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PLAN

• Thermoelectric effects in edge states of  2D 

topological systems: quantum Hall and quantum 

spin Hall. 

• Dissipation of energy in driven quantum dots.

•  (Role of many-body interactions)



DC HEAT-WORK 
CONVERSION:

THERMOELECTRICITY



TWO-TERMINAL DEVICE

µ
T

J1 = ṄR

J2 = Q̇R = ĖR � µṄR

µ+ �µ

T + �T

Conservation laws:
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Similarly, by evaluating the forces in linear response with respect to ⇥µ leads to
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In the last step we have used
⇧ 0

�⌅
d⌥⌥e�i⇤⇥ =

1

 2
+ i⇧⇥⇤( ). (A10)

In the presence of a magnetic field B, a time-reversal transformation implies changing B ⇤ �B in the Hamiltonian
Ht, which defines the frozen density matrix ⌃̂t used to evaluate the expectation values. Therefore, the coe⇧cients �ff

ij
satisfy the following general Onsager reciprocal relations

�ff
ij (B) = sisj�

ff
ji (�B), (A11)

where si, sj are ± depending on the parity under B ⇤ �B of the operators F̂i(B), F̂j(B). Using exactly the same
arguments we can prove

�cf
j (B) = sj�

fc
j (�B) (A12)

The case sj = 1 is usual in density-like operators as in the example considered in Appendix (??), while sj = �1 is
usual in current operators like in the case of driving with time-dependent magnetic fields? .

Appendix B: Thermoelectrics in three steps

We recall the main steps of the usual thermoelectric description for a typical dc device described by two electron
reservoirs R and L connected to a conductor. (i) The first task of thermoelectrics is the proper formulation of the
conservation laws. In the simple two-terminal device driven by dc gradients of temperature and chemical potentials,
the relevant fluxes are the charge and energy currents eṄ�, Ė� flowing through the conductor into reservoir � as
responses to a chemical potential di⇥erence ⇥µ and/or a temperature di⇥erence ⇥T between the reservoirs. The
conservation of the number of particles and the energy of the full system imply that the rate of change for these
quantities satisfy

ṄL = �ṄR, ĖL = �ĖR. (B1)

(ii) The second task is to identify the relevant fluxes Ji and the conjugated a⇧nities Xi. As pointed by Callen? , a
practical procedure is to calculating the rate of entropy production

Ṡ =
Q̇L

TL
+

Q̇R

TR
, (B2)

where Q̇� = Ė� � µ�Ṅ� is the heat flux into the reservoir �. Considering µL = µ, µR = µ � ⇥µ and TL = T ,
TR = T � ⇥T and assuming ⇥µ, ⇥T to be small perturbations of the equilibrium state, substituting in Eq. (??), in
linear response regime, i.e. keeping only terms ⌅ ⇥T, ⇥µ, it is found

Ṡ =
M⌅

i=1

JiXi, (B3)
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Ṡ =
Q̇L

TL
+

Q̇R

TR
, (B2)
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Rate of entropy production:

Q̇↵ = Ė↵ � µ↵Ṅ↵

Linear response:
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where M = 2 and J1 = ṄR and J2 = Q̇R are the currents while X1 = ⇥µ/T and X2 = ⇥T/T 2 are the conjugated
a⇧nities. (iii) The third step is to assume that the currents and the forces are linearly related

Jj =
M⌃

i=1

LjiXi. (B4)

The L’s are named ”transport coe⇧cients” or ”Onsager coe⇧cients”. Under time-reversal symmetry they satisfy the
so called Onsager relations L12(B) = L21(�B), where B is a magnetic field? . Thus, the rate of entropy production
can be expressed as Ṡ =

⇧
k,j LjkXkXj .

Appendix C: Two-terminal setup without many-body interactions

A possible way to evaluate the Onsager-like coe⇧cients is to start from Eq. (??) and evaluate the coe⇧cients of the
matrix ⇥ from the susceptibilities ⌅t(⇧) as explained in Appendix ??. Another possibility is to directly start from the
expressions for the charge (??), heat (??) and work (??) and perform expansions in ~⇧, ⇥µ and ⇥T . This procedure
is rather straightforward in the case of systems without many-body interactions. by recourse to Green’s functions or
Scattering matrix formalisms. We present details of such a procedure in what follows.

1. Model

We consider a generic set-up of Fig. 1, consisting in a non-interacting quantum system with many electronic
levels coupled to two electron reservoirs, with chemical potentials µ� and temperatures T�, � = L,R. The electrons
of the reservoirs obey the Fermi-Dirac distribution f�(E) = [1 + e(E�µ�)/T� ]�1 (from now we set the Boltzmann
constant kB = 1). An external time-dependent potential characterized by a set of time periodic parameters V (t) ⇥
{V1(t), . . . , VM (t)} is applied to the central conductor described by the Hamiltonian Ĥc(t) = Ĥc(V1(t), . . . , VM (t)).
The Hamiltonian fo the full system reads:

Ĥ(t) = Ĥres + ĤT + Ĥc(t), (C1)

where Ĥc(t) = Ĥel + V̂(t) with

Ĥel =
⌃

m
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describing the central quantum system. The di⇤erent matrix elements of the Hamiltonian depend in general on an
external magnetic field B. The time-dependent external potential applied to the system can be written as

V̂(t) =
⌃

m

d†mVm(t)dm. (C3)

The reservoirs are represented by
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The Hamiltonian ĤT represents the tunnelling between the leads and the levels in the system,

ĤT = �
⌃

�,k�,n

[w�d
†
nck� + h.c]. (C5)

In the example of Fig. ?? we consider a setup with two barriers (m = 1, 3) and a quantum dot (m = 2) with diagonal
energies ⌃m, m = 1, 2, 3, connected by tunneling parameters wm,m+1 = w. Three time-dependent gate voltages
Vm(t) = V 0

m cos(⇧t+ ⇥m) are applied at the barriers and at the dot.

We can express the charge and heat averaged currents entering the reservoir �, Ṅ�, Q̇� as?

Ṅ� =
e

h

⌥
dE

⌃

n,⇥
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Fluxes Affinities

Onsager relations: linear response=>micro reversibility 
(encoded in transport coefficients L)

L11(B) = L11(�B), L12(B) = L21(�B)

2nd principle:
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Here, the first term accounts for the two quantum dots
and their couplings to the two electrodes,

Hel =
⇧

�=L,R

(H� +Hc,� + ⇥�d
†
�d�). (2)

Both quantum dots � = L,R host one electronic state
of energy ⇥�, with corresponding creation (annihilation)
operators d†� (d�). The dots are assumed noninteracting
and in contact with one electron reservoir each. The
reservoirs are modeled by the free-electron Hamiltonians

H� =
⇧

k↵

⇥k↵c
†
k↵
ck↵ , (3)

where c†k↵
(ck↵) creates (annihilates) an electron in state

k� of electrode � and the hybridization between quantum
dots and electrodes is described by

Hc,� =
⇧

k↵

wk↵c
†
k↵
d� + h.c. (4)

with the amplitude wk↵ .
The vibrational mode couples to the electronic degrees

of freedom through the tunnel coupling between the two
quantum dots,

HT = t(x̂)d†LdR + h.c. . (5)

Specifically, the tunneling amplitude t(x̂) = t0e�⇥x̂ de-
pends on the vibrational coordinate x, which provides the
electron-phonon coupling of strength ⌅.28 For simplicity,
we assume that the mechanical motion is characterized
by a single normal-mode coordinate. Expressing this co-
ordinate in terms of phononic creation and annihilation
operators, x̂ = â+ â†, the free motion of the vibrational
mode is governed by the Hamiltonian

Hv = ⌃(a†a+
1

2
), (6)

where ⌃ is the frequency.
Finally, the last two terms of the Hamiltonian (1) rep-

resent a phonon bath and its coupling to the vibrational
mode. We will provide some further details for these
pieces in Sections III and IV.
For the most part, we will set ~ = kB = 1 unless a

restoration of conventional units facilitates the discus-
sion.

B. Thermoelectric description

We begin reviewing some aspects of the general theory
of thermoelectric response19 as applied to the refrigera-
tion of a vibrational mode. In many ways, our discus-
sion here follows Refs. 22 and 23 which consider a three-
terminal setup including two electron reservoirs and one
phonon reservoir.

We regard the vibrational mode thermalized with the
phonon reservoir. We focus attention on thermoelec-
tric cooling of the system constituted by the vibrational
mode coupled to a phonon reservoir at temperature Tph

and assume that the two electronic reservoirs are at the
same temperature T . Charge currents JC between the
two electron reservoirs and heat currents JQ between the
phonon and the electron reservoirs can be induced by ap-
plying a chemical potential di⇥erence �µ = µL � µR be-
tween the electron reservoirs or a temperature di⇥erence
�T = Tph � T . Within linear response, the thermoelec-
tric e⇥ects are then described in terms of a 2⇤ 2 matrix
L,

�
JC/e
JQ

⇥
=

�
L11 L12

L21 L22

⇥�
�µ/T
�T/T 2

⇥
,

or in short J = L ·X. Here, the quantities X1 = �µ/T
and X2 = �T/T 2 are known as a⌅nities. The Onsager
reciprocity relations yield L12(B) = L21(�B) in the pres-
ence of a magnetic field B. From now on, we will as-
sume that the system is time-reversal symmetric so that
L12 = L21.
Our device operates as a refrigerator as long as JQ < 0

for Tph < T . Given a certain bias voltage V = �µ/e,
this is the case for phonon temperatures in the interval
Tph ⇧ [T (1� L21�µ/L22), T ].

We can characterize the operation of the device in Fig.
1 as a refrigerator through the coe⌅cient of performance
⇤, which is defined as the ratio of the rate at which heat
is extracted from the cold reservoir (i.e. the phonon reser-
voir) and the invested electric power,

⇤ =
Q̇

Ẇ
=

�JQ

(JC/e)�µ
=

L21X1 + L22X2

TX1(L11X1 + L12X2)
. (7)

This e⌅ciency can be related to the rate of entropy pro-
duction, Ṡ = (JC/e)X1 + JQX2 which yields

⇤ = ⇤C

⇤
1� T Ṡ

(JC/e)�µ

⌅
. (8)

Thus, as a consequence of the Second Law of Thermody-
namics, the e⌅ciency ⇤ is always smaller than the Carnot
e⌅ciency for refrigeration (given here to linear-response
accuracy),

⇤C =
T

|�T | . (9)

We also note another consequence of the Second Law.
Writing the rate of entropy production in linear response,

Ṡ = Xt · L ·X, (10)

we conclude that L is positive semidefinite, i.e.

L11, L22 > 0,

L11L22 � L2
12 ⌅ 0. (11)

L11, L22 > 0

L11L22 � L12L21 > 0



EFFICIENCY
dc- Heat engine: electrical power/heat flux

Maximum efficiency for a given diff of temperature :

4

In addition to the currents JC and JQ, there will also be
a heat current flowing between the two electron reservoirs
in our device. However, this current does not contribute
to entropy production as it flows between two reservoirs
of equal temperature. More generally, it does not play
an essential role in the following.

We can also define a figure of merit ZT for our three-
terminal setup in the usual manner. Indeed, for a given
temperature di⇥erence �T , the e⇧ciency can be maxi-
mized as function of voltage. This yields the maximal
e⇧ciency

⇥ = ⇥C

⌥
1 + ZT � 1⌥
1 + ZT + 1

, (12)

where

ZT =
L2
12

det (L)
, (13)

is the figure of merit. Thus the Carnot e⇧ciency can be
attained as ZT ⇥ ⇤.

So far, we assumed that the vibrational mode is cou-
pled to a phonon reservoir which fixes its temperature
to Tph. Alternatively, we could decouple the vibrational
mode from the reservoir. In this case, the termoelec-
tric cooling would result in an e⇥ective temperature of
the vibrational mode which is smaller than the electron
temperature. In previous works, it was usually this tem-
perature which was used to characterize phonon cooling
in nanoelectromechanical systems.

For a general nonequilibrium situation, the distribu-
tion function of the vibrational mode will not be ther-
mal so that we need to specify what we mean by e⇥ec-
tive temperature. The conventional definition in a non-
equilibrium transport setup relies on coupling the vibra-
tional mode to a thermometer, a reservoir with infinites-
imal coupling to the vibrational mode.24–27 The e⇥ective
temperature is then defined as the temperature of the
thermometer at which there is vanishing heat flow be-
tween it and the vibrational mode. This definition was
originally introduced by Engquist and Anderson24 and
has been widely adopted in many transport setups. This
definition allows us to obtain the e⇥ective temperature
of the vibrational mode within the above formalism by
requiring that JQ = 0 which yields

T e� = T

�
1� eV

L12

L22

⇥
. (14)

Note that this is just the minimal phonon temperature
at which the device with a phonon thermostat operates
as a phonon refrigerator.

III. QUANTUM REGIME

We first consider the quantum regime in which the
tunneling rate between the quantum dots is small com-
pared to the vibrational frequency. Moreover, we assume

that the coupling between quantum dots and leads is
strong compared to the coupling between the quantum
dots. In this limit, we can describe the system in terms of
a master (or rate) equation for the occupation probabil-
ity Pn of the phonon mode. Here, Pn denotes the prob-
ability that the phonon state of energy n⇧ is occupied.
The state of the phonon mode can change whenever an
electron tunnels between the two quantum dots and the
corresponding rates can be readily derived from Fermi’s
Golden Rule.

A. Rate equation

We first set up the master equation for the dynamics
of the phonon population. Following Ref. 29, the master
equation for Pn takes the form

Ṗn =� Pn

⌅

n0

Wn⇥n0
+

⌅

n0

Pn0Wn0⇥n � 1

⌅
[Pn � P eq

n ],

(15)

where Wn⇥n0
denotes the rate of transitions between

phonon states n to n⇤. The last term in Eq. (15) accounts
for the coupling of the oscillator to the phononic environ-
ment in a phenomenological manner.29 We assume that
this phonon heat bath is at a temperature Tph, so that
the phonon distribution Pn will relax to the equilibrium
distribution

P eq
n = e�n⌅/Tph(1� e�⌅/Tph), (16)

within the relaxation time ⌅ . In the limit of fast relax-
ation, 1/⌅ ⇥ ⇤, the distribution Pn approaches the equi-
librium distribution P eq

n , while in the opposite limit of
slow relaxation, 1/⌅ ⇥ 0, the phonon distribution func-
tion is entirely controlled by electron-induced processes.
For small inter-dot tunneling, we can evaluate the tran-

sition rates Wn⇥n0
by Fermi’s Golden Rule, working to

lowest order in the hopping amplitude t0. By account-
ing for tunneling processes between the quantum dots
going in both directions, the rates can be expressed as
Wn⇥n0

=
⇤

� ⌅=⇥ W
n⇥n0

�⇥ with

Wn⇥n0

�⇥ = |Mn⇥n0 |2|t0|2In⇥n0

�⇥ . (17)

Here, we label the leads by Greek indices, � = L,R.
The transition rates involve the Franck-Condon matrix
elements Mn⇥n0 = ⌅n⇤|e�⇤x̂|n⇧.29 An explicit evaluation
of these matrix elements yields

|Mn⇥n0 |2 = e�⇤2
⇧
⇤Q�q

⌥
q!/Q!LQ�q

q (⇤2)
⌃2

, (18)

with the abbreviations q = min(n, n⇤) and Q =
max(n, n⇤), while Ln

m(x) denotes the generalized La-
guerre polynomials.

Figure of 
merit

⌘ =
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Abstract

In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state de-
vices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles
such as electrons, photons, phonons, etc. This review aims to introduce some of the theories used to describe these
steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of
idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow
(refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be under-
stood to include photovoltaics when the heat source is the sun. In many cases the machines we consider have few
degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic.
This review discusses di�erent theories which can take into account di�erent aspects of mesoscopic and nanoscale
physics, such as coherent quantum transport, magnetic-field induced e�ects including topological ones (such as the
quantum Hall e�ect), and single electron charging e�ects. It discusses the e⇥ciency of thermoelectric conversion,
and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or
without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii)
Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) master equation analysis
for small quantum machines with or without interaction e�ects, (v) stochastic thermodynamic for fluctuating small
systems. In all cases, we place particular emphasis on the fundamental questions about the bounds on ideal machines.
Can magnetic-fields change the bounds on power or e⇥ciency? What is the relationship between quantum theories
of transport and the laws of thermodynamics? Does quantum mechanics place fundamental bounds on heat to work
conversion which are absent in the thermodynamics of classical systems?

Keywords: Thermoelectricity, Quantum thermodynamics, Seebeck e�ect, Peltier cooling, Entropy production,
Second law of thermodynamics, Quantum transport, Dynamical quantum systems, Scattering theory, Master
equations, Stochastic thermodynamics, Quantum dots, Quantum point contacts, Quantum Hall e�ect, Andreev
reflection, Linear response, Onsager relations, Thermal conductance, Thermoelectric figure of merit,
Non-equilibrium thermodynamics, Finite-time thermodynamics
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Desired e⇥ciency Necessary ZT

Carnot e⇥ciency ⇤
9/10 � Carnot e⇥ciency 360

3/4 � Carnot e⇥ciency 48

1/2 � Carnot e⇥ciency 8

1/3 � Carnot e⇥ciency 3

1/6 � Carnot e⇥ciency 24/25 ⇥ 1

1/10 � Carnot e⇥ciency 40/81 ⇥ 0.5

1/100 � Carnot e⇥ciency 400/9801 ⇥ 0.04

Table 1: Examples of the dimensionless figure of merit ZT necessary for a desired heat-engine e⇥ciency, see Eq. (27). This connection between
the maximum e⇥ciency and ZT is convenient, as it is easier to calculate ZT from basic transport measurements than to measure the maximum
e⇥ciency directly. Current bulk semiconductor thermoelectric have ZT ⇥ 1, while a ZT ⇥ 3 would be necessary for most industrial or household
applications. However the connection between maximum e⇥ciency and ZT only exists in the linear-response regime, as ZT has no meaning outside
the linear-response regime.

Figure 2: In (a) we show a traditional thermocouple made of two di�erent thermoelectrics (open and filled circles) each coupled to the reservoir
being heated (reservoir H) and one of the cold reservoirs (1 or 2). The heat drives electrons around the circuit from reservoir 1 to reservoir 2,
through the load which turns the electrical power into some other kind of work (for example the load could be a motor that generates mechanical
work). In the ideal case, the two thermoelectrics have opposite thermoelectric responses; the one marked by the open circle generates an electrical
current in the same direction as the heat flow, while that marked by the filled circle generates an electrical current in the opposite direction to
the heat flow. In (b) we show a new possibility a�orded by quantum systems. In this case a single quantum system plays the role of the whole
thermocouple. We mark it as a half-filled circle, to indicate that it combines the properties of the two thermoelectrics in (a).

It is worth noting that if the heat source is the sun (which is reasonably well approximated by photons emitted from
a black-body at 4000K), then the quantum thermocouple can also be thought of as a nanoscale photovoltaic. Indeed at
a hand-waving level, it works much like a traditional p-n junction photovoltaic. The electrons at low energies (those in
the valence band in a p-n photovoltaic) are coupled to reservoir 1, while those in excited states (the conduction band in
a p-n photovoltaic) are coupled to reservoir 2. Thus when a photon excites an electron from a low to high energy state,
that electron flows into reservoir 2. The empty low energy state is filled by an electron from reservoir 1 (this is often
represented as a hole flowing from the system into reservoir 1). Thus the absorption of a photon causes a net electron
flow from reservoir 1 to reservoir 2, even though reservoir 2 has a higher electro-chemical potential than reservoir 1.
It thus converts heat into electric work. The quantum thermocouple systems that we will discuss in Sections 9.3-9.5,
are microscopically rather di�erent from a p-n junction photovoltaic, but they still work in the manner outlined here.

1.7. Thermoelectricity as a probe of nanostructures
Increasingly experimentalists are using the thermoelectric response of nanostructures as a probe of the physics of

those structures. It provides complementary information to that extracted from more traditional transport measure-
ments such as measuring the nanostructure’s I-V response.
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EDGE STATES IN QUANTUM HALL EFFECT
Laughlin, PRB 23, 5632 (1981); Halperin, PRB 25, 2185 (1982)

Edge states:
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FRACTIONAL QUANTUM HALL EFFECT
Wen,  PRB 41, 12838 (1990)

Laughlin series: ⌫ = 1/m m odd 

Chiral bosons Fermions

Edge states: Chiral Luttinger liquid

Books by E. Fradkin and by T. Giamarchi
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88 D.C. Glattli Séminaire Poincaré

Figure 8: Schematic view of charge transfer in the case of a strong barrier (upper figure) and a
weak barrier. In the later case the FQHE fluid is weakly perturbed and charge transfer occurs via
the FQHE fluid.

Tunneling occurring between two fractional edge (and not between a metal and a fractional edge)
the dI/dVds characteristics will be proportional to the square of the TDOS. The exponents for
the conductance is doubled. For example γ = 4, i.e. 2.( 1

ν − 1) for ν = 1/3. This approach has
been used by several groups. A difficulty is that sample inhomogeneities around the QPC may
lead to transmission resonances difficult to control. Ref.[34] exploits the Luttinger predictions for
tunneling through such a resonant state. A further difficulty is the high value of the power law for
the conductance with temperature or voltage which is is expected to be measurable only at very low
conductance. For ν = 1/3, for example, exact finite temperature calculations of IV characteristics,
see below, shows that the exponent 4, becomes the dominant term only when the conductance is
smaller than 10−4e2/3h [35] . Otherwise an effective exponent, much smaller than 2 is observed.
Up to now, no experimental group have tried to do measurements in this limit.

weak barrier: The regime where the barrier is very weak is more interesting. Practically, the
QPC gently pushes the upper edge close to the lower edge to induce a quantum transfer of particles
from one edge to the other. The QPC potential is weak enough to not make appreciable change
of the local filling factor. A characteristic signature of the Luttinger liquid physics is the vanishing
transmission at low temperature or bias voltage even in the case of a so weak coupling that the
transmission would be close to 1 in absence of interaction. The low energy strong backscattering
limit continuously evolves toward a weak backscattering limit at large energy (large transmission).
In this regime, we will see later that integer charges tunnel at low energy, while fractional charges
tunnel at large energy.

To describe the tunneling between the upper and lower edge of Fig.8 we introduce bosonic
modes ρ̃ and φ̃ previously derived with the subscript +/− for the upper and lower modes respec-
tively. Without coupling by the artificial impurity, they are independent and the Hamiltonian is
the sum of their Hamiltonian. The impurity of strength λ situated in X = 0 induces a coupling
between the excitations: ≃ ψ†

qp,+ψqp,− + ψ†
qp−ψqp+ which gives the interaction term:

Hint = λ cos(φ+(0)− φ−(0)) (30)

At low energy, the system flows to an insulating state and the conductance displays the same
power law with T or Vds than the one expected for a strong impurity potential (tunnel barrier)

G ∼
e2

3h

(
ε

TB

)2( 1

ν
−1)

→ 0 for ε≪ TB (31)

C. Glattli, Séminaire Poincaré 2, 75 (2004)

TUNNELING CONTACTS IN THE 
FRACTIONAL QUANTUM HALL EFFECT

Electron tunneling e

Quasiparticle 
tunneling e*= e/m

G(T ) / T 2m�2

G(T ) / T 2/(m�2)

Milliken, Umbach, Webb (1994), Chang, Pfeiffer, West (1996)
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OBSERVATION OF CHIRAL HEAT TRANSPORT 
THROUGH THE EDGE STATES

G. Granger, J. P. Eisenstein and J. L. Reno, Phys. Rev.Lett. 102, 086803 (2009)

‘‘heater´´
Voltage probe V0(t) = µ0 +

X

k 6=0

e�i(k⌦0t+'k)V (k)
0 /2

Different signals up and downstream for k=1,2
k=2 assumed to be a good sensor of heat
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FIG. 1. (color online). Measured device. (a) Measured
Hall resistance Rxy versus perpendicular magnetic field B.
(b) SEM micrograph of the sample. Surface metal gates ap-
pear brighter. Large and top right gates (not colorized) are
grounded. The large ohmic contacts indicated as black disks
or as a rectangle are located hundreds of microns away. At
filling factor � = 4�3, the electrical current propagates an-
ticlockwise along two edge channels (lines). The fractional
inner channel (yellow line) is locally heated up by voltage bi-
asing a quantum point contact (upstream HU , downstream
HD1 or HD2) using its split gate (colorized red) to set it to
half (fully) transmit the inner (outer) channel. The heating
induced in the inner channel is probed from the current ID
across the detector (D) set in the Coulomb blockade regime
using its split gate (colorized blue). (c) Test of electrical edge
paths, with HD2 and D set to perfectly transmitting the in-
teger outer channel, HD1 set to perfectly reflecting it, and
the fractional inner channel being fully reflected at the three
split gates. Symbols display outgoing currents, measured at
di�erent locations versus the gate voltage controlling HU , for
a current of 100 pA injected at the left top contact.

ness of the two copropagating channels, the constrictions
labeled D and HD2 were tuned to fully transmitting (re-
flecting) the outer (inner) channel, and the constriction
HD1 was closed. In this regime, the vanishing currents
ID and IHD2 at positive split gate voltages show that the
electrical current IR is carried only by the inner channel,
with negligible charge tunneling toward the outer chan-
nel between HU and HD2. Similar tests were performed

in presence of the largest injected powers to establish the
counter-clockwise (chiral) propagation of the electrical
current as well as the absence of inter-channel tunneling
in all the experimental configurations investigated here-
after.

