{d_{YBCO}}{\varepsilon_{YBCO}} \right) 2e \right]^{-1}$$
$$\frac{\delta n}{\delta V_G} \sim 5 \ 10^{10} \ (\text{cm}^{-2} V^{-1}).$$

FIG. 2. Field dependence of the dielectric constant ε of single-crystal SrTiO₃ at various temperatures. Solid lines are fits to Eqs. (3) and (4).

PHYSICAL REVIEW B 77, 184507 (2008)

S

Josephson current and multiple Andreev reflections in graphene SNS junction

ELEMENTARY EXCITATIONS IN THE VICINITY OF A NORMAL METAL-SUPERCONDUCTING METAL CONT

P. G. DE GENNES

Faculté des Sciences, Orsay (S & O), France

and

D. SAINT-JAMES Centre d'Etudes Nucléaires de Saclay, Gif-sur-Yvette (S & O), France

Fig. 1. Density of states

Xu Du, Ivan Skachko, and Eva Y. Andrei Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA (Received 26 March 2008; published 9 May 2008)

Proximity Effect in Gold-Coated YBa₂Cu₃O_{7-δ} Films Studied by Scanning Tunneling Spectroscopy

Amos Sharoni,¹ Itay Asulin,¹ Gad Koren,² and Oded Millo^{1,*}

¹Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel ²Department of Physics, Technion–Israel Institute of Technology, Haifa 32000, Israel (Received 6 July 2003; published 8 January 2004)

FIG. 3 (color online). Measured gap size as a function of distance from the *N-S* interface (solid circles). The distance is estimated from the distance to the crystallite edge, measured form the STM topographic images, taking into account the nominal Au film thickness. The solid line is a fit to a decaying exponential form, with normal coherence length (penetration depth) $\xi_N \approx 29$ nm, and interface gap value $\Delta_0 \approx 15$ meV (the diamond symbol). The inset shows the data in a semilog scale.