FIG. 2. (color online). Heaters and detector characteriza-
tions. (a) I � V characteristics of the heater quantum point
contacts (symbols), with IinH the measured DC current trans-
mitted in the inner edge channel and VH the applied voltage
bias. The continuous line (green) is a calculation for an ex-
actly half transmitted inner edge channel. (b) Representative
surface plot of ⌅ID�⌅VD ⇥ ⇥D�3RK+1�RK (higher is brighter)
versus the detector bias voltage VD and the split gate voltage
controlling D. Darkest areas correspond to the detector inner
edge channel transmission ⇥D = 0. (c) Measured ⇥D versus VD

for di�erent temperatures T ⇤ {40,100,150,200} mK, keeping
the detector split gate voltage fixed. (d) Symbols: measured
⇥D(VD = 0) versus T for the same detector settings as the
data in (c). Continuous line (red): fit assuming a metallic
quantum dot (see text).

Now that we have characterized charge transport, we
investigate heat transport by injecting power and probing
the resulting heating in the fractional inner edge channel.

Power is injected locally into the inner channel by ap-
plying a voltage bias VH across a constriction set to
transmit half (all) of the current carried by the inner
(outer) channel. These constrictions were tuned to have
little voltage dependence of their transmission, as shown
Fig. 2(a). At half transmission of the inner channel, the
injected power into edge excitations is PH � 0.25V 2

H�6RK

[17]. One heaterHU is located at an edge distance 1.8 µm
upstream the detector D, and two heaters HD1 and HD2

are located respectively at 1.4 and 2.2 µm downstream
the edge channel.

Heating in the fractional inner channel is detected

Chargeless heat transport in the fractional quantum Hall regime

C. Altimiras,1, � H. le Sueur,1, † U. Gennser,1 A. Anthore,1 A. Cavanna,1 D. Mailly,1 and F. Pierre1, ‡

1CNRS / Univ Paris Diderot (Sorbonne Paris Cité),
Laboratoire de Photonique et de Nanostructures (LPN), route de Nozay, 91460 Marcoussis, France

(Dated: February 29, 2012)

We demonstrate a direct approach to investigate heat transport in the fractional quantum Hall
regime. At filling factor � = 4�3, we inject power at quantum point contacts and detect the related
heating from the activated current through a quantum dot. The experiment reveals a chargeless heat
transport from a significant heating that occurs upstream of the power injection point, in absence
of a concomitant electrical current. By tuning in-situ the edge path, we show that the chargeless
heat transport does not follow the reverse direction of the electrical current path along the edge.
This unexpected heat conduction demonstrates a novel aspect, yet to be elucidated, of the physics
in fractional quantum Hall systems.

PACS numbers: 73.43.Fj, 73.43.Lp, 73.23.Hk

The quantum Hall e�ect arises for two-dimensional
electrons subjected to a strong perpendicular magnetic
field and involves gapless electronic excitations propagat-
ing in channels along the sample edge [1]. It is evidenced
from distinct plateaus in the Hall resistance RH = RK�⇥,
with RK = h�e2 the resistance quantum, accompanied by
a vanishing longitudinal resistance. At fractional values
of the filling factor ⇥, this e�ect is due to Coulomb inter-
action. It is associated with the formation of exotic elec-
tronic phases [2], with quasiparticle excitations markedly
di�erent from bosons and fermions and carrying a frac-
tion of the electron charge [3, 4]. Although the fractional
quantum Hall e�ect was discovered three decades ago [5],
the experimental investigation of many striking aspects
of this physics is still at an incipient stage. This includes
the predicted anyonic [1] and possibly non-abelian statis-
tics [6] of the fractional quasiparticles, and the presence
of correlated electronic edge modes carrying heat but no
charge [7–9].

It was pointed out since the mid-nineties that the
study of heat transport would provide decisive informa-
tion on the peculiar physics of the di�erent fractional
quantum Hall regimes [9–13]. Very recently, a non-chiral
heat transport at several fractional filling factors was ev-
idenced using noise measurements, and attributed to the
presence of upstream neutral edge modes [14–16]. In the
present work, we demonstrate a direct approach to in-
vestigate heat transport in the fractional quantum Hall
regime at the filling factor ⇥ = 4�3 (Fig. 1(a)). For this
purpose we controllably inject power at several locations
along the sample channel, using voltage biased quantum
point contacts, and detect the resulting heating from the
thermally activated current across a quantum dot located
at an intermediate edge position (Fig. 1(b)). With this
approach, we first evidence an unexpected heating up-
stream power injection, with respect to the chiral elec-
trical current along the edge. We then demonstrate that
this chargeless heat current flows in the bulk, further
away from the edge than the electrical path. The rel-

atively important upstream heating suggests the corre-
sponding chargeless heat transport mechanism may play
an important role in the physics of the fractional quan-
tum Hall regime.

The studied sample is tailored in a typical two-
dimensional electron gas of density 2 1015 m⇥2 and
mobility 250 m2V⇥1s⇥1, buried 105 nm deep in a
GaAs/Ga(Al)As heterojunction. Note that similar ob-
servations on a second sample confirmed the reported
findings. We performed the measurements either at DC
or by standard lock-in techniques at frequencies below
100 Hz, in a dilution refrigerator of base temperature
40 mK [17]. Heaters, detector and sample geometry are
tuned by field e�ect using capacitively coupled surface
metal gates (Fig. 1(b)). We applied a perpendicular
magnetic field B = 6.0 T to set the sample in the mid-
dle of the zero longitudinal resistance plateau at ⇥ = 4�3
(see Fig. 1(a) and [17], the extracted thermal activation
transport gap is ⇥ kB ⇥ 700 mK). According to the ef-
fective edge state theory [1], the electrical edge current
at this bulk filling factor is carried by two channels co-
propagating in the same direction. The ‘⇥ = 1’ outer
channel (white line in Fig. 1(b)) is associated to the inte-
ger quantum Hall physics, and the ‘⇥ = 1�3’ inner channel
to the fractional physics (yellow line in Fig. 1(b)).

The data in Fig. 1(c) confirms the reality of the above
edge picture. A bias of 1.9 µV ⇤ (3�4)RK ⇥100 pA is ap-
plied to the left top contact and the resulting currents are
measured at di�erent locations as a function of the split
gate voltage tuning the constriction HU . The current
IHU transmitted across HU is zero for gate voltages be-
low �0.5 V and increases up to the injected current above
0.3 V . Importantly, IHU shows a wide plateau, larger
than 0.3 V , at 3�4 of the injected current. This plateau
corresponds to the full transmission of the ‘⇥ = 1’ outer
channel, which carries three times more current than the
fully reflected fractional ‘⇥ = 1�3’ inner channel. Similar
behaviors are observed across all the studied constric-
tions of this sample. In order to establish the distinct-
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Energy Partitioning of Tunneling Currents into Luttinger Liquids

Torsten Karzig,1 Gil Refael,2 Leonid I. Glazman,3 and Felix von Oppen1

1Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
2Department of Physics, California Institute of Technology, Pasadena, California 91125, USA

3Department of Physics, Yale University, 217 Prospect Street, New Haven, Connecticut 06520, USA
(Dated: May 3, 2018)

Tunneling of electrons of definite chirality into a quantum wire creates counterpropagating exci-
tations, carrying both charge and energy. We find that the partitioning of energy is qualitatively
different from that of charge. The partition ratio of energy depends on the excess energy of the
tunneling electrons (controlled by the applied bias) and on the interaction strength within the wire
(characterized by the Luttinger liquid parameter ), while the partitioning of charge is fully deter-
mined by . Moreover, unlike for charge currents, the partitioning of energy current should manifest
itself in dc experiments on wires contacted by conventional (Fermi-liquid) leads.

PACS numbers: 71.10.Pm,72.15.Nj,72.15.Eb

Introduction.—Recent experiments try to elucidate the
out-of-equilibrium physics of one-dimensional (1D) elec-
tron systems [1], with experimental systems including
quantum wires [2], carbon nanotubes [3], as well as quan-
tum Hall edge channels [4, 5]. At low energies, the elec-
tron kinetics is dominated by processes within the elec-
tron liquid, and the kinetics in 1D is quite distinct from
that in higher dimensions [6–12]. The differences appear
already in the most elementary process, namely the ac-
commodation of an additional electron with well-defined
energy and momentum which is injected into the liq-
uid. In higher dimensions, the energy and momentum are
transferred to a quasiparticle of the Fermi liquid, while
the injected charge spreads away from the injection point
isotropically in space and on a short time scale governed
by the (collective) plasmon excitations. In 1D, such a
momentum-conserving tunneling process creates an ex-
cited state of the liquid, involving correlated multiple
electron-hole excitations. The description of such a state
is quite complex [7] even within the Tomonaga-Luttinger
model. That raises the question of finding measurable
characteristics which quantify the state of the liquid per-
turbed by electron injection.

Perhaps the simplest characteristic is the partition ra-
tio Q�/Q+

of the injected charge e. The latter creates
two pulses which carry unequal charges, Q

+

and Q�,
propagating, respectively, in and against the direction of
motion of the injected charge [13, 14]. In the absence
of interactions, the entire injected charge moves in the
direction of motion of the injected electron, i.e., Q� = 0.
In the interacting (Luttinger) liquid, Q�/Q+

is simply
related to the ratio of compressibilities of the liquid with
and without interactions, and can be readily obtained
from the conservation laws of particle number and mo-
mentum which yields Q± = (1 ± )/2 in units of e [1].
[Here, the Luttinger liquid parameter  measures the in-
teraction strength, with  = 1 ( < 1) for non-interacting
(repulsively interacting) particles.] The two pulses prop-
agate freely unless they encounter an inhomogeneity of

the interaction constant [15, 16]. Unfortunately, such in-
homogeneities are inevitable in experiment which probe
the Luttinger liquid by attaching Fermi liquid leads. Be-
cause of multiple scattering at the two interfaces, the net
charges QL and QR flowing into left and right leads differ
from the intrinsic values Q� and Q

+

. Indeed, QL = 0

in the case of Fermi liquid leads, rendering interaction
effects in the Luttinger liquid irrelevant for the charge
partitioning measured in dc experiments [14, 17].

The energy of the injected electron is another con-
served quantity in the tunneling process which plays a
crucial role in the non-equilibrium physics of the electron
liquid. In this paper, we show that the energy is also par-
titioned between left- and right-moving excitations, in a
way which is quite distinct from the partitioning of the
injected charge and which sensitively probes the inter-
action strength. When momentum is conserved in the
injection process, the initial splitting of the excess en-
ergy (measured from the Fermi energy) depends on both
energy and momentum of the injected electron as well as
the interaction strength . The actual amounts of en-
ergy deposited into the two Fermi-liquid leads depend in
general on the nature of the interface between Luttinger
liquid and leads. The interface is transparent to the flow
of energy at high energies, and has finite transparency
in the opposite limit. In both limits, the partition of
energy deposited in the two leads becomes independent
of the properties of the interface but remains a function
of  and excess energy. We suggest relatively simple dc
experiments to detect energy partitioning and also ex-
tend our considerations to include energy partitioning in
tunneling into quantum Hall edge states.

Energy currents in Luttinger liquids.—We consider a
Luttinger liquid of spinless fermions at zero tempera-
ture. Decomposing the Luttinger-liquid displacement
and phase fields � and ✓ into right- and left-moving exci-
tations ✓±(x) = ✓(x)±�(x)/, the relevant Hamiltonian
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Figure 1: Illustration of proposed experimental setups. (a)
Nonlocal injection by momentum-conserving tunneling be-
tween parallel quantum wires. The quantum dots to the left
and right of the injection region serve to probe the energy
partitioning. (b) Local injection into one of two closeby quan-
tum Hall edge channels. The figure indicates both the initial
splitting of charge and energy at injection and the resulting
splitting in the Fermi-liquid leads. While the charge parti-
tioning is identical for both setups, the energy partitioning is
different and distinct from the charge partitioning.

takes the form [13]

H =

vF
4⇡

ˆ
dx

X

↵=±
(r✓↵)2 (1)

with commutation relations [✓↵(x), ✓↵0
(x0

)] =

�↵↵0
(i⇡↵/) sgn(x� x0

).
We first consider tunneling from a parallel source wire

of length LS [nonlocal injection, cp. Fig. 1(a)]. In this
case, the dispersions of quantum wire and source can be
shifted relative to each other in momentum by applying
a magnetic field and in energy by applying a bias voltage
V [2]. Following recent experiments [2], we assume that
these shifts are such that tunneling is only allowed for
left movers from the source [field operator  S(x)] which
tunnel into right-moving free-electron states in the quan-
tum wire [field operator  †

R(x)]. This is described by
the tunneling Hamiltonian HTR = t

´
S dx[ †

R(x) S(x) +

 †
S(x) R(x)] where the nature of the chirality of the

states is included through the dispersions, cf. Fig. 2(a).
The ensuing right- and left-moving energy currents IE±

in the Luttinger liquid are now described by the operators

IE± = i[HTR,
vF
4⇡

ˆ
dx (r✓±)2]

=

±ct

2i

Q±

ˆ
S
dx({ †

R(x),r✓±(x)} S(x)� h.c.) (2)

To leading order in the tunneling, the expectation value
of IE± becomes

⌦

IE± (⌧)
↵

= �i

ˆ ⌧

�1
dt0

⌦⇥

IE± (⌧), HTR(t
0
)

⇤↵

. (3)

The resulting correlators can be efficiently computed by
writing  †

R ⇠ e

�i(Q+A+r✓++Q�A�r✓�), expressing them
in terms of formal derivatives with respect to the auxil-
iary operators A± = r�1, and tracing the modifications
due to A± in the standard calculation [20] of the Lut-
tinger liquid Green function. We then find

⌦

IE±
↵

=

Q2

±t
2LS



ˆ
d✏S
2⇡

ˆ
dk

2⇡

ˆ 1

0

d!q

n

G>
R,k⌥q(✏S � !q)G

<
S,k(✏S � eV ) +G<

R,k±q(✏S + !q)G
>
S,k(✏S � eV )

o

. (4)

Here, G<,>
R,k (✏) denotes the lesser (<) or larger (>) Green

function of the right-moving electrons (with chemical po-
tential µ = 0), G<,>

S,k (✏) the corresponding Green func-
tions of the left-movers in the source (with chemical po-
tential µS = eV ), and !q = cq is the plasmon dispersion.
The two terms in Eq. (4) describe spontaneous plasmon
emission in the course of tunneling from source to wire
and vice versa, yielding a zero-temperature energy cur-
rent which is strictly positive.

A complementary experimental setup would consist
of two quantum Hall edge channels spaced such that
there is appreciable Coulomb interaction but negligible
interedge tunneling. This system shares the same inter-
action physics with the quantum wire [17], but allows
for locally injecting electrons of fixed chirality and fixed

energy ✏
in

by selective tunneling into one of the edge
channels from a nearby single-level quantum dot [local
injection, cp. Fig. 1(b)]. For tunneling into right-moving
states, the tunneling Hamiltonian takes the form HTR =

t
loc

[ †
R(x = 0) S +h.c.]. Focusing on tunneling from the

quantum dot into the quantum wire, i.e., on voltages for
which the quantum dot is occupied and described by the
Green function G<

S (k, ✏) = 2⇡i�(✏+ eV � ✏
in

), we obtain

⌦

IE±
↵

=

iQ2

±t
2

loc



ˆ 1

0

d!

ˆ
dk

2⇡
G>

R,k(✏in � !). (5)

for the left- and right-moving energy currents.
It is instructive to compare these results for the en-

ergy current to the charge current. Charge partition-
ing is already evident from the operator relation I± =
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Figure 9: The simplest thermoelectric e↵ect to understand is that of an energy filter. In (a) we show direct connection between two reservoirs of
electrons at di↵erent temperatures but the same electrochemical potential in the absence of any energy filter. Electrons in occupied (shaded) states
want to flow into empty (white) states, crossing from one reservoir to the other to do so. The resulting flows are marked by the thick black arrows.
In the absence of an energy-filter there is a heat current but no electrical current (the opposite flows of electrons above and below electrochemical
potential cancel each other out). In (b) and (c) we sketch an energy-filter between the hot and cold Fermi seas which blocks all particle flow below
a certain energy. In (b) we show how to use it as a heat-engine, it generates power because the temperature di↵erence means that electrons flow
from a region of lower electrochemical potential (left) to a region of higher electrochemical potential (right). In (c) we show how to use it as a
refrigerator, using a potential bias to ensure that electrons above the Fermi sea can flow out of the cold reservoir, cooling it further.

while filter 2 lets pass electrons with energies below the electrochemical potential of the central region. In Fig. 10a,
the heat source maintains the central region at a higher temperature than the rest of the system (cold reservoirs, load,
etc.), by exciting electrons (red arrow). Electrons flow in from the left (black arrow) below the electrochemical poten-
tial of the central region to fill the holes in the central region’s Fermi sea, even though the electrochemical potential
is lower on the left than in the central region. Electrons above the central region’s electrochemical potential flow out
to the right, even though that means they flow into a region with higher electrochemical potential. This means the
thermocouple is causing an electrical current against a bias. This means that it can drive electrical current through a
load, which converts that electrical work into some other form of work (mechanical, chemical, etc.).

In Fig. 10b, the central region is being refrigerated by the bias applied to the thermoelectrics by the power supply,
so it is colder than the ambient temperature. In such cases, we cannot rule out a back-flow of heat from the environment
in the form of phonons or photons opposing the refrigeration, which excites electrons in the central region (red arrow).
This heat must be removed by the the thermoelectrics.

In both cases, we assume that there is a weak thermalization process in the central region, which means that any
electron entering that region at higher energy (or any electron excited by heat arriving from a heat source or back-
flow from the environment) dissipates that energy to the other electrons in the central region, before arriving at either
energy filter. Thus electrons arriving at the energy filters from the central region will have a thermal distribution given
by the temperature of the central region. For this reason, we can calculate the thermoelectric properties of each energy
filter separately, without worrying about how they are connected up or how the temperature di↵erence and bias across
each one is generated.

Above we outlined systems of the type called "traditional thermocouples" in Fig. 2, which we discuss in more
detail in much of chapters 5 and 6. Systems of the type called "quantum thermocouples" in Fig. 2 are discussed in
sections 5.6, 9.3 and 9.4.

4.2 History of the scattering theory for thermoelectricity
The literature on Landauer’s scattering theory can be divided roughly into two periods. The first period was that of

foundations, it started with Landauer’s early publications [108, 109] and continuing up to the late 1980s. Papers from
this period must be read with great care, because the theoretical construction of the method was carried out during
a time of confusion about the experimentally-relevant definition of resistance at the nanoscale. Once, experiments
started to be carried out in the late 1980s [110, 111], it became clear how to use the method as a recipe to explain
experiments. This led to the second period, which was its applications to increasingly complex nanostructures.

During the foundational period, the 1981 work of Enquist and Anderson [112] laid the foundations for thermal
e↵ects, while the 1986 work of Sivan and Imry [113] addressed thermoelectric e↵ects, and by extension heat-to-
work conversion. These two works basically contain all the formalism that we will need, but they must be read with
caution, because they were written at a time when there was no consensus about whether the resistance of a perfectly
transmitting single channel was zero or finite. The earliest work suitable for beginners is Ref. [86], which was written

30

Particle-hole symmetry breaking

Benenti, Casati, Saito, Whitney, Physics Reports 694,1 (2017)
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Chiral thermoelectrics with quantum Hall edge states

Rafael Sánchez,1 Björn Sothmann,2 and Andrew N. Jordan3, 4

1Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid, Spain
2Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland
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4Institute for Quantum Studies, Chapman University, Orange, California 92866, USA

The thermoelectric properties of a three-terminal quantum Hall conductor are investigated. We
identify a contribution to the thermoelectric response that relies on the chirality of the carrier
motion rather than on spatial asymmetries. The Onsager matrix becomes maximally asymmetric
with configurations where either the Seebeck or the Peltier coefficients are zero while the other
one remains finite. Reversing the magnetic field direction exchanges these effects, which originate
from the chiral nature of the quantum Hall edge states. The possibility to generate spin-polarized
currents in quantum spin Hall samples is discussed.

PACS numbers: 73.23.-b, 85.80.Fi, 05.60.Gg

The integer quantum Hall effect occurs in two-
dimensional conductors subject to a strong perpendicular
magnetic field. It manifests itself as quantized plateaus
of the Hall conductance [1]. Theoretically, this can be un-
derstood in terms of dissipationless transport along chiral
edge states within Landauer-Büttiker theory [2, 3]. Ther-
mal transport along these edge channels was recently in-
vestigated to trace the path of energy relaxation along
the edge [4, 5] or probe the presence of neutral modes [6],
carrying energy but not charge, which are not accessible
in electrical current measurements. However, until now
there is surprisingly little known about thermoelectric
properties in the integer quantum Hall regime.

Thermoelectric properties of multiterminal conductors
have recently received a lot of attention [7] with a partic-
ular emphasis on nonlinear effects [8–10]. In these sys-
tems, a hot terminal injects heat but no charge into the
conductor, driving a directed charge current between two
other cold terminals. Charge and heat flows are thus sep-
arated, allowing the electrical circuit driving a load to
be at a single temperature. The heat source can be of
fermionic [11, 12] or bosonic nature [13–15]. A crossed
thermopower appears by heat rectification which, in the
absence of a magnetic field, depends on the breaking of
both left-right and particle-hole symmetries.

In the presence of a magnetic field, the off-diagonal ele-
ments of the thermoelectric linear-response Onsager ma-
trix are unrelated to each other due to the broken time-
reversal symmetry [16–18]. This property relaxes the
(broken) symmetry requirements discussed above. The
absence of backscattering along edge channels, a prop-
erty of the quantum Hall effect [3], maximizes this bro-
ken reciprocity, as we discuss here. In particular, we
show that chiral propagation introduces a unique trans-
port feature such that while the Seebeck coefficient is
finite, the Peltier one can be zero, or vice versa. This ef-
fect is a consequence of the edge states, and can be used
to generate spin-polarized currents in topological insula-

tors [19–21].

The ramifications of the asymmetry in the Onsager
matrix on the thermoelectric performance of mesoscopic
heat engines is an active research topic [22–28]. It has
been shown that broken time-reversal symmetry in prin-
ciple allows for Carnot efficiency ηC at maximal output
power [22, 24]. However, additional constraints from cur-
rent conservation in a multiterminal setup restrict the
efficiency at maximum power to values smaller than ηC
where the precise bound depends on the number of ter-
minals [25, 26]. As first examples, classical and quan-
tum Nernst engines have been shown to saturate the
efficiency bounds under their particular boundary con-
ditions [27, 28]. Here, we also demonstrate that more
flexible and experimentally feasible boundary conditions
can actually increase these limits even further.

We focus on the simplest configuration with chiral
thermoelectric properties consisting of a three-terminalPSfrag replacements
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FIG. 1: Three-terminal quantum Hall bar. A finite current
is generated along the edge state between cold terminals 1
and 2 by conversion of heat injected from the hot probe ter-
minal 3, originating from a temperature bias ∆T3. Details of
the energy-dependent scattering at the constrictions influence
the thermoelectric response dramatically, revealing the chiral
nature of electronic propagation in the sample.
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charge transport, with electrons and holes giving oppo-
site contributions, heat transport does not depend on
the charge of the carriers, so that electrons and holes
equally contribute; this property manifests in the corre-
spondence between the zeros of the charge current and
the maximum/minimum visibility of the heat current.
Furthermore, we study how these quantum interference
phenomena, already present in the absence of interac-
tions (tunneling between integer QHS), are a↵ected by
the presence of interactions, by considering tunneling of
electrons between fractional and integer QHS, where e-e
interactions play an important role. As a general remark,
a strong suppression of the signal appears, due to the
anomalous temperature dependence of the e↵ective tun-
neling density of states, a hallmark of non-Fermi liquid
behavior. More interestingly, the presence of di↵erent
filling factors breaks the left-right symmetry, inducing
rectification e↵ects. By taking advantage from the inter-
ference patterns induced in the presence of several QPCs,
we show that strong rectification e↵ects can be obtained.
We thus demonstrate that the interplay between inter-
actions and quantum interference is crucial in order to
enhance the heat rectification.

The paper is organized as follows. In Sec. II we de-
scribe the setup and evaluate the charge and heat cur-
rents for a generic tunneling region. Sec. III is devoted
to the main discussion, focusing on interference phenom-
ena (III A) and rectification e↵ects (III B) in a multi-
ple QPC geometry. Finally, we draw our conclusions in
Sec. IV.

II. MODEL AND TRANSPORT EQUATIONS

Figure 1. (Color online) Scheme of two fractional quantum
Hall systems with di↵erent filling factors ⌫L and ⌫R at temper-
atures TL > TR. Counterpropagating edge states are coupled
by a tunneling region, schematically depicted in the middle.
The zoom in the right panel shows the case of tunneling due to
multiple quantum point contacts (n = 3 in this case) equally
spaced with distance d.

We consider two quantum Hall bars with filling fac-
tor ⌫↵ (↵ = R, L) belonging to the Laughlin se-
quence [40, 41], with the same chemical potential µ =
µL = vLk

F,L = µR = vRk
F,R. They are kept at two

di↵erent temperatures TL > TR and coupled by a tun-

neling region, as shown in Fig. 1. The two quantum
Hall systems (QHS) have counterpropagating single edge
channels with Hamiltonian (in this work ~ = k

B

= 1)

H↵ =
⇡v↵

⌫↵

Z
dx⇢2

↵(x) =
v↵

4⇡⌫↵

Z
dx (@x�↵(x))2 . (1)

Here, v↵ is the propagation velocity of the mode and ⌫↵ =
1/m↵, with m↵ � 1 an odd integer[40]. The case m↵ = 1
corresponds to an integer QHS, while m↵ > 1 describes
fractional quantum Hall liquids. In the second expression
of Eq. (1) the electron density ⇢↵(x) is written in terms
of the chiral bosonic particle-hole collective excitations
field �↵(x). Using bosonization technique [42, 43] the
electron operator  ↵(x) can be also expressed in terms
of �↵(x),

 ↵(x) =
F↵p
2⇡a

ei↵kF,↵xei ↵
⌫↵

�↵(x) , (2)

with a a short distance cut-o↵ and F↵ the so-called Klein
factor[42]. The index ↵ = R(+), L(�) indicates also the
direction of propagation and k

F,↵ is the associated Fermi
momentum. We assume that the two QHS are tunnel
coupled with a tunneling Hamiltonian

H
⇤

= ⇤

Z
dxf(x) †

R(x) L(x) + H.C. , (3)

where f(x) describes the shape of the tunneling re-
gion [44] and ⇤ the amplitude strength [45, 46]. In the
following we will consider a series of multiple n point-like
contacts equally-spaced [47] with distance d [45, 48–50],
with f(x) =

Pn�1

j=0

�(x�jd)/n. By properly acting on the
gate voltages of the QPCs one can manipulate and tune
their transmissions, selectively opening or closing some
of them. The electric charge JC and heat JQ currents
can be written in terms of particle and energy variations
JN = hṄR � ṄLi/2 and JH = hḢR � ḢLi/2 as

JC = �eJN JQ = JH � µJN , (4)

with N↵ =
R

dx⇢↵(x) the particle numbers on each edge.
The averages h. . . i are taken over the equilibrium states
of the left and right QHS with respect to their temper-
atures TL, TR [51]. They can be computed at lowest
order in the tunneling, using standard perturbation tech-
niques [52, 53]

JC = �2ie|�|2
Z

dxdx0
Z

d⌧f(x)f(x0) sin[2k̄
F

(x � x0)]

⇥ PmL

✓
⌧ +

x � x0

vL

◆
PmR

✓
⌧ � x � x0

vR

◆
, (5)

and

JQ = �i|�|2
Z

dxdx0
Z

d⌧f(x)f(x0) cos[2k̄
F

(x � x0)]

⇥
⇢
@⌧PmL

✓
⌧ +

x � x0

vL

◆
PmR

✓
⌧ � x � x0

vR

◆

�PmL

✓
⌧ +

x � x0

vL

◆
@⌧PmR

✓
⌧ � x � x0

vR

◆�
.(6)

THERMOELECTRICITY IN QUANTUM 
HALL (THEORETICAL WORKS)
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Thermoelectric probe for neutral edge modes in the fractional quantum Hall regime

Giovanni Viola1, Sourin Das2, Eytan Grosfeld3 and Ady Stern1
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The ν = 5/2 anti-Pfaffian state and the ν = 2/3 state are believed to have an edge composed
of counter-propagating charge and neutral modes. This situation allows the generation of a pure
thermal bias between two composite edge states across a quantum point contact (QPC) as was
experimentally established in Nature 466, 585 (2010). We show that replacing the QPC by a
quantum dot provides a natural way for detecting the neutral modes via the DC current generated
by the thermoelectric response of the dot. We also show that the degeneracies of the dot spectrum,
dictated by the conformal field theories (CFTs) describing these states, induce asymmetries in the
thermoelectric current peaks. This in turn provides a direct fingerprint of the corresponding CFT.

PACS numbers: 71.10.Pm, 73.21.La, 73.23.Hk, 73.43.Lp, 73.43.-f

Introduction:—It has been thirty years since the dis-
covery of the fractional quantum Hall effect (FQHE) [1],
yet even now this remarkable quantum regime contin-
ues to give rise to some of the most fascinating collec-
tive behaviors of electrons. Of particular interest are the
non-Abelian states [2], whose underlying quasiparticles
are predicted to obey non-Abelian braiding statistics [3–
5]. A prime candidate is the plateau at filling factor
ν = 5/2, which may be described by the Pfaffian state [3],
or by its particle-hole conjugate, the anti-Pfaffian state
(APF) [6, 7]. Neutral edge modes are present in both of
these non-Abelian states, for the former flowing “down-
stream” along the direction of the chiral charge-carrying
mode, and for the latter “upstream” in the opposite di-
rection. The conformal field theories (CFTs) describing
these edge states reflect the properties of the correspond-
ing bulks, and contain signatures of their associated non-
Abelian quasiparticles [2, 3].

Neutral edge modes are predicted to exist both in
Abelian and non-Abelian quantum Hall states. An excit-
ing development is the recent experimental detection of
neutral edge modes using noise measurements [8]. The
ideas leading to this breakthrough were theoretically es-
tablished in two papers [9, 10]. Grosfeld and Das [10]
predicted that neutral edge modes can be thermally bi-
ased by electrical means and then detected via noise mea-
surements, while Feldman and Li [9] considered a non-
equilibrium coherent neutral beam, also leading to an
increase in noise. Due to the particular details of this
measurement procedure, it is mostly sensitive to the pres-
ence of an upstream neutral mode. Hence, its detection
for filling factor ν = 2/3 confirmed a long-standing pre-
diction [11, 12]; while its detection at ν = 5/2 singles out
the APF [6, 7] over the Pfaffian [3] and the 331 state [13]
as the more promising description of the state. However,
the measurement extracts no details about the particular
field theory associated with the neutral edge state.

In this Letter we propose a scheme (see Fig. 1) which
can probe the presence and properties of an upstream
flowing neutral edge using a thermoelectric measurement.

A quantum Hall droplet is pinched using two quantum
point contacts (QPCs) to form a quantum dot (QD). Two
quantum Hall edge states, weakly coupled via electron
tunneling to the left and right of the dot, are held at
temperatures TL and TR. This temperature difference is
generated by pure electrical means (VB ̸= 0) and depends
on the ability to pump energy upstream via the neutral
mode [8, 14–18], i.e. TL ̸= TR (at VA = VC = 0) signals
the presence of the neutral mode. We claim that this is
a natural setup for a measurement of a thermoelectric
effect. When an energy level of the dot gets slightly de-
tuned from the chemical potential of the two reservoirs,
electric current will flow through the dot since particle-
hole (p-h) symmetry is broken. This results in a particle
current emanating from the dot to one of the outgoing
edge states and a hole current to the other (Eq. (7)).

A
B

FIG. 1: A quantum dot defined within two QPCs in a Hall
bar geometry. The neutral (charge) modes are depicted by
a dashed (solid) line. Charge flows anticlockwise. A voltage
bias is imposed on B and a net current is collected at C.

Furthermore, we show that the line shapes of such
thermoelectric coulomb blockade peaks carry information
about the spectrum of the edge state. The degeneracies
of the resonant dot levels Da (here a = 1, 2, 3, . . . is a
numbering of the peaks), which are a direct reflection of
the CFT describing the edge states [19–21], induce asym-
metries in the thermoelectric current (Fig. 2). The degree
of asymmetry increases with the degeneracy of the levels
in the dot. The patterns of degeneracies are given by
Eq. (2) for ν = 2/3 and Eqs. (3,4) for ν = 5/2. Hence a
measurement of the degeneracies via the asymmetries has

G. Viola, S.Das, E.Grosfeld, A.Stern
PRL 109, 146801 (2012)
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We study the linear thermoelectric response of a quantum dot embedded in a constriction of a quantum Hall
bar with fractional filling factors ⌫ = 1/m within Laughlin series. We calculate the figure of merit ZT for the
maximum e�ciency at a fixed temperature di↵erence. We find a significant enhancement of this quantity in
the fractional filling in relation to the integer-filling case, which is a direct consequence of the fractionalization
of the electron in the fractional quantum Hall state. We present simple theoretical expressions for the Onsager
coe�cients at low temperatures, which explicitly show that ZT and the Seebeck coe�cient increase with m.

Introduction Boosting the e�ciency for the conversion of
electrical and thermal energy at finite power is motivating an
intense research activity, not only in the areas of material sci-
ence and applied physics but also in experimental and the-
oretical areas of statistical mechanics and condensed matter
physics. E↵orts are concentrated on developing new materi-
als and devices [1] as well as on analyzing di↵erent opera-
tional conditions [2]. In the latter direction, taking advantage
of the quantum e↵ects is one of the most interesting avenues.
Nanostructures operating at low temperatures are particularly
appealing quantum devices, since they o↵er the conditions for
coherent transport, where “parasitic” heat currents by phonons
are strongly suppressed. Quantum dots (QD) are one of the
most studied nanostructures in this context. Due to their spec-
trum of discrete levels, amenable to be manipulated with gate
voltages, they can be used as switches for the relevant trans-
port channels. Theoretically, they were found to present high
thermoelectric response [3–9].

A two dimensional electron gas in the quantum Hall e↵ect
(QHE) regime hosts chiral edges states [10–15]. Due to their
topological protection, these states constitute the paradigmatic
system to realize the coherent transport regime with fraction-
alized excitations. Electron transport through QDs in QHE
structures was studied in Ref. 16 and 17. The usefulness of
the thermoelectric transport in these structures to enable the
detection of neutral modes in fractional fillings ⌫ = 2/3 and
⌫ = 5/2 was analyzed in Refs. 18 and 19. The nature of
the thermal transport in the QHE has been investigated the-
oretically [25–30] and experimentally [32–38] in integer and
fractional fillings. Thermoelectric e↵ects induced by interfer-
ences by multiple quantum point contacts in fractional fillings
were studied in Ref. 20. However, the thermoelectric per-
formance has been so far investigated only within the integer
QHE beyond linear response [21] and in multiterminal sys-
tems [22]. In the last case, the possibility of a separating heat
and charge currents provides a route to improving the thermo-
electric performance. The goal of the present work is to show
that the fractionalization of the charge also o↵ers a mecha-
nism for thermoelectric enhancement, which manifests itself

Vg

µL TRTL µR

nL nR

FIG. 1. (Color online) Sketch of the setup. A quantum Hall bar is
biased by a di↵erence of temperature �T = TL � TR and a voltage
V = (µL � µR)/e. Charge and thermal transport is induced through a
quantum dot generated by constrictions that generate regions of the
sample with filling factors ⌫L and ⌫R. The spectrum of the quantum
dot can be manipulated with a gate voltage Vg.

even in a simple two-terminal configuration.
We analyze the thermoelectric e�ciency of QHE structures,
focusing on fractional fillings within the Laughlin series ⌫ =
1/m. We consider the setup sketched in Fig. 1, where a QD is
embedded into a constriction of a QHE bar containing regions
with filling factors ⌫L and ⌫R. The QD is contacted to the cor-
responding edge states through quantum point contacts. Elec-
tric and heat currents, respectively denoted by JC and JQ flow
through the quantum dot as a response to chemical potential
and temperature biases applied at the contacts, µR � µL = eV
and �T = TL � TR, respectively. The device may operate as
a heat engine, in which case the e�ciency is defined as the
ratio ⌘he = P/JQ, between the generated power P = JCV and
the heat current from the hot to the cold reservoir. The other
operational mode is a refrigerator, which is characterized by a
coe�cient of performance ⌘fri = JQ/P, where JQ is the heat
current extracted from the cold reservoir and P is the invested
electrical power. Both coe�cients are bounded by the Carnot
values. In the linear response regime, relevant for small V
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We study the linear thermoelectric response of a quantum dot embedded in a constriction of a quantum Hall
bar with fractional filling factors ⌫ = 1/m within Laughlin series. We calculate the figure of merit ZT for the
maximum e�ciency at a fixed temperature di↵erence. We find a significant enhancement of this quantity in
the fractional filling in relation to the integer-filling case, which is a direct consequence of the fractionalization
of the electron in the fractional quantum Hall state. We present simple theoretical expressions for the Onsager
coe�cients at low temperatures, which explicitly show that ZT and the Seebeck coe�cient increase with m.

Introduction Boosting the e�ciency for the conversion of
electrical and thermal energy at finite power is motivating an
intense research activity, not only in the areas of material sci-
ence and applied physics but also in experimental and the-
oretical areas of statistical mechanics and condensed matter
physics. E↵orts are concentrated on developing new materi-
als and devices [1] as well as on analyzing di↵erent opera-
tional conditions [2]. In the latter direction, taking advantage
of the quantum e↵ects is one of the most interesting avenues.
Nanostructures operating at low temperatures are particularly
appealing quantum devices, since they o↵er the conditions for
coherent transport, where “parasitic” heat currents by phonons
are strongly suppressed. Quantum dots (QD) are one of the
most studied nanostructures in this context. Due to their spec-
trum of discrete levels, amenable to be manipulated with gate
voltages, they can be used as switches for the relevant trans-
port channels. Theoretically, they were found to present high
thermoelectric response [3–9].

A two dimensional electron gas in the quantum Hall e↵ect
(QHE) regime hosts chiral edges states [10–15]. Due to their
topological protection, these states constitute the paradigmatic
system to realize the coherent transport regime with fraction-
alized excitations. Electron transport through QDs in QHE
structures was studied in Ref. 16 and 17. The usefulness of
the thermoelectric transport in these structures to enable the
detection of neutral modes in fractional fillings ⌫ = 2/3 and
⌫ = 5/2 was analyzed in Refs. 18 and 19. The nature of
the thermal transport in the QHE has been investigated the-
oretically [25–30] and experimentally [32–38] in integer and
fractional fillings. Thermoelectric e↵ects induced by interfer-
ences by multiple quantum point contacts in fractional fillings
were studied in Ref. 20. However, the thermoelectric per-
formance has been so far investigated only within the integer
QHE beyond linear response [21] and in multiterminal sys-
tems [22]. In the last case, the possibility of a separating heat
and charge currents provides a route to improving the thermo-
electric performance. The goal of the present work is to show
that the fractionalization of the charge also o↵ers a mecha-
nism for thermoelectric enhancement, which manifests itself

Vg

µL TRTL µR

nL nR

FIG. 1. (Color online) Sketch of the setup. A quantum Hall bar is
biased by a di↵erence of temperature �T = TL � TR and a voltage
V = (µL � µR)/e. Charge and thermal transport is induced through a
quantum dot generated by constrictions that generate regions of the
sample with filling factors ⌫L and ⌫R. The spectrum of the quantum
dot can be manipulated with a gate voltage Vg.

even in a simple two-terminal configuration.
We analyze the thermoelectric e�ciency of QHE structures,
focusing on fractional fillings within the Laughlin series ⌫ =
1/m. We consider the setup sketched in Fig. 1, where a QD is
embedded into a constriction of a QHE bar containing regions
with filling factors ⌫L and ⌫R. The QD is contacted to the cor-
responding edge states through quantum point contacts. Elec-
tric and heat currents, respectively denoted by JC and JQ flow
through the quantum dot as a response to chemical potential
and temperature biases applied at the contacts, µR � µL = eV
and �T = TL � TR, respectively. The device may operate as
a heat engine, in which case the e�ciency is defined as the
ratio ⌘he = P/JQ, between the generated power P = JCV and
the heat current from the hot to the cold reservoir. The other
operational mode is a refrigerator, which is characterized by a
coe�cient of performance ⌘fri = JQ/P, where JQ is the heat
current extracted from the cold reservoir and P is the invested
electrical power. Both coe�cients are bounded by the Carnot
values. In the linear response regime, relevant for small V

Vg

Quantum dot

⌫↵ =
1

m↵
, ↵ = L,R

Charge fractionalization
e ! m↵e

⇤

Laughlin series:

2

current extracted from the cold reservoir and P is the invested
electrical power. Both coe�cients are bounded by the Carnot
values. In the linear response regime, relevant for small V
and �T , ⌘he,fri can be parametrized by the “figure of merit”
ZT [37], defined below, in a way that ZT ! 1 implies the
Carnot limit. Remarkably, we will show that ZT is signifi-
cantly enhanced in the fractional quantum Hall e↵ect, relative
to the response in the integer one. This enhancement is a di-
rect consequence of the fractionalization of the electron in the
fractional QHE.
Linear thermoelectric response. Following the conventions of
Ref. 38, we consider �T = TL�TR > 0 and µL�µR = eV < 0.
The two relevant fluxes are the charge and heat currents,
which are represented by the vector J ⌘ �JC , JQ

�
and corre-

sponds to the charge and heat current leaving the left contact
of the bar. In linear response they are related to the a�nities
represented by the vector X =

⇣
eV/kBT,�T/kBT 2

⌘
through

the Onsager matrix L̂ as J = L̂ X . The diagonal matrix
elements of L̂ are related to the electrical and thermal conduc-
tivity, while the o↵ diagonal ones are related to the Seebeck
and Peltier coe�cients. These four coe�cients characterize
the transport properties of the device. In the presence of an
external magnetic field, the o↵-diagonal ones obey Onsager
reciprocity relations L12(B) = L21(�B). Due to the symmetry
of the two-terminal setup we are considering they also sat-
isfy L12(B) = L21(B). In addition, the second law of thermo-
dynamics implies L11, L22 � 0 and det[L̂] > 0. Taking into
account these conditions, it can be shown that the maximum
achievable e�ciency in any of the two operational modes at a
fixed temperature di↵erence can be parametrized in terms of
the figure of merit ZT = L2

12/det[L̂] as follows [38]

⌘max
he,fri = ⌘

C
he,fri

p
ZT + 1 � 1p
ZT + 1 + 1

. (1)

⌘C
he = 1 � TR/TL and ⌘C

fri = TL/(TL � TR) are the Carnot e�-
ciency and coe�cient of performance for the heat-engine and
the refrigerator, respectively. They set a bound for the coe�-
cient of Eq. (1), which is achieved when ZT ! 1.
Model and currents. We consider the following Hamiltonian
for the full setup H =

P
↵=L,R H↵ + Hd + Ht. The first term

represents the edge states of the QHE with filling factors ⌫↵ =
1/m↵, which is described by the following Hamiltonian

H↵ =
⇡v
⌫↵

Z
dx ⇢2

↵(x), (2)

where ↵ = L,R denotes propagating modes injected from the
left and right contacts and moving along the edge with veloc-
ity v. The corresponding densities are ⇢↵(x) = @x�↵(x)/(2⇡)
where �↵(x) are chiral bosonic fields that satisfy the Kac-
Moody algebra

h
�↵(x), ��(x0)

i
= �i⇡⌫↵�↵,�sg(x � x0). The

second term of the Hamiltonian H describes the QD. It reads
Hd =

PN
j=1 "d, jd†j d j, where we are assuming a large Zeeman

term that justifies considering fully polarized electrons. We
assume that the N levels of the quantum dot are equally spaced

in energy by � and can be shifted by recourse to the gate volt-
age as "d j = �( j�1)� eVg. The third term of the Hamiltonian
represents the tunneling between the edge states and the QD,

Ht = Vt

X

j,↵=L,R

h
 †↵(x0)d j + H.c.

i
, (3)

withVt =
p

2⇡aVt, being Vt the tunneling kinetic energy and
a is a characteristic length setting the high energy cuto↵ for
the edge spectrum, while x0 denotes the position of the edge
at which the contact to the dot is established. The bosonic
form of the electron operator at the edge is [12]

 ↵(x) ⌘ F↵p
2⇡a

ei s↵
⌫↵
�↵(x,t), (4)

where F↵ are Klein factors.
According to our definitions the charge and heat currents are
JC = �ehṄLi and JQ = JE � µLJC , with JE = �hḢLi. For the
model under consideration, we have

JC = hĴCi = ieVth  †L(x0)d � d† L(x0)i,
JE =

⇡v
e⌫L
h ĴC⇢L(x0) + ⇢L(x0)ĴC i. (5)

We resort to Schwinger-Keldysh non-equilibrium Green func-
tions to calculate these currents, starting from their repre-
sentation in terms the lesser Green functions G<↵,d(t � t0) =
ihd†�(t0) ↵(xt)i as follows

JC = eVt
⇣
G<d,L(t � t0) �G<L,d(t � t0)

⌘
|t=t0 ,

JE = iVt@t
⇣
G<d,L(t � t0) �G<L,d(t � t0)

⌘
|t=t0 . (6)

These expressions can be calculated by recourse to perturba-
tion theory in the tunneling term. Details are provided in Refs.
39–41. The result is

JC =
e
h

Z
d" ⌧(")

⇥
fL(" + µL) � fR(" + µR)

⇤
,

JE =
1
h

Z
d" " ⌧(")

⇥
fL(" + µL) � fR(" + µR)

⇤
, (7)

where f↵(") = 1/
⇣
e"/(kBT↵) + 1

⌘
is the Fermi function. We have

introduced the transmission function ⌧(") defined as

⌧(") =
V4

t

�
DR(" + µR) Dd(") DL(" + µL). (8)

Here, D⌫("), with ⌫ = R, L, d, are the density of states of the
right, left QHE edge states and the quantum dot, respectively.
For the latter, we consider a model of N resonances with en-
ergies "d, j and widths �. We assume that � ⇠ Vt. The corre-
sponding expressions are

D↵(") =
am↵�1

2⇡
(2⇡T↵)m↵�1

�(m↵)

�����
� (m↵/2 + i"/(2⇡T↵))
� (1/2 + i"/(2⇡T↵))

�����
2

Dd(") =
X

j

�/N⇡
⇣
" � "d, j

⌘2
+ �2
, (9)

odd
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Introduction Boosting the e�ciency for the conversion of
electrical and thermal energy at finite power is motivating an
intense research activity, not only in the areas of material sci-
ence and applied physics but also in experimental and the-
oretical areas of statistical mechanics and condensed matter
physics. E↵orts are concentrated on developing new materi-
als and devices [1] as well as on analyzing di↵erent opera-
tional conditions [2]. In the latter direction, taking advantage
of the quantum e↵ects is one of the most interesting avenues.
Nanostructures operating at low temperatures are particularly
appealing quantum devices, since they o↵er the conditions for
coherent transport, where “parasitic” heat currents by phonons
are strongly suppressed. Quantum dots (QD) are one of the
most studied nanostructures in this context. Due to their spec-
trum of discrete levels, amenable to be manipulated with gate
voltages, they can be used as switches for the relevant trans-
port channels. Theoretically, they were found to present high
thermoelectric response [3–9].

A two dimensional electron gas in the quantum Hall e↵ect
(QHE) regime hosts chiral edges states [10–15]. Due to their
topological protection, these states constitute the paradigmatic
system to realize the coherent transport regime with fraction-
alized excitations. Electron transport through QDs in QHE
structures was studied in Ref. 16 and 17. The usefulness of
the thermoelectric transport in these structures to enable the
detection of neutral modes in fractional fillings ⌫ = 2/3 and
⌫ = 5/2 was analyzed in Refs. 18 and 19. The nature of
the thermal transport in the QHE has been investigated the-
oretically [25–30] and experimentally [32–38] in integer and
fractional fillings. Thermoelectric e↵ects induced by interfer-
ences by multiple quantum point contacts in fractional fillings
were studied in Ref. 20. However, the thermoelectric per-
formance has been so far investigated only within the integer
QHE beyond linear response [21] and in multiterminal sys-
tems [22]. In the last case, the possibility of a separating heat
and charge currents provides a route to improving the thermo-
electric performance. The goal of the present work is to show
that the fractionalization of the charge also o↵ers a mecha-
nism for thermoelectric enhancement, which manifests itself

Vg

µL TRTL µR
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FIG. 1. (Color online) Sketch of the setup. A quantum Hall bar is
biased by a di↵erence of temperature �T = TL � TR and a voltage
V = (µL � µR)/e. Charge and thermal transport is induced through a
quantum dot generated by constrictions that generate regions of the
sample with filling factors ⌫L and ⌫R. The spectrum of the quantum
dot can be manipulated with a gate voltage Vg.

even in a simple two-terminal configuration.
We analyze the thermoelectric e�ciency of QHE structures,
focusing on fractional fillings within the Laughlin series ⌫ =
1/m. We consider the setup sketched in Fig. 1, where a QD is
embedded into a constriction of a QHE bar containing regions
with filling factors ⌫L and ⌫R. The QD is contacted to the cor-
responding edge states through quantum point contacts. Elec-
tric and heat currents, respectively denoted by JC and JQ flow
through the quantum dot as a response to chemical potential
and temperature biases applied at the contacts, µR � µL = eV
and �T = TL � TR, respectively. The device may operate as
a heat engine, in which case the e�ciency is defined as the
ratio ⌘he = P/JQ, between the generated power P = JCV and
the heat current from the hot to the cold reservoir. The other
operational mode is a refrigerator, which is characterized by a
coe�cient of performance ⌘fri = JQ/P, where JQ is the heat
current extracted from the cold reservoir and P is the invested
electrical power. Both coe�cients are bounded by the Carnot
values. In the linear response regime, relevant for small V

2

and �T , ⌘he,fri can be parametrized by the “figure of merit”
ZT [23], defined below, in a way that ZT ! 1 implies the
Carnot limit. Remarkably, we will show that ZT is signifi-
cantly enhanced in the fractional quantum Hall e↵ect, relative
to the response in the integer one. This enhancement is a di-
rect consequence of the fractionalization of the electron in the
fractional QHE.
Linear thermoelectric response. Following the conventions of
Ref. 24, we consider �T = TL�TR > 0 and µL�µR = eV < 0.
The two relevant fluxes are the charge and heat currents,
which are represented by the vector J ⌘ �JC , JQ

�
and corre-

sponds to the charge and heat current leaving the left contact
of the bar. In linear response they are related to the a�nities
represented by the vector X =

⇣
eV/kBT,�T/kBT 2

⌘
through

the Onsager matrix L̂ as J = L̂ X . The diagonal matrix
elements of L̂ are related to the electrical and thermal conduc-
tivity, while the o↵ diagonal ones are related to the Seebeck
and Peltier coe�cients. These four coe�cients characterize
the transport properties of the device. In the presence of an
external magnetic field, the o↵-diagonal ones obey Onsager
reciprocity relations L12(B) = L21(�B). Due to the symmetry
of the two-terminal setup we are considering they also sat-
isfy L12(B) = L21(B). In addition, the second law of thermo-
dynamics implies L11, L22 � 0 and det[L̂] > 0. Taking into
account these conditions, it can be shown that the maximum
achievable e�ciency in any of the two operational modes at a
fixed temperature di↵erence can be parametrized in terms of
the figure of merit ZT = L2

12/det[L̂] as follows [24]

⌘max
he,fri = ⌘

C
he,fri

p
ZT + 1 � 1p
ZT + 1 + 1

. (1)

⌘C
he = 1 � TR/TL and ⌘C

fri = TL/(TL � TR) are the Carnot e�-
ciency and coe�cient of performance for the heat-engine and
the refrigerator, respectively. They set a bound for the coe�-
cient of Eq. (1), which is achieved when ZT ! 1.
Model and currents. We consider the following Hamiltonian
for the full setup H =

P
↵=L,R H↵ + Hd + Ht. The first term

represents the edge states of the QHE with filling factors ⌫↵ =
1/m↵, which is described by the following Hamiltonian

H↵ =
⇡v
⌫↵

Z
dx ⇢2

↵(x), (2)

where ↵ = L,R denotes propagating modes injected from the
left and right contacts and moving along the edge with veloc-
ity v. The corresponding densities are ⇢↵(x) = @x�↵(x)/(2⇡)
where �↵(x) are chiral bosonic fields that satisfy the Kac-
Moody algebra

h
�↵(x), ��(x0)

i
= �i⇡⌫↵�↵,�sg(x � x0). The

second term of the Hamiltonian H describes the QD. It reads
Hd =

PN
j1 "d, jd†j d j, where we are assuming a large Zeeman

term that justifies considering fully polarized electrons. We
assume that the N levels of the quantum dot are equally spaced
in energy by � and can be shifted by recourse to the gate volt-
age as "d j = �( j�1)� eVg. The third term of the Hamiltonian

represents the tunneling between the edge states and the QD,

Ht = Vt

X

j,↵=L,R

h
 †↵(x0)d j + H.c.

i
, (3)

withVt =
p

2⇡aVt, being Vt the tunneling kinetic energy and
a is a characteristic length setting the high energy cuto↵ for
the edge spectrum, while x0 denotes the position of the edge
at which the contact to the dot is established. The bosonic
form of the electron operator at the edge is [12]

 ↵(x) ⌘ F↵p
2⇡a

ei s↵
⌫↵
�↵(x,t), (4)

where F↵ are Klein factors.
According to our definitions the charge and heat currents are
JC = �hṄLi and JQ = JE � µLJC , with JE = �hḢLi. For the
model under consideration, we have

JC = hĴCi = ieVth  †L(x0)d � d† L(x0)i,
JE =

⇡v
e⌫L
h ĴC⇢L(x0) + ⇢L(x0)ĴC i. (5)

We resort to Schwinger-Keldysh non-equilibrium Green func-
tions to calculate these currents, starting from their repre-
sentation in terms the lesser Green functions G<↵,d(t, t0) =
ihd†�(t0) ↵(xt)i as follows

JC = eVt
⇣
G<d,L(t � t0) �G<L,d(t � t0)

⌘
|t=t0 ,

JE = iVt@t
⇣
G<d,L(t � t0) �G<L,d(t � t0)

⌘
|t=t0 . (6)

These expressions can be calculated by recourse to perturba-
tion theory in the tunneling term. Details are provided in Refs.
1, 2, and 39. The result is

JC =
e
h

Z
d" ⌧(")

⇥
fL(" + µL) � fR(" + µR)

⇤
,

JE =
1
h

Z
d" " ⌧(")

⇥
fL(" + µL) � fR(" + µR)

⇤
, (7)

where f↵(") = 1/
⇣
e"/(kBT↵) + 1

⌘
is the Fermi function. We have

introduced the transmission function ⌧(") defined as

⌧(") =
V4

t

�
DR(" + µR) Dd(") DL(" + µL). (8)

Here, D⌫("), with ⌫ = R, L, d, are the density of states of the
right, left QHE edge states and the quantum dot, respectively.
For the latter, we consider a model of N resonances with en-
ergies "d, j and widths �. We assume that � ⇠ Vt. The corre-
sponding expressions are

D↵(") =
am↵�1

2⇡
(2⇡T↵)m↵�1

�(m↵)

�����
� (m↵/2 + i"/(2⇡T↵))
� (1/2 + i"/(2⇡T↵))

�����
2

Dd(") =
X

j

�/N⇡
⇣
" � "d, j

⌘2
+ �2
, (9)

where �(z) is the Euler function.
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and �T , ⌘he,fri can be parametrized by the “figure of merit”
ZT [23], defined below, in a way that ZT ! 1 implies the
Carnot limit. Remarkably, we will show that ZT is signifi-
cantly enhanced in the fractional quantum Hall e↵ect, relative
to the response in the integer one. This enhancement is a di-
rect consequence of the fractionalization of the electron in the
fractional QHE.
Linear thermoelectric response. Following the conventions of
Ref. 24, we consider �T = TL�TR > 0 and µL�µR = eV < 0.
The two relevant fluxes are the charge and heat currents,
which are represented by the vector J ⌘ �JC , JQ

�
and corre-

sponds to the charge and heat current leaving the left contact
of the bar. In linear response they are related to the a�nities
represented by the vector X =

⇣
eV/kBT,�T/kBT 2

⌘
through

the Onsager matrix L̂ as J = L̂ X . The diagonal matrix
elements of L̂ are related to the electrical and thermal conduc-
tivity, while the o↵ diagonal ones are related to the Seebeck
and Peltier coe�cients. These four coe�cients characterize
the transport properties of the device. In the presence of an
external magnetic field, the o↵-diagonal ones obey Onsager
reciprocity relations L12(B) = L21(�B). Due to the symmetry
of the two-terminal setup we are considering they also sat-
isfy L12(B) = L21(B). In addition, the second law of thermo-
dynamics implies L11, L22 � 0 and det[L̂] > 0. Taking into
account these conditions, it can be shown that the maximum
achievable e�ciency in any of the two operational modes at a
fixed temperature di↵erence can be parametrized in terms of
the figure of merit ZT = L2

12/det[L̂] as follows [24]

⌘max
he,fri = ⌘

C
he,fri

p
ZT + 1 � 1p
ZT + 1 + 1

. (1)

⌘C
he = 1 � TR/TL and ⌘C

fri = TL/(TL � TR) are the Carnot e�-
ciency and coe�cient of performance for the heat-engine and
the refrigerator, respectively. They set a bound for the coe�-
cient of Eq. (1), which is achieved when ZT ! 1.
Model and currents. We consider the following Hamiltonian
for the full setup H =

P
↵=L,R H↵ + Hd + Ht. The first term

represents the edge states of the QHE with filling factors ⌫↵ =
1/m↵, which is described by the following Hamiltonian

H↵ =
⇡v
⌫↵

Z
dx ⇢2

↵(x), (2)

where ↵ = L,R denotes propagating modes injected from the
left and right contacts and moving along the edge with veloc-
ity v. The corresponding densities are ⇢↵(x) = @x�↵(x)/(2⇡)
where �↵(x) are chiral bosonic fields that satisfy the Kac-
Moody algebra

h
�↵(x), ��(x0)

i
= �i⇡⌫↵�↵,�sg(x � x0). The

second term of the Hamiltonian H describes the QD. It reads
Hd =

PN
j1 "d, jd†j d j, where we are assuming a large Zeeman

term that justifies considering fully polarized electrons. We
assume that the N levels of the quantum dot are equally spaced
in energy by � and can be shifted by recourse to the gate volt-
age as "d j = �( j�1)� eVg. The third term of the Hamiltonian

represents the tunneling between the edge states and the QD,

Ht = Vt

X

j,↵=L,R

h
 †↵(x0)d j + H.c.

i
, (3)

withVt =
p

2⇡aVt, being Vt the tunneling kinetic energy and
a is a characteristic length setting the high energy cuto↵ for
the edge spectrum, while x0 denotes the position of the edge
at which the contact to the dot is established. The bosonic
form of the electron operator at the edge is [12]
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model under consideration, we have
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ZT [23], defined below, in a way that ZT ! 1 implies the
Carnot limit. Remarkably, we will show that ZT is signifi-
cantly enhanced in the fractional quantum Hall e↵ect, relative
to the response in the integer one. This enhancement is a di-
rect consequence of the fractionalization of the electron in the
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Linear thermoelectric response. Following the conventions of
Ref. 24, we consider �T = TL�TR > 0 and µL�µR = eV < 0.
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which are represented by the vector J ⌘ �JC , JQ
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ZT [23], defined below, in a way that ZT ! 1 implies the
Carnot limit. Remarkably, we will show that ZT is signifi-
cantly enhanced in the fractional quantum Hall e↵ect, relative
to the response in the integer one. This enhancement is a di-
rect consequence of the fractionalization of the electron in the
fractional QHE.
Linear thermoelectric response. Following the conventions of
Ref. 24, we consider �T = TL�TR > 0 and µL�µR = eV < 0.
The two relevant fluxes are the charge and heat currents,
which are represented by the vector J ⌘ �JC , JQ
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represented by the vector X =
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through
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the transport properties of the device. In the presence of an
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of the two-terminal setup we are considering they also sat-
isfy L12(B) = L21(B). In addition, the second law of thermo-
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account these conditions, it can be shown that the maximum
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ZT [23], defined below, in a way that ZT ! 1 implies the
Carnot limit. Remarkably, we will show that ZT is signifi-
cantly enhanced in the fractional quantum Hall e↵ect, relative
to the response in the integer one. This enhancement is a di-
rect consequence of the fractionalization of the electron in the
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Linear thermoelectric response. Following the conventions of
Ref. 24, we consider �T = TL�TR > 0 and µL�µR = eV < 0.
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model under consideration, we have
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We resort to Schwinger-Keldysh non-equilibrium Green func-
tions to calculate these currents, starting from their repre-
sentation in terms the lesser Green functions G<↵,d(t, t0) =
ihd†�(t0) ↵(xt)i as follows

JC = eVt
⇣
G<d,L(t � t0) �G<L,d(t � t0)

⌘
|t=t0 ,

JE = iVt@t
⇣
G<d,L(t � t0) �G<L,d(t � t0)

⌘
|t=t0 . (6)

These expressions can be calculated by recourse to perturba-
tion theory in the tunneling term. Details are provided in Refs.
1, 2, and 39. The result is

JC =
e
h

Z
d" ⌧(")

⇥
fL(" + µL) � fR(" + µR)

⇤
,

JE =
1
h

Z
d" " ⌧(")

⇥
fL(" + µL) � fR(" + µR)

⇤
, (7)

where f↵(") = 1/
⇣
e"/(kBT↵) + 1

⌘
is the Fermi function. We have

introduced the transmission function ⌧(") defined as

⌧(") =
V4

t

�
DR(" + µR) Dd(") DL(" + µL). (8)

Here, D⌫("), with ⌫ = R, L, d, are the density of states of the
right, left QHE edge states and the quantum dot, respectively.
For the latter, we consider a model of N resonances with en-
ergies "d, j and widths �. We assume that � ⇠ Vt. The corre-
sponding expressions are

D↵(") =
am↵�1

2⇡
(2⇡T↵)m↵�1

�(m↵)

�����
� (m↵/2 + i"/(2⇡T↵))
� (1/2 + i"/(2⇡T↵))

�����
2

Dd(") =
X

j

�/N⇡
⇣
" � "d, j

⌘2
+ �2
, (9)

where �(z) is the Euler function.

2

and �T , ⌘he,fri can be parametrized by the “figure of merit”
ZT [23], defined below, in a way that ZT ! 1 implies the
Carnot limit. Remarkably, we will show that ZT is signifi-
cantly enhanced in the fractional quantum Hall e↵ect, relative
to the response in the integer one. This enhancement is a di-
rect consequence of the fractionalization of the electron in the
fractional QHE.
Linear thermoelectric response. Following the conventions of
Ref. 24, we consider �T = TL�TR > 0 and µL�µR = eV < 0.
The two relevant fluxes are the charge and heat currents,
which are represented by the vector J ⌘ �JC , JQ

�
and corre-

sponds to the charge and heat current leaving the left contact
of the bar. In linear response they are related to the a�nities
represented by the vector X =

⇣
eV/kBT,�T/kBT 2

⌘
through

the Onsager matrix L̂ as J = L̂ X . The diagonal matrix
elements of L̂ are related to the electrical and thermal conduc-
tivity, while the o↵ diagonal ones are related to the Seebeck
and Peltier coe�cients. These four coe�cients characterize
the transport properties of the device. In the presence of an
external magnetic field, the o↵-diagonal ones obey Onsager
reciprocity relations L12(B) = L21(�B). Due to the symmetry
of the two-terminal setup we are considering they also sat-
isfy L12(B) = L21(B). In addition, the second law of thermo-
dynamics implies L11, L22 � 0 and det[L̂] > 0. Taking into
account these conditions, it can be shown that the maximum
achievable e�ciency in any of the two operational modes at a
fixed temperature di↵erence can be parametrized in terms of
the figure of merit ZT = L2

12/det[L̂] as follows [24]

⌘max
he,fri = ⌘

C
he,fri

p
ZT + 1 � 1p
ZT + 1 + 1

. (1)

⌘C
he = 1 � TR/TL and ⌘C

fri = TL/(TL � TR) are the Carnot e�-
ciency and coe�cient of performance for the heat-engine and
the refrigerator, respectively. They set a bound for the coe�-
cient of Eq. (1), which is achieved when ZT ! 1.
Model and currents. We consider the following Hamiltonian
for the full setup H =

P
↵=L,R H↵ + Hd + Ht. The first term

represents the edge states of the QHE with filling factors ⌫↵ =
1/m↵, which is described by the following Hamiltonian

H↵ =
⇡v
⌫↵

Z
dx ⇢2

↵(x), (2)

where ↵ = L,R denotes propagating modes injected from the
left and right contacts and moving along the edge with veloc-
ity v. The corresponding densities are ⇢↵(x) = @x�↵(x)/(2⇡)
where �↵(x) are chiral bosonic fields that satisfy the Kac-
Moody algebra

h
�↵(x), ��(x0)

i
= �i⇡⌫↵�↵,�sg(x � x0). The

second term of the Hamiltonian H describes the QD. It reads
Hd =

PN
j=1 "d, jd†j d j, where we are assuming a large Zeeman

term that justifies considering fully polarized electrons. We
assume that the N levels of the quantum dot are equally spaced
in energy by � and can be shifted by recourse to the gate volt-
age as "d j = �( j�1)� eVg. The third term of the Hamiltonian

represents the tunneling between the edge states and the QD,

Ht = Vt

X

j,↵=L,R

h
 †↵(x0)d j + H.c.

i
, (3)

withVt =
p

2⇡aVt, being Vt the tunneling kinetic energy and
a is a characteristic length setting the high energy cuto↵ for
the edge spectrum, while x0 denotes the position of the edge
at which the contact to the dot is established. The bosonic
form of the electron operator at the edge is [12]

 ↵(x) ⌘ F↵p
2⇡a

ei s↵
⌫↵
�↵(x,t), (4)

where F↵ are Klein factors.
According to our definitions the charge and heat currents are
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and introducing the bosonic representation to express the fermionic Green function in terms of the bosonic one
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�
/ sinh
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Notice that the relation D+�(t) = D�+(�t) or D<(t) = D>(�t), explicitly takes into account the particle-hole symmetry of each
lead.
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Charge current
Starting from the average of the charge current operator and the definitions of the fermionic Green functions G<↵,d(t, t0) =
ihd†�(t0) ↵(xt)i and G⌘⌘

0
↵,↵(x, x0; t, t0) = �ihT̂ ( ↵(xt⌘) †↵(x0t0⌘

0
))i, and

G⌘⌘
0

d,d(t, t0) = �ihT̂ (d�(t⌘)d†�(t0⌘
0
))i with ⌘ = +,� labeling the upper and lower branches of the Keldysh contour respectively. For

simplicity, we will omit the spacial coordinates of the fields, which correspond to x = x0 = x0.
The non diagonal Green function G<Ld(t � t0) obeys the Dyson expansion and considering the lowest order approximation in Vt,
Gi,i ⇡ gi, it reads as follows

G<Ld(t � t0) = Vt

Z +1

�1
dt1
⇣
g++L (t, t1)g+�d (t1, t0)

�g+�L (t, t1)g��d (t1, t0)
⌘
. (16)

In order to include the chemical potential, it is convenient to introduce the following gauge transformation in the fermionic fields
describing the lead ↵

 ↵(t)! eitµ↵ ↵(t), (17)

which yields the following transformation of the Green function g⌘⌘
0
↵ (t)! eitµ↵g⌘⌘

0
↵ (t). Therefore Eq. (16) at equal times reads

G<Ld(t � t0)|t0=t = Vt

Z +1

�1
dt1ei(t�t1)µL

⇣
g++L (t � t1)g+�d (t1 � t)

�g+�L (t � t1)g��d (t1 � t)
⌘
. (18)

By using the following identity for the di↵erent components of the Green function along the Keldysh contour,

g��i = g+�i + g�+i � g++i , (19)

and the notation g+�i = g<i , g�+i = g>i , the charge current becomes,

JC = eVt
⇣
G<d,L(t � t0)|t0=t �G<L,d(t � t0)|t0=t

⌘
(20)

= eV2
t

Z +1

�1
dteitµL

⇣
g<L(t)g>d (�t) � g>L(t)g<d (�t)

⌘
,

and introducing the bosonic representation to express the fermionic Green function in terms of the bosonic one

g7↵(t) = ± i
2⇡a

e⌫
�2D7↵ (t), (21)

where D⌘⌘
0
↵ (t) are the components along the Keldysh contour of the bosonic Green function [1],

D⌘⌘
0
↵ (t, t0) = hT̂

⇣
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0
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D⌘,�⌘↵ (t) = �⌫ ln
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sinh
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⇡T↵(⌘t + ia)

�
/ sinh

�
i⇡T↵a

�⌘

Notice that the relation D+�(t) = D�+(�t) or D<(t) = D>(�t), explicitly takes into account the particle-hole symmetry of each
lead.
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It is convenient to introduce the Fourier transform of the lesser Green functions describing the leads,

g<↵(t) =
i

2⇡a
sinhm↵ (ia⇡T↵)

sinhm↵ [⇡T↵(t + ia)]
(23)
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����
2
. (24)

Furthermore, with the help of the following identity for the Fermi function, f (") =
�
e "/T + 1

��1
= 1

2⇡e
�"/2T |�[1/2 + i"/(2⇡T )]|2,

the lesser Green function g<↵(") can be written in a more familiar form, g<↵(") = 2⇡iD↵(") f↵("),[2] where we have introduced the
spectral function of the lead ↵
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On the other hand, the Green function for the dot, evaluated at O(V2
t ) reads
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2
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where

Dd(") = |gr
d(")|2� =

X

j

�/N⇡
⇣
" � "d, j

⌘2
+ �2

(27)

is the spectral density of the quantum dot, which we model as N resonant levels with energies "d, j, j = 1, . . .N and widths �.
Substituting these expressions in Eq. (20) we get

JC =
e
h

Z
d" ⌧(")

⇥
fL(" + µL) � fR(" + µR)

⇤
, (28)

where we have defined the transmission function

⌧(") =
V4

t

�
DR(" + µR) Dd(") DL(" + µL). (29)

Energy current
Regarding the energy current, JE , some care should be taken when introducing the chemical potentials through the gauge
transformation in Eq.(17). Starting from Eq.(6) of the main text and taking in mind that ġ↵(t) ! iµ↵eiµ↵tg↵(t) + eiµ↵tġ↵(t), after
applying Eq.17, with ȧ(t) = @ta(t), and performing the same perturbative approximation in Eq. (18) we have
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ġ<L(t)g>d (�t) � ġ>L(t)g<d (�t)
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Note that by using the energy current conservation, JE = JEL = �JER , the first term in Eq.(30) vanishes due to the fact that
� µL

e JCL +
µR
e JCR =

µL+µR
e JCR = 0 and µL + µR = 0. After that and following the same steps sketch in the charge current, the final

expression of the energy one can by written in the form

JE =
e
h

Z
d" " ⌧(")

⇥
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⇤
, (31)
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and �T , ⌘he,fri can be parametrized by the “figure of merit”
ZT [23], defined below, in a way that ZT ! 1 implies the
Carnot limit. Remarkably, we will show that ZT is signifi-
cantly enhanced in the fractional quantum Hall e↵ect, relative
to the response in the integer one. This enhancement is a di-
rect consequence of the fractionalization of the electron in the
fractional QHE.
Linear thermoelectric response. Following the conventions of
Ref. 24, we consider �T = TL�TR > 0 and µL�µR = eV < 0.
The two relevant fluxes are the charge and heat currents,
which are represented by the vector J ⌘ �JC , JQ

�
and corre-

sponds to the charge and heat current leaving the left contact
of the bar. In linear response they are related to the a�nities
represented by the vector X =

⇣
eV/kBT,�T/kBT 2

⌘
through

the Onsager matrix L̂ as J = L̂ X . The diagonal matrix
elements of L̂ are related to the electrical and thermal conduc-
tivity, while the o↵ diagonal ones are related to the Seebeck
and Peltier coe�cients. These four coe�cients characterize
the transport properties of the device. In the presence of an
external magnetic field, the o↵-diagonal ones obey Onsager
reciprocity relations L12(B) = L21(�B). Due to the symmetry
of the two-terminal setup we are considering they also sat-
isfy L12(B) = L21(B). In addition, the second law of thermo-
dynamics implies L11, L22 � 0 and det[L̂] > 0. Taking into
account these conditions, it can be shown that the maximum
achievable e�ciency in any of the two operational modes at a
fixed temperature di↵erence can be parametrized in terms of
the figure of merit ZT = L2

12/det[L̂] as follows [24]

⌘max
he,fri = ⌘

C
he,fri

p
ZT + 1 � 1p
ZT + 1 + 1

. (1)

⌘C
he = 1 � TR/TL and ⌘C

fri = TL/(TL � TR) are the Carnot e�-
ciency and coe�cient of performance for the heat-engine and
the refrigerator, respectively. They set a bound for the coe�-
cient of Eq. (1), which is achieved when ZT ! 1.
Model and currents. We consider the following Hamiltonian
for the full setup H =

P
↵=L,R H↵ + Hd + Ht. The first term

represents the edge states of the QHE with filling factors ⌫↵ =
1/m↵, which is described by the following Hamiltonian

H↵ =
⇡v
⌫↵

Z
dx ⇢2

↵(x), (2)

where ↵ = L,R denotes propagating modes injected from the
left and right contacts and moving along the edge with veloc-
ity v. The corresponding densities are ⇢↵(x) = @x�↵(x)/(2⇡)
where �↵(x) are chiral bosonic fields that satisfy the Kac-
Moody algebra

h
�↵(x), ��(x0)

i
= �i⇡⌫↵�↵,�sg(x � x0). The

second term of the Hamiltonian H describes the QD. It reads
Hd =

PN
j=1 "d, jd†j d j, where we are assuming a large Zeeman

term that justifies considering fully polarized electrons. We
assume that the N levels of the quantum dot are equally spaced
in energy by � and can be shifted by recourse to the gate volt-
age as "d j = �( j�1)� eVg. The third term of the Hamiltonian

represents the tunneling between the edge states and the QD,

Ht = Vt

X

j,↵=L,R

h
 †↵(x0)d j + H.c.

i
, (3)

withVt =
p

2⇡aVt, being Vt the tunneling kinetic energy and
a is a characteristic length setting the high energy cuto↵ for
the edge spectrum, while x0 denotes the position of the edge
at which the contact to the dot is established. The bosonic
form of the electron operator at the edge is [12]

 ↵(x) ⌘ F↵p
2⇡a

ei s↵
⌫↵
�↵(x,t), (4)

where F↵ are Klein factors.
According to our definitions the charge and heat currents are
JC = �ehṄLi and JQ = JE � µLJC , with JE = �hḢLi. For the
model under consideration, we have

JC = hĴCi = ieVth  †L(x0)d � d† L(x0)i,
JE =

⇡v
e⌫L
h ĴC⇢L(x0) + ⇢L(x0)ĴC i. (5)

We resort to Schwinger-Keldysh non-equilibrium Green func-
tions to calculate these currents, starting from their repre-
sentation in terms the lesser Green functions G<↵,d(t � t0) =
ihd†�(t0) ↵(xt)i as follows

JC = eVt
⇣
G<d,L(t � t0) �G<L,d(t � t0)

⌘
|t=t0 ,

JE = iVt@t
⇣
G<d,L(t � t0) �G<L,d(t � t0)

⌘
|t=t0 . (6)

These expressions can be calculated by recourse to perturba-
tion theory in the tunneling term. Details are provided in Refs.
1, 2, and 39. The result is

JC =
e
h

Z
d" ⌧(")

⇥
fL(" + µL) � fR(" + µR)

⇤
,

JE =
1
h

Z
d" " ⌧(")

⇥
fL(" + µL) � fR(" + µR)

⇤
, (7)

where f↵(") = 1/
⇣
e"/(kBT↵) + 1

⌘
is the Fermi function. We have

introduced the transmission function ⌧(") defined as

⌧(") =
V4

t

�
DR(" + µR) Dd(") DL(" + µL). (8)

Here, D⌫("), with ⌫ = R, L, d, are the density of states of the
right, left QHE edge states and the quantum dot, respectively.
For the latter, we consider a model of N resonances with en-
ergies "d, j and widths �. We assume that � ⇠ Vt. The corre-
sponding expressions are

D↵(") =
am↵�1

2⇡
(2⇡T↵)m↵�1

�(m↵)

�����
� (m↵/2 + i"/(2⇡T↵))
� (1/2 + i"/(2⇡T↵))

�����
2

Dd(") =
X

j

�/N⇡
⇣
" � "d, j

⌘2
+ �2
, (9)

where �(z) is the Euler function.
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According to our definitions the charge and heat currents are
JC = �ehṄLi and JQ = JE � µLJC , with JE = �hḢLi. For the
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1, 2, and 39. The result is
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and �T , ⌘he,fri can be parametrized by the “figure of merit”
ZT [23], defined below, in a way that ZT ! 1 implies the
Carnot limit. Remarkably, we will show that ZT is signifi-
cantly enhanced in the fractional quantum Hall e↵ect, relative
to the response in the integer one. This enhancement is a di-
rect consequence of the fractionalization of the electron in the
fractional QHE.
Linear thermoelectric response. Following the conventions of
Ref. 24, we consider �T = TL�TR > 0 and µL�µR = eV < 0.
The two relevant fluxes are the charge and heat currents,
which are represented by the vector J ⌘ �JC , JQ
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and corre-

sponds to the charge and heat current leaving the left contact
of the bar. In linear response they are related to the a�nities
represented by the vector X =

⇣
eV/kBT,�T/kBT 2
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through

the Onsager matrix L̂ as J = L̂ X . The diagonal matrix
elements of L̂ are related to the electrical and thermal conduc-
tivity, while the o↵ diagonal ones are related to the Seebeck
and Peltier coe�cients. These four coe�cients characterize
the transport properties of the device. In the presence of an
external magnetic field, the o↵-diagonal ones obey Onsager
reciprocity relations L12(B) = L21(�B). Due to the symmetry
of the two-terminal setup we are considering they also sat-
isfy L12(B) = L21(B). In addition, the second law of thermo-
dynamics implies L11, L22 � 0 and det[L̂] > 0. Taking into
account these conditions, it can be shown that the maximum
achievable e�ciency in any of the two operational modes at a
fixed temperature di↵erence can be parametrized in terms of
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form of the electron operator at the edge is [12]
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h ĴC⇢L(x0) + ⇢L(x0)ĴC i. (5)
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ZT [23], defined below, in a way that ZT ! 1 implies the
Carnot limit. Remarkably, we will show that ZT is signifi-
cantly enhanced in the fractional quantum Hall e↵ect, relative
to the response in the integer one. This enhancement is a di-
rect consequence of the fractionalization of the electron in the
fractional QHE.
Linear thermoelectric response. Following the conventions of
Ref. 24, we consider �T = TL�TR > 0 and µL�µR = eV < 0.
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represented by the vector X =

⇣
eV/kBT,�T/kBT 2

⌘
through

the Onsager matrix L̂ as J = L̂ X . The diagonal matrix
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ZT [23], defined below, in a way that ZT ! 1 implies the
Carnot limit. Remarkably, we will show that ZT is signifi-
cantly enhanced in the fractional quantum Hall e↵ect, relative
to the response in the integer one. This enhancement is a di-
rect consequence of the fractionalization of the electron in the
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Linear thermoelectric response. Following the conventions of
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The two relevant fluxes are the charge and heat currents,
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and corre-

sponds to the charge and heat current leaving the left contact
of the bar. In linear response they are related to the a�nities
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isfy L12(B) = L21(B). In addition, the second law of thermo-
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FIG. 2. (Color online) Onsager coe�cients at the temperature T = �,
as functions of the gate voltage for a quantum dot with two energy of
the levels. Solid, dashed and dashed-dotted lines correspond to m̃ =
mL + mR = 2, 4, 6, respectively. The integer-filling case corresponds
to m̃ = 2. The level spacing is � = 30�. The chemical potential is
set at µ = 0.

Onsager matrix and transport coe�cients. We take as ref-
erences T = TR and µ = (µL + µR)/2 = 0. Expanding the
di↵erence of Fermi functions in Eqs. (7), we have

L̂ = �kBT
2h

Z
d"

 
e e"
" "2

!
⌧(")

@ f (")
@"
. (10)

The behavior of the di↵erent matrix elements is determined
by the transmission function ⌧("). The latter can be externally
modified by changing the energy of the levels in the quantum
dot by means of the gate voltage. The temperature enters the
density of states of the edges and the derivative of the Fermi
function. Examples are shown in Fig. 2 where the three dif-
ferent Li j are shown as functions of the gate voltage Vg for a
given value of the background temperature. We recall that the
Vg shifts rigidly the energy of the QD levels. Interestingly,
the behavior of these coe�cients is determined by the inte-
ger m̃ = mL + mR corresponding to an e↵ective filling factor
1/⌫̃ = 1/⌫L + 1/⌫R. This property was previously discussed
in the context of the conductance [42] and the charge-current
noise [43] in quantum point contacts between QHE regions
with di↵erent filling factors. Here, we see that it is a more gen-
eral characteristic of all the transport coe�cients, which be-
comes explicit in the analytic low-temperature behavior given
by Eqs. (13). The element L11 exhibits peaks when a level
is aligned with the chemical potential and as a function of the
gate voltage. Instead, the o↵-diagonal coe�cient L12 vanishes
and changes sign at this value, which indicates the possibil-
ity of operating the device as a heat engine (L12 > 0) or a
refrigerator (L12 < 0). The vanishing of L12 implies a lack
of thermoelectric response when the chemical potential is ex-
actly resonant with the levels of the dot. As a function of the
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FIG. 3. (Color online) Electrical and thermal conductances, G and ,
respectively and Seebeck coe�cient S of a single-level quantum dot,
as functions of the gate voltage. Other details are the same as in Fig.
2.

filling fraction, we see that L11 and L12 decrease for the frac-
tional fillings m̃ > 2 in comparison to the integer case m̃ = 2.
The suppression of the electrical conductance in the tunneling
regime of the fractional QHE, and in Luttinger liquids in gen-
eral, has been widely discussed in the literature [11]. Here, we
see that a similar e↵ect takes place in the o↵-diagonal Onsager
coe�cient as well.
The Onsager matrix elements are related to the electrical and
thermal conductances G and , the Seebeck and Peltier coe�-
cients S and ⇧, respectively, as follows

G =
L11

T
,  =

1
T 2

detL̂
L11
, TS = ⇧ =

L12

L11
. (11)

Examples of their dependence with Vg are shown in Fig. 3
for a single-level. We see that the electrical and thermal con-
ductances follow a behavior similar to that of the diagonal
Onsager coe�cients. Remarkably, we see that the Seebeck
coe�cient increases in the fractional-filling case, relative to
the integer-filling one. This behavior is “a priori” unexpected
from the behavior of L12, which follows the opposite trend.
The behavior of S is due to the fact that L12 decreases as func-
tion of the the filling factor at a lower rate than L11, as a con-
sequence of the di↵erent impact that the fractionalization of
the charge (mL, mR) has on the charge and thermal channels.
This feature becomes explicit in the low-temperature behavior
described by Eqs. (13).
Figure of merit. The response described by the Onsager coef-
ficients is suppressed for fractional fillings. However, as the
o↵-diagonal elements are less suppressed than that of the di-
agonal ones, the thermoelectric response can be improved. An
indication of the degree of such improvement is quantified by
the figure of merit ZT . The corresponding behavior is shown
in Fig. 4. At all temperatures, there is an enhancement of the
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FIG. 2. (Color online) Onsager coe�cients at the temperature T = �,
as functions of the gate voltage for a quantum dot with two energy of
the levels. Solid, dashed and dashed-dotted lines correspond to m̃ =
mL + mR = 2, 4, 6, respectively. The integer-filling case corresponds
to m̃ = 2. The level spacing is � = 30�. The chemical potential is
set at µ = 0.

Onsager matrix and transport coe�cients. We take as ref-
erences T = TR and µ = (µL + µR)/2 = 0. Expanding the
di↵erence of Fermi functions in Eqs. (7), we have
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The behavior of the di↵erent matrix elements is determined
by the transmission function ⌧("). The latter can be externally
modified by changing the energy of the levels in the quantum
dot by means of the gate voltage. The temperature enters the
density of states of the edges and the derivative of the Fermi
function. Examples are shown in Fig. 2 where the three dif-
ferent Li j are shown as functions of the gate voltage Vg for a
given value of the background temperature. We recall that the
Vg shifts rigidly the energy of the QD levels. Interestingly,
the behavior of these coe�cients is determined by the inte-
ger m̃ = mL + mR corresponding to an e↵ective filling factor
1/⌫̃ = 1/⌫L + 1/⌫R. This property was previously discussed
in the context of the conductance [42] and the charge-current
noise [43] in quantum point contacts between QHE regions
with di↵erent filling factors. Here, we see that it is a more gen-
eral characteristic of all the transport coe�cients, which be-
comes explicit in the analytic low-temperature behavior given
by Eqs. (13). The element L11 exhibits peaks when a level
is aligned with the chemical potential and as a function of the
gate voltage. Instead, the o↵-diagonal coe�cient L12 vanishes
and changes sign at this value, which indicates the possibil-
ity of operating the device as a heat engine (L12 > 0) or a
refrigerator (L12 < 0). The vanishing of L12 implies a lack
of thermoelectric response when the chemical potential is ex-
actly resonant with the levels of the dot. As a function of the
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filling fraction, we see that L11 and L12 decrease for the frac-
tional fillings m̃ > 2 in comparison to the integer case m̃ = 2.
The suppression of the electrical conductance in the tunneling
regime of the fractional QHE, and in Luttinger liquids in gen-
eral, has been widely discussed in the literature [11]. Here, we
see that a similar e↵ect takes place in the o↵-diagonal Onsager
coe�cient as well.
The Onsager matrix elements are related to the electrical and
thermal conductances G and , the Seebeck and Peltier coe�-
cients S and ⇧, respectively, as follows

G =
L11

T
,  =

1
T 2

detL̂
L11
, TS = ⇧ =

L12

L11
. (11)

Examples of their dependence with Vg are shown in Fig. 3
for a single-level. We see that the electrical and thermal con-
ductances follow a behavior similar to that of the diagonal
Onsager coe�cients. Remarkably, we see that the Seebeck
coe�cient increases in the fractional-filling case, relative to
the integer-filling one. This behavior is “a priori” unexpected
from the behavior of L12, which follows the opposite trend.
The behavior of S is due to the fact that L12 decreases as func-
tion of the the filling factor at a lower rate than L11, as a con-
sequence of the di↵erent impact that the fractionalization of
the charge (mL, mR) has on the charge and thermal channels.
This feature becomes explicit in the low-temperature behavior
described by Eqs. (13).
Figure of merit. The response described by the Onsager coef-
ficients is suppressed for fractional fillings. However, as the
o↵-diagonal elements are less suppressed than that of the di-
agonal ones, the thermoelectric response can be improved. An
indication of the degree of such improvement is quantified by
the figure of merit ZT . The corresponding behavior is shown
in Fig. 4. At all temperatures, there is an enhancement of the
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as functions of the gate voltage for a quantum dot with two energy of
the levels. Solid, dashed and dashed-dotted lines correspond to m̃ =
mL + mR = 2, 4, 6, respectively. The integer-filling case corresponds
to m̃ = 2. The level spacing is � = 30�. The chemical potential is
set at µ = 0.

Onsager matrix and transport coe�cients. We take as ref-
erences T = TR and µ = (µL + µR)/2 = 0. Expanding the
di↵erence of Fermi functions in Eqs. (7), we have
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The behavior of the di↵erent matrix elements is determined
by the transmission function ⌧("). The latter can be externally
modified by changing the energy of the levels in the quantum
dot by means of the gate voltage. The temperature enters the
density of states of the edges and the derivative of the Fermi
function. Examples are shown in Fig. 2 where the three dif-
ferent Li j are shown as functions of the gate voltage Vg for a
given value of the background temperature. We recall that the
Vg shifts rigidly the energy of the QD levels. Interestingly,
the behavior of these coe�cients is determined by the inte-
ger m̃ = mL + mR corresponding to an e↵ective filling factor
1/⌫̃ = 1/⌫L + 1/⌫R. This property was previously discussed
in the context of the conductance [42] and the charge-current
noise [43] in quantum point contacts between QHE regions
with di↵erent filling factors. Here, we see that it is a more gen-
eral characteristic of all the transport coe�cients, which be-
comes explicit in the analytic low-temperature behavior given
by Eqs. (13). The element L11 exhibits peaks when a level
is aligned with the chemical potential and as a function of the
gate voltage. Instead, the o↵-diagonal coe�cient L12 vanishes
and changes sign at this value, which indicates the possibil-
ity of operating the device as a heat engine (L12 > 0) or a
refrigerator (L12 < 0). The vanishing of L12 implies a lack
of thermoelectric response when the chemical potential is ex-
actly resonant with the levels of the dot. As a function of the
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filling fraction, we see that L11 and L12 decrease for the frac-
tional fillings m̃ > 2 in comparison to the integer case m̃ = 2.
The suppression of the electrical conductance in the tunneling
regime of the fractional QHE, and in Luttinger liquids in gen-
eral, has been widely discussed in the literature [11]. Here, we
see that a similar e↵ect takes place in the o↵-diagonal Onsager
coe�cient as well.
The Onsager matrix elements are related to the electrical and
thermal conductances G and , the Seebeck and Peltier coe�-
cients S and ⇧, respectively, as follows

G =
L11

T
,  =

1
T 2

detL̂
L11
, TS = ⇧ =

L12

L11
. (11)

Examples of their dependence with Vg are shown in Fig. 3
for a single-level. We see that the electrical and thermal con-
ductances follow a behavior similar to that of the diagonal
Onsager coe�cients. Remarkably, we see that the Seebeck
coe�cient increases in the fractional-filling case, relative to
the integer-filling one. This behavior is “a priori” unexpected
from the behavior of L12, which follows the opposite trend.
The behavior of S is due to the fact that L12 decreases as func-
tion of the the filling factor at a lower rate than L11, as a con-
sequence of the di↵erent impact that the fractionalization of
the charge (mL, mR) has on the charge and thermal channels.
This feature becomes explicit in the low-temperature behavior
described by Eqs. (13).
Figure of merit. The response described by the Onsager coef-
ficients is suppressed for fractional fillings. However, as the
o↵-diagonal elements are less suppressed than that of the di-
agonal ones, the thermoelectric response can be improved. An
indication of the degree of such improvement is quantified by
the figure of merit ZT . The corresponding behavior is shown
in Fig. 4. At all temperatures, there is an enhancement of the
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as functions of the gate voltage for a quantum dot with two energy of
the levels. Solid, dashed and dashed-dotted lines correspond to m̃ =
mL + mR = 2, 4, 6, respectively. The integer-filling case corresponds
to m̃ = 2. The level spacing is � = 30�. The chemical potential is
set at µ = 0.

Onsager matrix and transport coe�cients. We take as ref-
erences T = TR and µ = (µL + µR)/2 = 0. Expanding the
di↵erence of Fermi functions in Eqs. (7), we have
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The behavior of the di↵erent matrix elements is determined
by the transmission function ⌧("). The latter can be externally
modified by changing the energy of the levels in the quantum
dot by means of the gate voltage. The temperature enters the
density of states of the edges and the derivative of the Fermi
function. Examples are shown in Fig. 2 where the three dif-
ferent Li j are shown as functions of the gate voltage Vg for a
given value of the background temperature. We recall that the
Vg shifts rigidly the energy of the QD levels. Interestingly,
the behavior of these coe�cients is determined by the inte-
ger m̃ = mL + mR corresponding to an e↵ective filling factor
1/⌫̃ = 1/⌫L + 1/⌫R. This property was previously discussed
in the context of the conductance [42] and the charge-current
noise [43] in quantum point contacts between QHE regions
with di↵erent filling factors. Here, we see that it is a more gen-
eral characteristic of all the transport coe�cients, which be-
comes explicit in the analytic low-temperature behavior given
by Eqs. (13). The element L11 exhibits peaks when a level
is aligned with the chemical potential and as a function of the
gate voltage. Instead, the o↵-diagonal coe�cient L12 vanishes
and changes sign at this value, which indicates the possibil-
ity of operating the device as a heat engine (L12 > 0) or a
refrigerator (L12 < 0). The vanishing of L12 implies a lack
of thermoelectric response when the chemical potential is ex-
actly resonant with the levels of the dot. As a function of the
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filling fraction, we see that L11 and L12 decrease for the frac-
tional fillings m̃ > 2 in comparison to the integer case m̃ = 2.
The suppression of the electrical conductance in the tunneling
regime of the fractional QHE, and in Luttinger liquids in gen-
eral, has been widely discussed in the literature [11]. Here, we
see that a similar e↵ect takes place in the o↵-diagonal Onsager
coe�cient as well.
The Onsager matrix elements are related to the electrical and
thermal conductances G and , the Seebeck and Peltier coe�-
cients S and ⇧, respectively, as follows

G =
L11

T
,  =

1
T 2

detL̂
L11
, TS = ⇧ =

L12

L11
. (11)

Examples of their dependence with Vg are shown in Fig. 3
for a single-level. We see that the electrical and thermal con-
ductances follow a behavior similar to that of the diagonal
Onsager coe�cients. Remarkably, we see that the Seebeck
coe�cient increases in the fractional-filling case, relative to
the integer-filling one. This behavior is “a priori” unexpected
from the behavior of L12, which follows the opposite trend.
The behavior of S is due to the fact that L12 decreases as func-
tion of the the filling factor at a lower rate than L11, as a con-
sequence of the di↵erent impact that the fractionalization of
the charge (mL, mR) has on the charge and thermal channels.
This feature becomes explicit in the low-temperature behavior
described by Eqs. (13).
Figure of merit. The response described by the Onsager coef-
ficients is suppressed for fractional fillings. However, as the
o↵-diagonal elements are less suppressed than that of the di-
agonal ones, the thermoelectric response can be improved. An
indication of the degree of such improvement is quantified by
the figure of merit ZT . The corresponding behavior is shown
in Fig. 4. At all temperatures, there is an enhancement of the
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set at µ = 0.

Onsager matrix and transport coe�cients. We take as ref-
erences T = TR and µ = (µL + µR)/2 = 0. Expanding the
di↵erence of Fermi functions in Eqs. (7), we have
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The behavior of the di↵erent matrix elements is determined
by the transmission function ⌧("). The latter can be externally
modified by changing the energy of the levels in the quantum
dot by means of the gate voltage. The temperature enters the
density of states of the edges and the derivative of the Fermi
function. Examples are shown in Fig. 2 where the three dif-
ferent Li j are shown as functions of the gate voltage Vg for a
given value of the background temperature. We recall that the
Vg shifts rigidly the energy of the QD levels. Interestingly,
the behavior of these coe�cients is determined by the inte-
ger m̃ = mL + mR corresponding to an e↵ective filling factor
1/⌫̃ = 1/⌫L + 1/⌫R. This property was previously discussed
in the context of the conductance [42] and the charge-current
noise [43] in quantum point contacts between QHE regions
with di↵erent filling factors. Here, we see that it is a more gen-
eral characteristic of all the transport coe�cients, which be-
comes explicit in the analytic low-temperature behavior given
by Eqs. (13). The element L11 exhibits peaks when a level
is aligned with the chemical potential and as a function of the
gate voltage. Instead, the o↵-diagonal coe�cient L12 vanishes
and changes sign at this value, which indicates the possibil-
ity of operating the device as a heat engine (L12 > 0) or a
refrigerator (L12 < 0). The vanishing of L12 implies a lack
of thermoelectric response when the chemical potential is ex-
actly resonant with the levels of the dot. As a function of the
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filling fraction, we see that L11 and L12 decrease for the frac-
tional fillings m̃ > 2 in comparison to the integer case m̃ = 2.
The suppression of the electrical conductance in the tunneling
regime of the fractional QHE, and in Luttinger liquids in gen-
eral, has been widely discussed in the literature [11]. Here, we
see that a similar e↵ect takes place in the o↵-diagonal Onsager
coe�cient as well.
The Onsager matrix elements are related to the electrical and
thermal conductances G and , the Seebeck and Peltier coe�-
cients S and ⇧, respectively, as follows

G =
L11

T
,  =

1
T 2

detL̂
L11
, TS = ⇧ =

L12

L11
. (11)

Examples of their dependence with Vg are shown in Fig. 3
for a single-level. We see that the electrical and thermal con-
ductances follow a behavior similar to that of the diagonal
Onsager coe�cients. Remarkably, we see that the Seebeck
coe�cient increases in the fractional-filling case, relative to
the integer-filling one. This behavior is “a priori” unexpected
from the behavior of L12, which follows the opposite trend.
The behavior of S is due to the fact that L12 decreases as func-
tion of the the filling factor at a lower rate than L11, as a con-
sequence of the di↵erent impact that the fractionalization of
the charge (mL, mR) has on the charge and thermal channels.
This feature becomes explicit in the low-temperature behavior
described by Eqs. (13).
Figure of merit. The response described by the Onsager coef-
ficients is suppressed for fractional fillings. However, as the
o↵-diagonal elements are less suppressed than that of the di-
agonal ones, the thermoelectric response can be improved. An
indication of the degree of such improvement is quantified by
the figure of merit ZT . The corresponding behavior is shown
in Fig. 4. At all temperatures, there is an enhancement of the
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mL + mR = 2, 4, 6, respectively. The integer-filling case corresponds
to m̃ = 2. The level spacing is � = 30�. The chemical potential is
set at µ = 0.

Onsager matrix and transport coe�cients. We take as ref-
erences T = TR and µ = (µL + µR)/2 = 0. Expanding the
di↵erence of Fermi functions in Eqs. (7), we have
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The behavior of the di↵erent matrix elements is determined
by the transmission function ⌧("). The latter can be externally
modified by changing the energy of the levels in the quantum
dot by means of the gate voltage. The temperature enters the
density of states of the edges and the derivative of the Fermi
function. Examples are shown in Fig. 2 where the three dif-
ferent Li j are shown as functions of the gate voltage Vg for a
given value of the background temperature. We recall that the
Vg shifts rigidly the energy of the QD levels. Interestingly,
the behavior of these coe�cients is determined by the inte-
ger m̃ = mL + mR corresponding to an e↵ective filling factor
1/⌫̃ = 1/⌫L + 1/⌫R. This property was previously discussed
in the context of the conductance [42] and the charge-current
noise [43] in quantum point contacts between QHE regions
with di↵erent filling factors. Here, we see that it is a more gen-
eral characteristic of all the transport coe�cients, which be-
comes explicit in the analytic low-temperature behavior given
by Eqs. (13). The element L11 exhibits peaks when a level
is aligned with the chemical potential and as a function of the
gate voltage. Instead, the o↵-diagonal coe�cient L12 vanishes
and changes sign at this value, which indicates the possibil-
ity of operating the device as a heat engine (L12 > 0) or a
refrigerator (L12 < 0). The vanishing of L12 implies a lack
of thermoelectric response when the chemical potential is ex-
actly resonant with the levels of the dot. As a function of the
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respectively and Seebeck coe�cient S of a single-level quantum dot,
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filling fraction, we see that L11 and L12 decrease for the frac-
tional fillings m̃ > 2 in comparison to the integer case m̃ = 2.
The suppression of the electrical conductance in the tunneling
regime of the fractional QHE, and in Luttinger liquids in gen-
eral, has been widely discussed in the literature [11]. Here, we
see that a similar e↵ect takes place in the o↵-diagonal Onsager
coe�cient as well.
The Onsager matrix elements are related to the electrical and
thermal conductances G and , the Seebeck and Peltier coe�-
cients S and ⇧, respectively, as follows

G =
L11

T
,  =

1
T 2

detL̂
L11
, TS = ⇧ =

L12

L11
. (11)

Examples of their dependence with Vg are shown in Fig. 3
for a single-level. We see that the electrical and thermal con-
ductances follow a behavior similar to that of the diagonal
Onsager coe�cients. Remarkably, we see that the Seebeck
coe�cient increases in the fractional-filling case, relative to
the integer-filling one. This behavior is “a priori” unexpected
from the behavior of L12, which follows the opposite trend.
The behavior of S is due to the fact that L12 decreases as func-
tion of the the filling factor at a lower rate than L11, as a con-
sequence of the di↵erent impact that the fractionalization of
the charge (mL, mR) has on the charge and thermal channels.
This feature becomes explicit in the low-temperature behavior
described by Eqs. (13).
Figure of merit. The response described by the Onsager coef-
ficients is suppressed for fractional fillings. However, as the
o↵-diagonal elements are less suppressed than that of the di-
agonal ones, the thermoelectric response can be improved. An
indication of the degree of such improvement is quantified by
the figure of merit ZT . The corresponding behavior is shown
in Fig. 4. At all temperatures, there is an enhancement of the
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4

figure of merit in the fractional case relative to the integer one.
This e↵ect is particularly crucial for low temperatures, where
ZT is very low in the integer QHE, but it can be improved up
to an order of magnitude in the fractional one.
The key for the understanding of the behavior of the transport
coe�cients is the analysis of the transmission function given
in Eq. (29). For simplicity, we focus on the case where the
QD contains a single level, to study the qualitative features of
this function and the integrands of the Onsager coe�cients.
Notice that in the limit � � � each of the levels of the QD
contribute separately. For simplicity, we focus on the case
of a single level. In the limit where � ! 0, the density of
states of the QD can be approximated as Dd(") ⇠ � (" � "d).
Substituting in Eq. (12) we have

L̂ ⇠ �kBT
2h

 
e e"d
"d "2

d

!
DL("d)DR("d) f 0("d), � ! 0.

(12)
Using these coe�cients in the definition of the figure of merit,
we find ZT ! 1, which corresponds to Carnot e�ciency.
The fact that the limit of a vanishing width of the transmission
function leads to optimal e�ciency was originally pointed out
in Ref. 44 and constitutes an extreme case. In what follows we
turn to analyze the case where � is a finite quantity, although
it satisfies � ⌧ �. For low energies, the density of states of
the edge states behaves as a power law, D↵(") / |"|m↵�1. On
the other hand the di↵erence of the Fermi functions sets the
relevant integration window to ⇠ [�kBT, kBT ]. In the low-
temperature regime kBT  �, we can approximate the density
of states of the quantum dot by Dd(") = Dd(0) + D0d(0)". The
result of these approximations leads to the following rough
estimates of the Onsager matrix elements

L11 ⇠ cmL,mR (T )
Dd(0)

(m̃ � 1)
(kBT )m̃�1,

L12 ⇠ cmL,mR (T )
D0d(0)

(m̃ + 1)
(kBT )m̃+1,

L22 ⇠ cmL,mR (T )
Dd(0)

(m̃ + 1)
(kBT )m̃+1, (13)

where the common prefactor cmL,mR (T ) is a function of the
temperature. As already stressed before, the low-temperature
behavior of these coe�cients is determined by m̃ = mL + mR.
We can now see that the Seebeck coe�cient is approximately
given by

S ' �2
(m̃ � 1)
(m̃ + 1)

"d kBT
"2

d + �
2
, T < �. (14)

This implies an enhancement of at least a factor
3 (m̃ � 1) / (m̃ + 1), relative to the integer-filling case,
which is equivalent to 6/5 for m̃ = 4, corresponding to filling
factors (⌫L, ⌫R) = (1, 1/3) or (1/3, 1), and 15/7 for m̃ = 6,
corresponding to (⌫L, ⌫R) = (1/3, 1/3). Similarly, the figure
of merit can be written as

ZT =
1
↵ � 1

, ↵ =

⇣
"2

d + �
2
⌘2

(2kBT"d)2
(m̃ + 1)
(m̃ � 1)

, (15)
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FIG. 4. (Color online) Figure of merit ZT as a function of the tem-
perature T and the energy of the QD level "d (right panel). Plots at
fixed temperatures are shown in the left panels. Other details are the
same as in Fig. 2.

with ↵ = L11L22/L2
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Seebeck coe�cient, we see that as m̃ increases ↵ ! 1, which
implies an enhancement of the figure of merit, which is, of
course, restricted to the limited number of physically realized
values of m̃. We have verified that these simple approximate
expressions fit on top of the exact results for temperatures
0 < kBT < 0.1�. For higher temperatures these expressions
remain qualitatively correct while quantitatively lower than
the exact result. Hence, Eqs. (14) and (15) provide quite accu-
rate lower bounds for the exact thermoelectric performance of
the device of Fig. 1. It is important to stress that in the case of
the figure of merit ZT the enhancement in the fractional case
increases significantly as the temperature grows.
In order to gather the relevance of these results in the context
of concrete experimental situations, let us quote the typical en-
ergy scales for quantum dots embedded in quantum Hall bars.
The value of the level spacing � varies in di↵erent experimen-
tal setups. It can be of the order of 200µeV [45]. In Ref. [36]
it is quoted 32µeV . Assuming that typical values for the hy-
bridization energy are � ⇠ 1µeV and considering the values of
� mentioned above, the behavior of the transport coe�cients
can be regarded as a trivial superposition of the contributions
of the single levels. For these estimates, the temperature of
the left middle panel of Fig. 4 corresponds to T ⇠ 12mK. For
these parameters, the maximum value of the figure of merit is
ZT ⇠ 1 in the integer case, which implies ⌘ < ⌘C/6. Instead,
for filling factors (⌫L, ⌫R) = (1/3, 1/3) the figure of merit may
achieve ZT ⇠ 3, implying ⌘ ⇠ ⌘C/3 at the maxima. For higher
temperatures, like the one shown in the upper left panel of the
figure (corresponding to T ⇠ 60mK), ZT ⇠ 15, at the maxima
in the case with (⌫L, ⌫R) = (1/3, 1/3), implying ⌘ ⇠ 3/5⌘C .
Conclusions. We have investigated the thermoelectric perfor-
mance of a two-terminal quantum Hall e↵ect device with an
embedded quantum dot. We have shown that the thermoelec-
tric response described by the Seebeck coe�cient, as well
as the figure of merit which parametrizes the maximum ef-
ficiency, increase for increasing values of the inverse of the
filling factor. Estimates of the parameters involved indicate
that this e↵ect should be relevant in typical operating condi-
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This e↵ect is particularly crucial for low temperatures, where
ZT is very low in the integer QHE, but it can be improved up
to an order of magnitude in the fractional one.
The key for the understanding of the behavior of the transport
coe�cients is the analysis of the transmission function given
in Eq. (29). For simplicity, we focus on the case where the
QD contains a single level, to study the qualitative features of
this function and the integrands of the Onsager coe�cients.
Notice that in the limit � � � each of the levels of the QD
contribute separately. For simplicity, we focus on the case
of a single level. In the limit where � ! 0, the density of
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of concrete experimental situations, let us quote the typical en-
ergy scales for quantum dots embedded in quantum Hall bars.
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it is quoted 32µeV . Assuming that typical values for the hy-
bridization energy are � ⇠ 1µeV and considering the values of
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can be regarded as a trivial superposition of the contributions
of the single levels. For these estimates, the temperature of
the left middle panel of Fig. 4 corresponds to T ⇠ 12mK. For
these parameters, the maximum value of the figure of merit is
ZT ⇠ 1 in the integer case, which implies ⌘ < ⌘C/6. Instead,
for filling factors (⌫L, ⌫R) = (1/3, 1/3) the figure of merit may
achieve ZT ⇠ 3, implying ⌘ ⇠ ⌘C/3 at the maxima. For higher
temperatures, like the one shown in the upper left panel of the
figure (corresponding to T ⇠ 60mK), ZT ⇠ 15, at the maxima
in the case with (⌫L, ⌫R) = (1/3, 1/3), implying ⌘ ⇠ 3/5⌘C .
Conclusions. We have investigated the thermoelectric perfor-
mance of a two-terminal quantum Hall e↵ect device with an
embedded quantum dot. We have shown that the thermoelec-
tric response described by the Seebeck coe�cient, as well
as the figure of merit which parametrizes the maximum ef-
ficiency, increase for increasing values of the inverse of the
filling factor. Estimates of the parameters involved indicate
that this e↵ect should be relevant in typical operating condi-
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ficiency, increase for increasing values of the inverse of the
filling factor. Estimates of the parameters involved indicate
that this e↵ect should be relevant in typical operating condi-
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ZT is very low in the integer QHE, but it can be improved up
to an order of magnitude in the fractional one.
The key for the understanding of the behavior of the transport
coe�cients is the analysis of the transmission function given
in Eq. (29). For simplicity, we focus on the case where the
QD contains a single level, to study the qualitative features of
this function and the integrands of the Onsager coe�cients.
Notice that in the limit � � � each of the levels of the QD
contribute separately. For simplicity, we focus on the case
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Using these coe�cients in the definition of the figure of merit,
we find ZT ! 1, which corresponds to Carnot e�ciency.
The fact that the limit of a vanishing width of the transmission
function leads to optimal e�ciency was originally pointed out
in Ref. 44 and constitutes an extreme case. In what follows we
turn to analyze the case where � is a finite quantity, although
it satisfies � ⌧ �. For low energies, the density of states of
the edge states behaves as a power law, D↵(") / |"|m↵�1. On
the other hand the di↵erence of the Fermi functions sets the
relevant integration window to ⇠ [�kBT, kBT ]. In the low-
temperature regime kBT  �, we can approximate the density
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result of these approximations leads to the following rough
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the exact result. Hence, Eqs. (14) and (15) provide quite accu-
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the device of Fig. 1. It is important to stress that in the case of
the figure of merit ZT the enhancement in the fractional case
increases significantly as the temperature grows.
In order to gather the relevance of these results in the context
of concrete experimental situations, let us quote the typical en-
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The value of the level spacing � varies in di↵erent experimen-
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for filling factors (⌫L, ⌫R) = (1/3, 1/3) the figure of merit may
achieve ZT ⇠ 3, implying ⌘ ⇠ ⌘C/3 at the maxima. For higher
temperatures, like the one shown in the upper left panel of the
figure (corresponding to T ⇠ 60mK), ZT ⇠ 15, at the maxima
in the case with (⌫L, ⌫R) = (1/3, 1/3), implying ⌘ ⇠ 3/5⌘C .
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can be regarded as a trivial superposition of the contributions
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ZT ⇠ 1 in the integer case, which implies ⌘ < ⌘C/6. Instead,
for filling factors (⌫L, ⌫R) = (1/3, 1/3) the figure of merit may
achieve ZT ⇠ 3, implying ⌘ ⇠ ⌘C/3 at the maxima. For higher
temperatures, like the one shown in the upper left panel of the
figure (corresponding to T ⇠ 60mK), ZT ⇠ 15, at the maxima
in the case with (⌫L, ⌫R) = (1/3, 1/3), implying ⌘ ⇠ 3/5⌘C .
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mance of a two-terminal quantum Hall e↵ect device with an
embedded quantum dot. We have shown that the thermoelec-
tric response described by the Seebeck coe�cient, as well
as the figure of merit which parametrizes the maximum ef-
ficiency, increase for increasing values of the inverse of the
filling factor. Estimates of the parameters involved indicate
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estimates of the Onsager matrix elements

L11 ⇠ cmL,mR (T )
Dd(0)

(m̃ � 1)
(kBT )m̃�1,
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where the common prefactor cmL,mR (T ) is a function of the
temperature. As already stressed before, the low-temperature
behavior of these coe�cients is determined by m̃ = mL + mR.
We can now see that the Seebeck coe�cient is approximately
given by

S ' �2
(m̃ � 1)
(m̃ + 1)

"d kBT
"2

d + �
2
, T < �. (14)

This implies an enhancement of at least a factor
3 (m̃ � 1) / (m̃ + 1), relative to the integer-filling case,
which is equivalent to 6/5 for m̃ = 4, corresponding to filling
factors (⌫L, ⌫R) = (1, 1/3) or (1/3, 1), and 15/7 for m̃ = 6,
corresponding to (⌫L, ⌫R) = (1/3, 1/3). Similarly, the figure
of merit can be written as

ZT =
1
↵ � 1

, ↵ =

⇣
"2

d + �
2
⌘2

(2kBT"d)2
(m̃ + 1)
(m̃ � 1)

, (15)
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FIG. 4. (Color online) Figure of merit ZT as a function of the tem-
perature T and the energy of the QD level "d (right panel). Plots at
fixed temperatures are shown in the left panels. Other details are the
same as in Fig. 2.

with ↵ = L11L22/L2
12. Concomitant with the behavior of the

Seebeck coe�cient, we see that as m̃ increases ↵ ! 1, which
implies an enhancement of the figure of merit, which is, of
course, restricted to the limited number of physically realized
values of m̃. We have verified that these simple approximate
expressions fit on top of the exact results for temperatures
0 < kBT < 0.1�. For higher temperatures these expressions
remain qualitatively correct while quantitatively lower than
the exact result. Hence, Eqs. (14) and (15) provide quite accu-
rate lower bounds for the exact thermoelectric performance of
the device of Fig. 1. It is important to stress that in the case of
the figure of merit ZT the enhancement in the fractional case
increases significantly as the temperature grows.
In order to gather the relevance of these results in the context
of concrete experimental situations, let us quote the typical en-
ergy scales for quantum dots embedded in quantum Hall bars.
The value of the level spacing � varies in di↵erent experimen-
tal setups. It can be of the order of 200µeV [45]. In Ref. [36]
it is quoted 32µeV . Assuming that typical values for the hy-
bridization energy are � ⇠ 1µeV and considering the values of
� mentioned above, the behavior of the transport coe�cients
can be regarded as a trivial superposition of the contributions
of the single levels. For these estimates, the temperature of
the left middle panel of Fig. 4 corresponds to T ⇠ 12mK. For
these parameters, the maximum value of the figure of merit is
ZT ⇠ 1 in the integer case, which implies ⌘ < ⌘C/6. Instead,
for filling factors (⌫L, ⌫R) = (1/3, 1/3) the figure of merit may
achieve ZT ⇠ 3, implying ⌘ ⇠ ⌘C/3 at the maxima. For higher
temperatures, like the one shown in the upper left panel of the
figure (corresponding to T ⇠ 60mK), ZT ⇠ 15, at the maxima
in the case with (⌫L, ⌫R) = (1/3, 1/3), implying ⌘ ⇠ 3/5⌘C .
Conclusions. We have investigated the thermoelectric perfor-
mance of a two-terminal quantum Hall e↵ect device with an
embedded quantum dot. We have shown that the thermoelec-
tric response described by the Seebeck coe�cient, as well
as the figure of merit which parametrizes the maximum ef-
ficiency, increase for increasing values of the inverse of the
filling factor. Estimates of the parameters involved indicate
that this e↵ect should be relevant in typical operating condi-

4

figure of merit in the fractional case relative to the integer one.
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ergy scales for quantum dots embedded in quantum Hall bars.
The value of the level spacing � varies in di↵erent experimen-
tal setups. It can be of the order of 200µeV [45]. In Ref. [36]
it is quoted 32µeV . Assuming that typical values for the hy-
bridization energy are � ⇠ 1µeV and considering the values of
� mentioned above, the behavior of the transport coe�cients
can be regarded as a trivial superposition of the contributions
of the single levels. For these estimates, the temperature of
the left middle panel of Fig. 4 corresponds to T ⇠ 12mK. For
these parameters, the maximum value of the figure of merit is
ZT ⇠ 1 in the integer case, which implies ⌘ < ⌘C/6. Instead,
for filling factors (⌫L, ⌫R) = (1/3, 1/3) the figure of merit may
achieve ZT ⇠ 3, implying ⌘ ⇠ ⌘C/3 at the maxima. For higher
temperatures, like the one shown in the upper left panel of the
figure (corresponding to T ⇠ 60mK), ZT ⇠ 15, at the maxima
in the case with (⌫L, ⌫R) = (1/3, 1/3), implying ⌘ ⇠ 3/5⌘C .
Conclusions. We have investigated the thermoelectric perfor-
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as the figure of merit which parametrizes the maximum ef-
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filling factor. Estimates of the parameters involved indicate
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FIG. 2. (Color online) Onsager coe�cients at the temperature T = �,
as functions of the gate voltage for a quantum dot with two energy of
the levels. Solid, dashed and dashed-dotted lines correspond to m̃ =
mL + mR = 2, 4, 6, respectively. The integer-filling case corresponds
to m̃ = 2. The level spacing is � = 30�. The chemical potential is
set at µ = 0.

Onsager matrix and transport coe�cients. We take as ref-
erences T = TR and µ = (µL + µR)/2 = 0. Expanding the
di↵erence of Fermi functions in Eqs. (7), we have

L̂ = �kBT
2h

Z
d"

 
e e"
" "2

!
⌧(")

@ f (")
@"
. (10)

The behavior of the di↵erent matrix elements is determined
by the transmission function ⌧("). The latter can be externally
modified by changing the energy of the levels in the quantum
dot by means of the gate voltage. The temperature enters the
density of states of the edges and the derivative of the Fermi
function. Examples are shown in Fig. 2 where the three dif-
ferent Li j are shown as functions of the gate voltage Vg for a
given value of the background temperature. We recall that the
Vg shifts rigidly the energy of the QD levels. Interestingly,
the behavior of these coe�cients is determined by the inte-
ger m̃ = mL + mR corresponding to an e↵ective filling factor
1/⌫̃ = 1/⌫L + 1/⌫R. This property was previously discussed
in the context of the conductance [42] and the charge-current
noise [43] in quantum point contacts between QHE regions
with di↵erent filling factors. Here, we see that it is a more gen-
eral characteristic of all the transport coe�cients, which be-
comes explicit in the analytic low-temperature behavior given
by Eqs. (13). The element L11 exhibits peaks when a level
is aligned with the chemical potential and as a function of the
gate voltage. Instead, the o↵-diagonal coe�cient L12 vanishes
and changes sign at this value, which indicates the possibil-
ity of operating the device as a heat engine (L12 > 0) or a
refrigerator (L12 < 0). The vanishing of L12 implies a lack
of thermoelectric response when the chemical potential is ex-
actly resonant with the levels of the dot. As a function of the
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FIG. 3. (Color online) Electrical and thermal conductances, G and ,
respectively and Seebeck coe�cient S of a single-level quantum dot,
as functions of the gate voltage. Other details are the same as in Fig.
2.

filling fraction, we see that L11 and L12 decrease for the frac-
tional fillings m̃ > 2 in comparison to the integer case m̃ = 2.
The suppression of the electrical conductance in the tunneling
regime of the fractional QHE, and in Luttinger liquids in gen-
eral, has been widely discussed in the literature [11]. Here, we
see that a similar e↵ect takes place in the o↵-diagonal Onsager
coe�cient as well.
The Onsager matrix elements are related to the electrical and
thermal conductances G and , the Seebeck and Peltier coe�-
cients S and ⇧, respectively, as follows

G =
L11

T
,  =

1
T 2

detL̂
L11
, TS = ⇧ =

L12

L11
. (11)

Examples of their dependence with Vg are shown in Fig. 3
for a single-level. We see that the electrical and thermal con-
ductances follow a behavior similar to that of the diagonal
Onsager coe�cients. Remarkably, we see that the Seebeck
coe�cient increases in the fractional-filling case, relative to
the integer-filling one. This behavior is “a priori” unexpected
from the behavior of L12, which follows the opposite trend.
The behavior of S is due to the fact that L12 decreases as func-
tion of the the filling factor at a lower rate than L11, as a con-
sequence of the di↵erent impact that the fractionalization of
the charge (mL, mR) has on the charge and thermal channels.
This feature becomes explicit in the low-temperature behavior
described by Eqs. (13).
Figure of merit. The response described by the Onsager coef-
ficients is suppressed for fractional fillings. However, as the
o↵-diagonal elements are less suppressed than that of the di-
agonal ones, the thermoelectric response can be improved. An
indication of the degree of such improvement is quantified by
the figure of merit ZT . The corresponding behavior is shown
in Fig. 4. At all temperatures, there is an enhancement of the
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AUTHORS’ SUMMARY

The discovery more than 25
years ago of the quantum
Hall effect (1), in which the

“Hall,” or “transverse electrical” con-
ductance of a material is quantized,
came as a total surprise to the physics
community. This effect occurs in
layered metals at high magnetic
fields and results from the forma-
tion of conducting one-dimensional
channels that develop at the edges
of the sample. Each of these edge
channels, in which the current moves
only in one direction, exhibits a quan-
tized conductance that is character-
istic of one-dimensional transport. The
number of edge channels in the sam-
ple is directly related to the value of
the quantumHall conductance.More-
over, the charge carriers in these chan-
nels are very resistant to scattering.
Not only can the quantum Hall effect be observed in macroscopic samples
for this reason, but within the channels, charge carriers can be transported
without energy dissipation. Therefore, quantum Hall edge channels may be
useful for applications in integrated circuit technology, where power dis-
sipation is becomingmore andmore of a problem as devices become smaller.
Of course, there are some formidable obstacles to overcome—the quantum
Hall effect only occurs at low temperatures and high magnetic fields.

In the past few years, theoretical physicists have suggested that
edge channel transport of current might be possible in the absence of a
magnetic field. They predicted (2–4) that in insulators with suitable
electronic structure, edge states would develop where—and this is
different from the quantum Hall effect—the carriers with opposite
spins move in opposite directions on a given edge, as shown sche-
matically in the figure. This is the quantum spin Hall effect, and its
observation has been hotly pursued in the field.

Although there are many insulators in nature, most of them do not have
the right structural properties to allow the quantum spin Hall effect to be
observed. This is where HgTe comes in. Bulk HgTe is a II-VI semi-
conductor, but has a peculiar electronic structure: In most such materials,
the conduction band usually derives from s-states located on the group II
atoms, and the valence band from p-states at the VI atoms. In HgTe this
order is inverted, however (5). Using molecular beam epitaxy, we can
grow thin HgTe quantum wells, sandwiched between (Hg,Cd)Te barriers,
that offer a unique way to tune the electronic structure of the material: When
the quantum well is wide, the electronic structure in the well remains
inverted. However, for narrow wells, it is possible to obtain a “normal”
alignment of the quantumwell states. Recently, Bernevig et al. (6) predicted

theoretically that the electronic
structure of inverted HgTe quan-
tum wells exhibits the properties
that should enable an observation
of the quantum spin Hall insula-
tor state. Our experimental obser-
vations confirm this.

These experiments only be-
came possible after the devel-
opment of quantum wells of
sufficiently high carrier mobility,
combined with the lithographic
techniques needed to pattern the
sample. The patterning is espe-
cially difficult because of the very
high volatility of Hg. Moreover,
we have developed a special low–
deposition temperature Si-O-N
gate insulator (7), which allows
us to control the Fermi level (the
energy level up to which all

electronics states are filled) in the quantum well from the conduction band,
through the insulating gap, and into the valence band. Using both electron
beam and optical lithography, we have fabricated simple rectangular
structures in various sizes from quantum wells of varying width and
measured the conductance as a function of gate voltage.

We observe that samples made from narrow quantum wells with a
“normal” electronic structure basically show zero conductance when the
Fermi level is inside the gap. Quantum wells with an inverted electronic
structure, by contrast, show a conductance close to what is expected for the
edge channel transport in a quantum spin Hall insulator. This interpretation
is further corroborated by magnetoresistance data. For example, high–
magnetic field data on samples with an inverted electronic structure show a
very unusual insulator-metal-insulator transition as a function of field,
which we demonstrate is a direct consequence of the electronic structure.

The spin-polarized character of the edge channels still needs to be
unequivocably demonstrated. For applications of the effect in actual
microelectronic technology, this low-temperature effect (we observe it
below 10 K) will have to be demonstrated at room temperature, which may
be possible in wells with wider gaps.
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Schematic of the spin-polarized edge channels in a quantum spin Hall
insulator.
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in TIs. We demonstrate that the contribution of spin-
flipping tunneling to spin transport in a two terminal
configuration is dramatically modified by the introduc-
tion of interactions. The e↵ective transmission related to
spin-flipping processes acquires a functional dependence
on energy in the interacting regime. This energy de-
pendence, necessary in order to generate thermoelectric
e↵ects, cannot be observed in non-interacting systems41.
In consequence of this novel property, a longitudinal ther-
moelectric spin current is generated in response to a
thermal gradient in the non linear regime through spin-
flipping tunneling.
Finally, we show that pure spin currents (i.e. non-
vanishing spin currents in the absence of any charge cur-
rent) can be generated in our setup by properly acting
on the parameters of the tunneling region.
The paper is organized as follows. In Sec. II we introduce
the setup and the tunneling operators for spin-preserving
and spin-flipping processes. In Sec. III we define current
operators and discuss transmission amplitudes in the non
interacting case. In Sec. IV we focus on the properties in-
duced by interactions and describe charge and spin trans-
port in the framework of helical Luttinger liquid model.
Sec. V is devoted to the evaluation of thermoelectric cur-
rents and to the presentation of the results for a double
QPC geometry. Finally, in Sec. VI, we draw our conclu-
sion.

II. SETUP AND GENERAL SETTINGS

We consider a 2D TI in a two terminal configuration, as
depicted in Fig. 1. The two contacts have the same chem-
ical potential µ

L

= µ
R

= µ but two di↵erent tempera-
tures T

L

and T
R

, with L (R) indicating the left (right)
reservoir. Here the direction of propagation of spin " and
spin # electrons, in both edges, is constrained by helic-
ity. The free Hamiltonians of each channel (r,�), with
r = R, L and � =", # are (⇠

R/L

= ±1 and ~ = 1)

H
r,�

= vF

Z
dx  †

r,�

(x) (�i⇠
r

@
x

) 
r,�

(x), (1)

where vF is the Fermi velocity and  
r,�

(x) is the fermionic
field which annihilates right-moving (R) or left-moving
(L) electrons with spin " or #. The Hamiltonian Eq. (1)
conserves the number operator

N
r,�

=

Z
dx ⇢

r,�

(x) =

Z
dx :  †

r,�

(x) 
r,�

(x) : , (2)

which counts the number of electrons moving in the r
direction with spin �. The presence of constrictions, like
quantum point contacts, allows for interedge tunneling
events. Time-reversal symmetry restricts the possible
tunneling events to43,45

H
p

= ⇤
p

X

�=",#

Z
dx f(x) †

L,�

(x) 
R,�

(x) + h.c., (3)

Figure 1. (Color online) Scheme of the setup. A 2D TI in a
two terminal configuration with fixed chemical potential µR =
µL = µ and a finite thermal gradient TL 6= TR is considered.
On each edge, electrons with spin " (solid line) and spin #
(dashed line) counterpropagate. Two quantum point contacts
pinch the two edges allowing for electron tunneling events.
Gate voltages Vt and Vb locally modify electron density in
the region between the two QPCs .

and

H
f

= ⇤
f

X

r=R,L

⇠
r

Z
dx f(x) †

r,"(x) r,#(x) + h.c.. (4)

The former accounts for spin-preserving (p) backward
scattering processes, while the latter takes into account
spin-flipping (f) forward scattering. In the above equa-
tions ⇤

p/f

are the constant tunneling amplitude for p/f
processes, whereas f(x) describes the precise shape of the
tunneling region14,50. Note that Eqs. (3) and (4) conserve
the total number of electrons on each edge separately and
satisfy

Ṅ
R,�

+ Ṅ
L,�

= 0 � =", #, (5)

Ṅ
r," + Ṅ

r,# = 0 r = R, L, . (6)

Although the formalism is valid for a generic tunneling
region, we will present results for the case of a double
QPC geometry with f(x) = 1

2

P
p=±1

�(x � pd

2 ), where d

is the distance between the two QPCs. As previously
proposed40,41,45,51, we consider two gate voltages V

t/b

ca-
pacitively coupled to the top and bottom edges to shift
the Fermi momenta

k
(t/b)
F = kF +

eV
t/b

vF
, (7)

thus e↵ectively modifying the dynamical phase acquired
by the propagating electrons.

III. CHARGE AND SPIN CURRENTS

We are interested in studying whether a thermal gra-
dient T

L

6= T
R

is able to induce charge I
c

and spin I
s

currents flowing along the edges of the system. In the
absence of tunneling, spin current I

s

is zero in a two ter-
minal configuration due to symmetry constraints. The

L. Vannucci, F. Ronetti, G. Dolcetto, 
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to convert heat into electricity is based on the dominance
of the edge modes on transport.
In this work, we investigate the spin-dependent ther-

moelectric transport in quantum spin Hall insulators
based on HgTe/CdTe QWs in absence of magnetic fields.
The behavior of the Seebeck coe�cient and the spin
Nernst signal is analyzed in a four-terminal cross-bar
setup, as shown in Fig. 1. A thermal gradient between
lateral leads induces a longitudinal electrical bias and a
transverse spin current. Each of them can be used as a
probe of the topological regime as well as finite size ef-
fects of the quantum spin Hall insulator. We show that
the oscillatory character of the Seebeck and spin Nernst
coe�cients in the bulk gap highlights the presence of the
mini-gap – due to the finite overlap of the edge states
from opposite sample boundaries. Furthermore, we de-
scribe a qualitative relation between the type of particles
in a given band and the magnitude of the spin Nernst sig-
nal. This allows us to provide a natural explanation of
the observed phenomena based on anomalous velocities
and spin-dependent scattering o↵ sample boundaries.
The article is organized as follows. In Sec. II, we intro-

duce the model Hamiltonian of the HgTe/CdTe QW and
describe the formalism necessary to calculate the Seebeck
and spin Nernst coe�cients. The thermoelectric trans-
port by the edge states – with a particular emphasis on
finite size e↵ects – is analyzed in Sec. III through the
behavior of Seebeck and spin Nernst signals. In Sec. IV,
we focus on the spin-dependent thermoelectric e↵ect in-
duced by the bulk states. We conclude in Sec. V and
present details of the calculation in the appendices.

II. MODEL

In this section, we present the model Hamiltonian of
the HgTe/CdTe QW and give the general expressions of
the Seebeck and spin Nernst coe�cients.

A. Hamiltonian

We consider a four-terminal cross-bar setup based on a
HgTe/CdTe QW whose low-energy dynamics is described
by the Bernevig-Hughes-Zhang (BHZ) 4-band model [42,
44]. The Hamiltonian is written in the basis of the lowest
QW subbands |E+i, |H+i, |E�i, and |H�i. Here, ±
stands for two Kramers partners but in the following, we
will refer to them as spin components, denoted by ",#,
for brevity. The spin z-direction corresponds to the QW
growth direction, which is [001]. The Hamiltonian can
be written as

H = Vm(r)⌧z �Dk2 +

✓
h(k) 0
0 h⇤(�k)

◆
, (1)

h(k) =

✓
M(k) Ak+
Ak� �M(k)

◆
(2)

FIG. 1. (Color online) Four-terminal cross-bar setup based
on HgTe/CdTe QWs used for thermoelectric transport. A lon-
gitudinal temperature gradient �T is applied between reser-
voirs a and b and generates a transverse spin current Isc de-
tected, for instance, in reservoir c.

with k2 = k2x+k2y, k± = kx± iky, and M(k) = M�Bk2.
The sign of the gap parameter M determines whether
we are in the regime of a trivial insulator (M > 0) or
a topological insulator (M < 0). Experimentally, M is
tuned by changing the QW width.
The term Vm(r)⌧z describes an in-plane confinement

potential, where ⌧z is a Pauli matrix acting on the E/H
space. By this kind of confinement we may ensure that
outside of the sample, i.e. in vacuum, the parameter
regime is topologically trivial, so that edge states, if
present, will be confined. Calling the inside of the sample
G, the limit Vm(r) ! 1 8r 2 @G can be used to make
all components of  vanish at the sample boundary, the
envelope function  being the solution of the Dirac equa-
tion based on the Hamiltonian (1).
We mention in passing that this model can be ex-

tended by a term breaking the structural inversion asym-
metry (SIA) with a z-dependent potential. The resulting
Rashba-like interaction connects the Kramers blocks of
the Hamiltonian (1) a↵ecting the particles with opposite
spin

hR(k) =

✓
�iR0k� �iS0k

2
�

iS0k
2
� iT0k

3
�

◆
(3)

with the Rashba coupling parameters R0, S0, and T0 [49].
We have analyzed that such a term will only quantita-
tively a↵ect all our results presented below. Therefore,
we will not further consider e↵ects due to SIA in this
article.
Figure 1 shows the four-terminal cross-bar setup we

analyze. The central sample is connected to four semi-
infinite leads: the reservoirs a and b are maintained re-
spectively at warmer and colder temperature than the
rest of the system – creating a longitudinal temperature
gradient – while the transverse terminals c and d are used
to probe spin currents.
To model the setup and treat the thermoelectric trans-

port properties, we employ the tight binding approach.
Therefore, we discretize the continuum model (1) on a
lattice of spacing a by the substitutions k2i ! 1

a2 (2 �
2 cos kia) and ki ! 1

a sin(kia), where i is the index of the

D. G.Rothe, E. M. Mankiewicz, B. Trauzettel, M. Guigou
PRB 86, 165434 (2012)
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Nonlinear spin-thermoelectric transport in two-dimensional topological insulators
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We consider spin-polarized transport in a quantum spin Hall antidot system coupled to normal
leads. Due to the helical nature of the conducting edge states, the screening potential at the
dot region becomes spin dependent without external magnetic fields nor ferromagnetic contacts.
Therefore, the electric current due to voltage or temperature differences becomes spin polarized,
its degree of polarization being tuned with the dot level position or the base temperature. This
spin-filter effect arises in the nonlinear transport regime only and has a purely interaction origin.
Likewise, we find a spin polarization of the heat current which is asymmetric with respect to the bias
direction. Interestingly, our results show that a pure spin current can be generated by thermoelectric
means: when a temperature gradient is applied, the created thermovoltage (Seebeck effect) induces
a spin-polarized current for vanishingly small charge current. An analogous effect can be observed
for the heat transport: a pure spin heat flows in response to a voltage shift even if the thermal
current is zero.

I. INTRODUCTION

Two-dimensional topological insulators support gap-
less current-carrying edge states characterized by oppo-
site propagation direction for opposite spins.1,2 The con-
duction of these helical states is protected against dis-
order since backscattering is forbidden by time-reversal
symmetry.3–5 Therefore, a quantum Hall effect arises
with a two-terminal conductance given by 2e2/h, equiva-
lently to the quantum Hall conductance for filling factor
2. The difference is that in the quantum spin Hall ef-
fect the external magnetic field is absent and the edge
states arise from a topologically nontrivial phase in sam-
ples with strong spin-orbit coupling. Experimentally,
the quantum spin Hall effect has been confirmed in
HgTe/CdTe heterostructures,6,7 showing the spin polar-
ization of the conducting states.8 In InAs/GaSb quantum
wells, quantized transport due to helical states has been
observed even in the presence of external magnetic fields9

and disorder.10

An exciting consequence of the spatial separation
between pairs of helical states is the emergence of
spin filtering effects.11–17 However, the spin current
in a two-terminal quantum spin Hall bar is zero due
to the constrained geometry. Therefore, backscatter-
ing centers are to be implemented to preferably de-
flect electrons with a given spin direction. A fea-
sible possibility is the application of local potentials
to form quantum antidots. More generally, the pres-
ence of constrictions in two-dimensional topological in-
sulators have been proposed to give rise to coher-
ent oscillations,18 transformations between ordinary and
topological regimes,19 peaks of noise correlations,20

metal-to-insulator quantum phase transitions,21 nonequi-
librium fluctuation relations,22 braiding of Majorana
fermions,23 competition between Fabry-Pérot and Mach-
Zehnder processes,24 control of edge magnetization,25

and detection of Kondo clouds.26 Interestingly, König et

FIG. 1. (Color online) Schematics of our setup. A quan-
tum spin Hall bar with a single-level antidot at the center
is attached to two terminals, where both voltage bias and
temperature gradient are applied. Interactions are described
using capacitance coefficients Cis,dσ, where i = 1, 2 labels the
edges, s = ± is the helicity, d stands for dot, and σ =↑, ↓ is
the electronic spin. Couplings between the helical edge states
and the dot are denoted with Γis.

al. have experimentally demonstrated27 the local manip-
ulation of helical states with back-gate electrodes.
Our aim here is to show that spin-polarized currents

can be generated in quantum spin Hall antidot sys-
tems using thermal gradients only. In fact, we demon-
strate below that pure spin currents and pure spin heat
flows can be produced by thermoelectric means (Seebeck
and Peltier effects). These effects are relevant because
many topological insulators show excellent thermoelec-
tric properties.28 For instance, porous three-dimensional
topological insulators display large thermoelectric figures
of merit29 and similar properties have been associated to
edge conduction channels30 and nanowires.31 Moreover,
spin Nernst signals can provide spectroscopic informa-
tion in quantum spin Hall devices.32 Here, we consider
a simple setup: a two-dimensional topological insulator

S-Y Hwang, R. Lopez, M. Lee, D. Sanchez
PRB 90, 115301 (2014)
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being K the dimensionless parameter describing the interaction (K = 1
represents the non-interacting case).
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follows
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Îi,d = �ieVi

�
 †
i (0) d �  †

d i(0)
�

(11)
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1.2 Hamiltonian describing the Dot and the Tunneling

The dot is simply modeled by Hdot = Ed 
†
d d while the tunneling is given

by

Htun =  d

⇥
VR 

†
R(x = 0) + VL 

†
L(x = 0)

⇤
+H.c. (9)

In the particular case in which VR = VL = V , the dot is coupled with
the fermion field  (x) =  L(x)+ R(x), in agreement with the configuration
studied by Rosenow in Ref.[1].

1.3 Electric current

The electric current is given by the variation in the charge of the dot as
follows

Ṅd = iVR

�
 †
R(0) d �  †

d R(0)
�
+ iVL

�
 †
L(0) d �  †

d L(0)
�

(10)

Îi,d = �ieVi

�
 †
i (0) d �  †

d i(0)
�

(11)

Ṅd = �(ĴR,d + ĴL,d)/e = �Ĵ/e (12)

(13)

Now, we focus in the current between the dot and the i-movers

Jid = �ieVi

� ⌦
 †
i (0) d

↵
�
⌦
 †
d i(0)

↵ �
(14)

= 2eViIm
� ⌦

 †
i (0) d

↵ �
(15)

= �2eViIm
� ⌦

 d 
†
i (0)

↵ �
(16)
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LINEAR RESPONSE +
PERTURBATION THEORY

2

and �T , ⌘he,fri can be parametrized by the “figure of merit”
ZT [23], defined below, in a way that ZT ! 1 implies the
Carnot limit. Remarkably, we will show that ZT is signifi-
cantly enhanced in the fractional quantum Hall e↵ect, relative
to the response in the integer one. This enhancement is a di-
rect consequence of the fractionalization of the electron in the
fractional QHE.
Linear thermoelectric response. Following the conventions of
Ref. 24, we consider �T = TL�TR > 0 and µL�µR = eV < 0.
The two relevant fluxes are the charge and heat currents,
which are represented by the vector J ⌘ �JC , JQ

�
and corre-

sponds to the charge and heat current leaving the left contact
of the bar. In linear response they are related to the a�nities
represented by the vector X =

⇣
eV/kBT,�T/kBT 2

⌘
through

the Onsager matrix L̂ as J = L̂ X . The diagonal matrix
elements of L̂ are related to the electrical and thermal conduc-
tivity, while the o↵ diagonal ones are related to the Seebeck
and Peltier coe�cients. These four coe�cients characterize
the transport properties of the device. In the presence of an
external magnetic field, the o↵-diagonal ones obey Onsager
reciprocity relations L12(B) = L21(�B). Due to the symmetry
of the two-terminal setup we are considering they also sat-
isfy L12(B) = L21(B). In addition, the second law of thermo-
dynamics implies L11, L22 � 0 and det[L̂] > 0. Taking into
account these conditions, it can be shown that the maximum
achievable e�ciency in any of the two operational modes at a
fixed temperature di↵erence can be parametrized in terms of
the figure of merit ZT = L2

12/det[L̂] as follows [24]

⌘max
he,fri = ⌘

C
he,fri

p
ZT + 1 � 1p
ZT + 1 + 1

. (1)

⌘C
he = 1 � TR/TL and ⌘C

fri = TL/(TL � TR) are the Carnot e�-
ciency and coe�cient of performance for the heat-engine and
the refrigerator, respectively. They set a bound for the coe�-
cient of Eq. (1), which is achieved when ZT ! 1.
Model and currents. We consider the following Hamiltonian
for the full setup H =

P
↵=L,R H↵ + Hd + Ht. The first term

represents the edge states of the QHE with filling factors ⌫↵ =
1/m↵, which is described by the following Hamiltonian

H↵ =
⇡v
⌫↵

Z
dx ⇢2

↵(x), (2)

where ↵ = L,R denotes propagating modes injected from the
left and right contacts and moving along the edge with veloc-
ity v. The corresponding densities are ⇢↵(x) = @x�↵(x)/(2⇡)
where �↵(x) are chiral bosonic fields that satisfy the Kac-
Moody algebra

h
�↵(x), ��(x0)

i
= �i⇡⌫↵�↵,�sg(x � x0). The

second term of the Hamiltonian H describes the QD. It reads
Hd =

PN
j=1 "d, jd†j d j, where we are assuming a large Zeeman

term that justifies considering fully polarized electrons. We
assume that the N levels of the quantum dot are equally spaced
in energy by � and can be shifted by recourse to the gate volt-
age as "d j = �( j�1)� eVg. The third term of the Hamiltonian

represents the tunneling between the edge states and the QD,

Ht = Vt

X

j,↵=L,R

h
 †↵(x0)d j + H.c.

i
, (3)

withVt =
p

2⇡aVt, being Vt the tunneling kinetic energy and
a is a characteristic length setting the high energy cuto↵ for
the edge spectrum, while x0 denotes the position of the edge
at which the contact to the dot is established. The bosonic
form of the electron operator at the edge is [12]

 ↵(x) ⌘ F↵p
2⇡a

ei s↵
⌫↵
�↵(x,t), (4)

where F↵ are Klein factors.
According to our definitions the charge and heat currents are
JC = �ehṄLi and JQ = JE � µLJC , with JE = �hḢLi. For the
model under consideration, we have

JC = hĴCi = ieVth  †L(x0)d � d† L(x0)i,
JE =

⇡v
e⌫L
h ĴC⇢L(x0) + ⇢L(x0)ĴC i. (5)

We resort to Schwinger-Keldysh non-equilibrium Green func-
tions to calculate these currents, starting from their repre-
sentation in terms the lesser Green functions G<↵,d(t � t0) =
ihd†�(t0) ↵(xt)i as follows

JC = eVt
⇣
G<d,L(t � t0) �G<L,d(t � t0)

⌘
|t=t0 ,

JE = iVt@t
⇣
G<d,L(t � t0) �G<L,d(t � t0)

⌘
|t=t0 . (6)

These expressions can be calculated by recourse to perturba-
tion theory in the tunneling term. Details are provided in Refs.
1, 2, and 39. The result is

JC =
e
h

Z
d" ⌧(")

⇥
fL(" + µL) � fR(" + µR)

⇤
,

JE =
1
h

Z
d" " ⌧(")

⇥
fL(" + µL) � fR(" + µR)

⇤
, (7)

where f↵(") = 1/
⇣
e"/(kBT↵) + 1

⌘
is the Fermi function. We have

introduced the transmission function ⌧(") defined as

⌧(") =
V4

t

�
DR(" + µR) Dd(") DL(" + µL). (8)

Here, D⌫("), with ⌫ = R, L, d, are the density of states of the
right, left QHE edge states and the quantum dot, respectively.
For the latter, we consider a model of N resonances with en-
ergies "d, j and widths �. We assume that � ⇠ Vt. The corre-
sponding expressions are

D↵(") =
am↵�1

2⇡
(2⇡T↵)m↵�1

�(m↵)

�����
� (m↵/2 + i"/(2⇡T↵))
� (1/2 + i"/(2⇡T↵))

�����
2

Dd(") =
X

j

�/N⇡
⇣
" � "d, j

⌘2
+ �2
, (9)

where �(z) is the Euler function.
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FIG. 2. (Color online) Onsager coe�cients at the temperature T = �,
as functions of the gate voltage for a quantum dot with two energy of
the levels. Solid, dashed and dashed-dotted lines correspond to m̃ =
mL + mR = 2, 4, 6, respectively. The integer-filling case corresponds
to m̃ = 2. The level spacing is � = 30�. The chemical potential is
set at µ = 0.

Onsager matrix and transport coe�cients. We take as ref-
erences T = TR and µ = (µL + µR)/2 = 0. Expanding the
di↵erence of Fermi functions in Eqs. (7), we have

L̂ = �kBT
2h

Z
d"

 
e e"
" "2

!
⌧(")

@ f (")
@"
. (10)

The behavior of the di↵erent matrix elements is determined
by the transmission function ⌧("). The latter can be externally
modified by changing the energy of the levels in the quantum
dot by means of the gate voltage. The temperature enters the
density of states of the edges and the derivative of the Fermi
function. Examples are shown in Fig. 2 where the three dif-
ferent Li j are shown as functions of the gate voltage Vg for a
given value of the background temperature. We recall that the
Vg shifts rigidly the energy of the QD levels. Interestingly,
the behavior of these coe�cients is determined by the inte-
ger m̃ = mL + mR corresponding to an e↵ective filling factor
1/⌫̃ = 1/⌫L + 1/⌫R. This property was previously discussed
in the context of the conductance [42] and the charge-current
noise [43] in quantum point contacts between QHE regions
with di↵erent filling factors. Here, we see that it is a more gen-
eral characteristic of all the transport coe�cients, which be-
comes explicit in the analytic low-temperature behavior given
by Eqs. (13). The element L11 exhibits peaks when a level
is aligned with the chemical potential and as a function of the
gate voltage. Instead, the o↵-diagonal coe�cient L12 vanishes
and changes sign at this value, which indicates the possibil-
ity of operating the device as a heat engine (L12 > 0) or a
refrigerator (L12 < 0). The vanishing of L12 implies a lack
of thermoelectric response when the chemical potential is ex-
actly resonant with the levels of the dot. As a function of the
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FIG. 3. (Color online) Electrical and thermal conductances, G and ,
respectively and Seebeck coe�cient S of a single-level quantum dot,
as functions of the gate voltage. Other details are the same as in Fig.
2.

filling fraction, we see that L11 and L12 decrease for the frac-
tional fillings m̃ > 2 in comparison to the integer case m̃ = 2.
The suppression of the electrical conductance in the tunneling
regime of the fractional QHE, and in Luttinger liquids in gen-
eral, has been widely discussed in the literature [11]. Here, we
see that a similar e↵ect takes place in the o↵-diagonal Onsager
coe�cient as well.
The Onsager matrix elements are related to the electrical and
thermal conductances G and , the Seebeck and Peltier coe�-
cients S and ⇧, respectively, as follows

G =
L11

T
,  =

1
T 2

detL̂
L11
, TS = ⇧ =

L12

L11
. (11)

Examples of their dependence with Vg are shown in Fig. 3
for a single-level. We see that the electrical and thermal con-
ductances follow a behavior similar to that of the diagonal
Onsager coe�cients. Remarkably, we see that the Seebeck
coe�cient increases in the fractional-filling case, relative to
the integer-filling one. This behavior is “a priori” unexpected
from the behavior of L12, which follows the opposite trend.
The behavior of S is due to the fact that L12 decreases as func-
tion of the the filling factor at a lower rate than L11, as a con-
sequence of the di↵erent impact that the fractionalization of
the charge (mL, mR) has on the charge and thermal channels.
This feature becomes explicit in the low-temperature behavior
described by Eqs. (13).
Figure of merit. The response described by the Onsager coef-
ficients is suppressed for fractional fillings. However, as the
o↵-diagonal elements are less suppressed than that of the di-
agonal ones, the thermoelectric response can be improved. An
indication of the degree of such improvement is quantified by
the figure of merit ZT . The corresponding behavior is shown
in Fig. 4. At all temperatures, there is an enhancement of the

AffinitiesCurrents

Onsager matrix

J↵ ⌘ (J↵
C , J

↵
H)

J↵ = L̂↵X

↵↵

⌧↵(") = 4⇡w2
↵⇢d↵(")⇢↵(")

The above expressions recover the non-interacting case due to the fact
that in this case we have K̄ = 1. Furthermore, they satisfy the property
g>i (t) = �g<i (�t), g>i (!) = �g<i (�!).

2 final expression for the electric current

Regarding the current in Eq.22, we notice that the index R(L) is associated
with temperature T1(T2), therefore we can perform the sum in the index ↵
instead of i,

Je = � e

⇡a

X

↵

V 2
↵

Z +1

�1
dtRe i

h
� g<d (t)

h sinh(ia⇡T↵)

sinh
⇥
⇡T↵(t+ ia)

⇤
iK̄

�g>d (t)
h sinh(ia⇡T↵)

sinh
⇥
⇡T↵(�t+ ia)

⇤
iK̄i

Je = � e

⇡a

X

↵

V 2
↵ Im

Z +1

�1
dt

⇣
g<d (t)� g>d (�t)

⌘h sinh(ia⇡T↵)

sinh
⇥
⇡T↵(t+ ia)

⇤
iK̄

(44)

where we have change the notation of Vi by V↵.

2.1 transforming to the frequency domain

The Fourier of g<↵ is given by

g<↵ (!) = iaK̄�1 (2⇡T↵)K̄�1

2⇡�(K̄)
e�!/2T↵

����(K̄/2 + i!/2⇡T↵)
���
2

= 2⇡i⇢↵(!)f↵(!), (45)

where f↵(!) = (e!/T↵+1)�1 and ⇢↵(!) = aK̄�1 (2⇡T↵)K̄�1

�(K̄)

����(K̄/2+i!/2⇡T↵)
�(1/2+i!/2⇡T↵)

���
2

defines the spectral density of the LL with the parity property ⇢↵(!) =
⇢↵(�!).

Regarding the Green functions involving the dot, we use the fact that
� � Vi, therefore, we consider the dot being in equilibrium with the non-
interacting lead-3 which leads to the following expressions

g<d (!) = +2⇡ifd(+!)⇢d(!) (46)

g>d (!) = �2⇡ifd(�!)⇢d(!), (47)

where fd(!) = (e!/T3 + 1)�1 and ⇢d(!) =
�/⇡

(!�Ed)2+�2 .

The expression for the current in the frequency domain becomes

7

⇢d,",#(!) =
�

(! � eVg ±B/2)2 + �2

K2
+D

<
i (t) = K2

+Kln
h sinh(ia⇡T↵)

sinh
⇥
⇡T↵(t+ ia)

⇤
i

eK
2
+D<

i (t) =
h sinh(ia⇡T↵)

sinh
⇥
⇡T↵(t+ ia)

⇤
iK2

+K
(40)

The non-interacting case, K = K+ = 1 and K� = 0, gives the usual
result. Eq.39 is obtained by replacing �⌘(x) in Eqs.(70), (H7) and (H19) of
Ref.[3]. And additional check can be done by comparison with [4].

Replacing Eq.40 in the set of Eqs.38 we obtain

g>R(t) =
�i

2⇡a

h sinh(ia⇡T1)

sinh
⇥
⇡T1(�t+ ia)

⇤
iK2

+Kh sinh(ia⇡T1)

sinh
⇥
⇡T1(�t+ ia)

⇤
iK2

�K
(41)

g<R(t) =
+i

2⇡a

h sinh(ia⇡T1)

sinh
⇥
⇡T1(+t+ ia)

⇤
iK2

+Kh sinh(ia⇡T1)

sinh
⇥
⇡T1(+t+ ia)

⇤
iK2

�K

g>L (t) =
�i

2⇡a

h sinh(ia⇡T2)

sinh
⇥
⇡T2(�t+ ia)

⇤
iK2

�Kh sinh(ia⇡T2)

sinh
⇥
⇡T2(�t+ ia)

⇤
iK2

+K

g<R(t) =
+i

2⇡a

h sinh(ia⇡T2)

sinh
⇥
⇡T2(+t+ ia)

⇤
iK2

�Kh sinh(ia⇡T2)

sinh
⇥
⇡T2(+t+ ia)

⇤
iK2

+K

g>R(t) =
�i

2⇡a

h sinh(ia⇡T1)

sinh
⇥
⇡T1(�t+ ia)

⇤
i(K2

++K2
�)K

(42)

g<R(t) =
+i

2⇡a

h sinh(ia⇡T1)

sinh
⇥
⇡T1(+t+ ia)

⇤
i(K2

++K2
�)K

g>L (t) =
�i

2⇡a

h sinh(ia⇡T2)

sinh
⇥
⇡T2(�t+ ia)

⇤
i(K2

++K2
�)K

g<R(t) =
+i

2⇡a

h sinh(ia⇡T2)

sinh
⇥
⇡T2(+t+ ia)

⇤
i(K2

++K2
�)K

All functions share the same exponent, K̄ ⌘ (K2
+ +K2

�)K = 1
2(

1
K +K),

g>R(t) =
�i

2⇡a

h sinh(ia⇡T1)

sinh
⇥
⇡T1(�t+ ia)

⇤
iK̄

(43)

g<R(t) =
+i

2⇡a

h sinh(ia⇡T1)

sinh
⇥
⇡T1(+t+ ia)

⇤
iK̄

g>L (t) =
�i

2⇡a

h sinh(ia⇡T2)

sinh
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⇡T2(�t+ ia)

⇤
iK̄

g<R(t) =
+i
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h sinh(ia⇡T2)

sinh
⇥
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⇤
iK̄
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PERFORMANCE

L�
ij(B) = L�

ij(�B)

L1j = ⇠⇤�
ij , ⇠ = sgn

�
⇤�
11

�
,

L2j = ⇤+
ij ⇤±

ij = LL
ij ± LR

ij

ZT =
L12L21

det[L̂]

L12 6= L21 Nontrivialy related

Figure of merit

J�
C = L11X1 + L12X2

JH = L21X1 + L22X2
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FIGURE OF MERIT
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LOW-TEMPERATURE BEHAVIOR
ROLE OF INTERACTIONS

L↵
11 ⇠ Dd↵(0)

K̃
(kBT )

K̃

L↵
12 ⇠ D0

d↵(0)

K̃ + 2
(kBT )

K̃+2

L↵
22 ⇠ Dd↵(0)

K̃ + 2
(kBT )

K̃+2

Factor of enhancement

F =
S(K)

S(K = 1)
⇠ K̃ + 2

2K̃
, S =

L12

L11



OUTLOOK
• Edge states of the fractional quantum Hall effect: chiral 

Luttinger liquids. 

• Suppression of transport coefficients in tunnel contacts: 
power laws in T. However different behavior of heat and 
charge channels. Enhancement of the thermoelectric 
performance in the fractional quantum Hall effect.

• Edge states of quantum spin Hall structures: Helical 
Luttinger liquids.

• Thermoelectric heat to work conversion manipulating spin. 
Enhancement of the thermoelectric performance with 
interactions.
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Non-linear charge and energy dynamics of an adiabatically driven interacting quantum dot
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We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically
driven interacting quantum dot in contact to a reservoir for arbitrary amplitudes of the driving potential. We
study within this framework the Anderson impurity model with a local ac gate voltage. We show that the exact
adiabatic quantum dynamics of this system is fully determined by the behavior of the charge susceptibility of
the frozen problem. At T = 0, we evaluate the dynamic response functions with the numerical renormalization
group (NRG). The time-resolved heat production exhibits a pronounced feature described by an instantaneous
Joule law characterized by an universal resistance quantum R0 = h/(2e2) for each spin channel. We show that
this law holds in non-interacting as well as in the interacting system and also when the system is spin-polarized.
In addition, in the presence of a static magnetic field, the interplay between many-body interactions and spin
polarization leads to a non-trivial energy exchange between electrons with different spin components.

PACS numbers: 73.23.-b, 73.63.Kv,72.15.Qm

I. INTRODUCTION

The generation of electron currents by locally applying time-
dependent voltages in coherent conductors is a topic of inten-
sive research activity for some years now. Any mechanism
to be implemented with this goal is accompanied by energy
dissipation.

Quantum capacitors are prominent experimental realizations
of these systems.1–3 They were introduced by Büttiker,
Thomas and Prêtre as quantum equivalents of the classical
linear RC circuits,4–6 by assuming a small amplitude of the
driving voltage. The corresponding ac complex impedance
depends on the driving frequency, the capacitance of the quan-
tum dot and the resistance of the circuit. In the original
theory,4–6 transport coherence is assumed along the full setup,
and the only resistive element is the contact, which results in a
quantized electron relaxation resistance Rq = R0/Nc where Nc

is the number of transport channels and R0 = h/(2e2), is the re-
sistance quantum. The universality of this resistance remains
robust in the low frequency regime upon adding electron-
electron interactions in the quantum dot provided that the sys-
tem behaves as a Fermi liquid (FL).7–11

While in some experiments the driving amplitudes were
within the range of linear response theory,1 further
experimental2,3 and theoretical12–15 contributions focused on
quantum capacitors as single-electron sources, implying large
amplitudes. In Ref. 12 a theory for the regime of large am-
plitudes was proposed for non-interacting systems. The effect
of many-body interactions was later considered within pertur-
bation theory,16 mean-field approximations,17 and exact ap-
proaches valid in the large-transparency limit.18 One of the
goals of the present contribution is to study the low-frequency
non-linear regime while fully taking into account many-body
interactions and spin-polarization effects caused by external
magnetic fields.

The setup consists of a quantum dot driven by a gate voltage
Vg(t) and connected to an electron reservoir, as sketched in

FIG. 1. (Color online) Sketch of the setup. A quantum dot described
by a single electron level with Coulomb interaction U and is driven
by an ac gate voltage Vg(t) = V0 sin(Ωt) and is connected to a nor-
mal lead. Top: representation of the setup in terms of a resistance
connected in series with a capacitor.

Fig.1. We focus on the so called adiabatic regime where the
time scale associated to a variation of Vg(t) is much larger than
the characteristic time scale for the dynamics of the electrons
inside the quantum dot.

As mentioned before, in linear response, it is usual to repre-
sent this setup in terms of a resistance in series with a capaci-
tor, as sketched at the top of Fig.1.1–11 In this paper, we show
that this representation with R = Rq is also sound to describe
the adiabatic dynamics of the interacting system without mag-
netic field beyond linear response. In the case of a magnetic
field applied at the quantum dot, we analyze the setup in the
context of the circuit sketched in Fig. 2, where each spin chan-
nel is regarded as a branch of a circuit with a capacitance in
series with a resistance accounting for a total voltage drop
Vg(t). For the quantum dot without many-body interactions,
we show that the resistance per spin channel is R0, while we
argue that for the interacting quantum dot with magnetic field,
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Introduction. Describing the relation between parti-
cle and energy currents is at the heart of thermoelectrics
[1–5]. For dc driving with small temperature gradients
and bias voltages, linear-response relations between the
currents and the applied forces constitute the basis to de-
scribe thermoelectric phenomena. When combined with
the basic principles of thermodynamics, the resulting the-
ory has the beauty of simplicity and the strength of high
predictive power. Specifically, it allows for a successful
characterization of the e⌅ciency of various thermoelec-
tric machines in terms of the figure of merit introduced
by Io�e in 1949 [6].

An important challenge is to incorporate genuine quan-
tum e�ects associated with coherent transport in nan-
odevices into this theoretical framework for thermoelec-
tric e�ects. Here, we address how to include adiabatic
quantum pumping as a paradigm of coherent-transport
e�ects into a suitably generalized thermoelectric frame-
work and explore the fundamental relations of the cor-
responding quantum machines. Quantum pumping gen-
erates nonzero dc currents by locally applying purely ac
drivings to a quantum coherent conductor [7–9]. It gen-
erates both charge and energy currents [10] and enables
heat pumping and the exchange of work between di�erent
driving forces [11, 12]. By combining adiabatic ac driving
with the application of dc voltages it is also possible to
exchange work between the dc electromotive forces and
the ac ones [13]. Furthermore, by a suitable architecture
of the device, part of the electrical work can be trans-
formed into mechanical work, providing a basis for the
operation of nanomotors and nanoengines [13–18]. The
e�ect of ac driving to pump charge and heat against dc
chemical potentials and temperature gradients was also
investigated in arrays of quantum dots [19].

The aim of the present work is to extend linear-
response theory to systems under adiabatic driving, in-
cluding the energy flux between the electrons and the ac
forces on equal footing with the heat and particle fluxes.
This allows us to describe the operation of the generic

two-terminal device sketched in Fig. 1 as a motor, gen-
erator (Fig. 1a), heat engine, or heat pump (Fig. 1b).
Specifically, we derive generalized Osager relations and
an appropriate figure of merit for this device which is
driven by ac potentials in addition to gradients of chem-
ical potential and temperature.

Adiabatic response. We begin by evaluating the cur-
rents and forces which are induced by a set of time-
periodic parameters in the adiabatic approximation. We
collect the parameters Vi(t) of the Hamiltonian Ĥ into
a vector V(t) = V(t + T ) = (V1(t), V2(t), . . .) so that
Ĥ = Ĥ(V(t)), where T = 2�/⇤ is the driving period.
At lowest order in the adiabatic approximation, the sys-
tem is described by the frozen density matrix ⇥̂t for the
Hamiltonian Ĥt with t treated as a parameter. Ac-
counting for the temporal variation of V(t) to lowest or-
der, we can approximate the time evolution operator as
Û(t, t0) ⇤ Texp{�iĤt(t� t0)� i

� t
t0
dt0(t� t0)F̂ · V̇(t)} in

terms of the generalized force F̂(t) = ��Ĥ(t)
�V(t) . To linear

order in the small “velocity” V̇(t), we can now follow the
usual steps of linear response theory [20] and express the

FIG. 1. Sketch of the setup. A coherent quantum conductor
is driven by time-periodic potentials and connected to two
reservoirs biased by (a) a chemical-potential di�erence ⇥µ or

(b) a temperature gradient ⇥T , or both. Charge Ṅ� and

heat Ṅ� (� = L,R) and power Ẇ are exchanged between
the reservoirs and the ac sources. The solid (dashed) arrow
indicate (a) the motor (generator) mode of the device, and
(b) the heat engine (heat pump) mode.
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�V(t) . To linear

order in the small “velocity” V̇(t), we can now follow the
usual steps of linear response theory [20] and express the

FIG. 1. Sketch of the setup. A coherent quantum conductor
is driven by time-periodic potentials and connected to two
reservoirs biased by (a) a chemical-potential di�erence ⇥µ or

(b) a temperature gradient ⇥T , or both. Charge Ṅ� and
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� t
t0
dt0(t� t0)F̂ · V̇(t)} in

terms of the generalized force F̂(t) = ��Ĥ(t)
�V(t) . To linear

order in the small “velocity” V̇(t), we can now follow the
usual steps of linear response theory [20] and express the

FIG. 1. Sketch of the setup. A coherent quantum conductor
is driven by time-periodic potentials and connected to two
reservoirs biased by (a) a chemical-potential di�erence ⇥µ or

(b) a temperature gradient ⇥T , or both. Charge Ṅ� and

heat Ṅ� (� = L,R) and power Ẇ are exchanged between
the reservoirs and the ac sources. The solid (dashed) arrow
indicate (a) the motor (generator) mode of the device, and
(b) the heat engine (heat pump) mode.
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Introduction. Describing the relation between parti-
cle and energy currents is at the heart of thermoelectrics
[1–5]. For dc driving with small temperature gradients
and bias voltages, linear-response relations between the
currents and the applied forces constitute the basis to de-
scribe thermoelectric phenomena. When combined with
the basic principles of thermodynamics, the resulting the-
ory has the beauty of simplicity and the strength of high
predictive power. Specifically, it allows for a successful
characterization of the e⌅ciency of various thermoelec-
tric machines in terms of the figure of merit introduced
by Io�e in 1949 [6].

An important challenge is to incorporate genuine quan-
tum e�ects associated with coherent transport in nan-
odevices into this theoretical framework for thermoelec-
tric e�ects. Here, we address how to include adiabatic
quantum pumping as a paradigm of coherent-transport
e�ects into a suitably generalized thermoelectric frame-
work and explore the fundamental relations of the cor-
responding quantum machines. Quantum pumping gen-
erates nonzero dc currents by locally applying purely ac
drivings to a quantum coherent conductor [7–9]. It gen-
erates both charge and energy currents [10] and enables
heat pumping and the exchange of work between di�erent
driving forces [11, 12]. By combining adiabatic ac driving
with the application of dc voltages it is also possible to
exchange work between the dc electromotive forces and
the ac ones [13]. Furthermore, by a suitable architecture
of the device, part of the electrical work can be trans-
formed into mechanical work, providing a basis for the
operation of nanomotors and nanoengines [13–18]. The
e�ect of ac driving to pump charge and heat against dc
chemical potentials and temperature gradients was also
investigated in arrays of quantum dots [19].

The aim of the present work is to extend linear-
response theory to systems under adiabatic driving, in-
cluding the energy flux between the electrons and the ac
forces on equal footing with the heat and particle fluxes.
This allows us to describe the operation of the generic

two-terminal device sketched in Fig. 1 as a motor, gen-
erator (Fig. 1a), heat engine, or heat pump (Fig. 1b).
Specifically, we derive generalized Osager relations and
an appropriate figure of merit for this device which is
driven by ac potentials in addition to gradients of chem-
ical potential and temperature.

Adiabatic response. We begin by evaluating the cur-
rents and forces which are induced by a set of time-
periodic parameters in the adiabatic approximation. We
collect the parameters Vi(t) of the Hamiltonian Ĥ into
a vector V(t) = V(t + T ) = (V1(t), V2(t), . . .) so that
Ĥ = Ĥ(V(t)), where T = 2�/⇤ is the driving period.
At lowest order in the adiabatic approximation, the sys-
tem is described by the frozen density matrix ⇥̂t for the
Hamiltonian Ĥt with t treated as a parameter. Ac-
counting for the temporal variation of V(t) to lowest or-
der, we can approximate the time evolution operator as
Û(t, t0) ⇤ Texp{�iĤt(t� t0)� i

� t
t0
dt0(t� t0)F̂ · V̇(t)} in

terms of the generalized force F̂(t) = ��Ĥ(t)
�V(t) . To linear

order in the small “velocity” V̇(t), we can now follow the
usual steps of linear response theory [20] and express the

FIG. 1. Sketch of the setup. A coherent quantum conductor
is driven by time-periodic potentials and connected to two
reservoirs biased by (a) a chemical-potential di�erence ⇥µ or

(b) a temperature gradient ⇥T , or both. Charge Ṅ� and

heat Ṅ� (� = L,R) and power Ẇ are exchanged between
the reservoirs and the ac sources. The solid (dashed) arrow
indicate (a) the motor (generator) mode of the device, and
(b) the heat engine (heat pump) mode.
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expectation value O(t) of an observable Ô at time t as

O(t) ⌅ ⌃Ô⌥t � i

⌥ t

t0

dt�(t� t�)⌃
�
Ô(t), F̂(t�)

 
⌥tV̇(t)

= ⌃Ô⌥t +�OF
t · V̇(t). (1)

Here, the operators Ô(t) and F̂(t�) are defined in the
Heisenberg representation with respect to the frozen
Hamiltonian Ht and ⌃. . .⌥t denotes the expectation value
with respect to the frozen density matrix ⇧̂t, while �OF

t

can be expressed through the retarded adiabatic suscepti-
bility ⌃O,F

t (t�t�) = �i⇤(t�t�)⌃[Ô(t), F̂(t�)]⌥t. We now ex-
pand the frozen average to linear order in an applied bias
⇥µ, yielding ⌃Ô⌥t ⌅ �Oc

t ⇥µ, where the linear-response co-
e⇧cient �Oc

t is given by the usual Kubo formula. Ap-
plying this procedure specifically to the charge current
Jc(t) and the forces F(t) (and postponing the heat cur-
rents and temperature gradients for further below), we
obtain

�
Jc(t)
F(t)

⇥
=

�
Jc
t

Ft

⇥
+

�
�cc
t �cf

t

�fc
t �̂ff

t

⇥�
⇥µ
V̇(t)

⇥
, (2)

to linear order in ⇥µ and V̇(t).
The terms in Eq. (2) have clear physical interpreta-

tions. The first term on the right hand side collects
the currents and forces evaluated with the frozen den-
sity matrix ⇧̂t in equilibrium (i.e., for ⇥µ = 0). These
terms have zero mean when averaged over one period of
the ac fields. The forces can be thought of as conserva-
tive Born-Oppenheimer forces and expressed as a gradi-
ent of the equilibrium energy of the system with respect
to V(t). For several potentials this term may lead to ex-
change of work between the di⇥erent forces Fj without
dissipation. Such processes were considered in Refs. 11
and 12. Adiabatic quantum pumping of charge by the
ac potentials is described by �cf

t , while �fc
t captures the

modification of the forces by the applied bias ⇥µ. Both
contributions are generally nonzero when averaged over
a period, implying that this contribution to the force is
nonconservative. This was discussed for non-interacting
electrons coupled to adiabatic nanomechanical systems
[21, 22] and nanomagnets [23], where in the latter case
it corresponds to the spin-transfer torque. The diago-
nal components describe the usual conductivity through
�cc
t and the velocity-dependent force through �̂ff

t . In
time-reversal symmetric systems, the latter is symmetric
and describes a frictional force. Without time-reversal
symmetry, �̂ff

t may have an antisymmetric part which
is analogous to the Lorenz force [22].
Equation (2) has an important consequence. The co-

e⇧cients are related to susceptibilities evaluated with
the frozen equilibrium state ⇧t. Thus, we can ap-
ply arguments based on the microreversibility of time-
independent Hamiltonians and consequently, the re-
sponse coe⇧cients �ij

t satisfy the generalized Onsager

relations (see the Supplementary Material 1 for details)

�cc
t (B) = �cc

t (�B) , �̂ff
ij (B) = sisj�̂

ff
ji (�B)

�cf
j (B) = sj�

fc
j (�B), (3)

where sj = ±1 depending on the parity of the operators

F̂j under time reversal. Similar relations were found for
closed systems [24]. The second line imposes a relation
between the adiabatic quantum pumping of charge and
the nonconservative force. This relation was previously
found for noninteracting adiabatic quantum motors at
zero-temperature and B = 0 [13]. Eqs. (3) are valid at
finite T and in the presence of many-body interactions.

Generalized thermoelectric framework. Thermo-
electrics considers particle and heat currents in response
to chemical-potential and temperature di⇥erences. In the
presence of ac driving as in the devices in Fig. 1, we have
to include the quantum pumping of particles and heat as
well as the work performed by or on the ac potentials on
the same footing. To develop the corresponding quantum
thermoelectrics, we first consider the entropy production
of the system. After averaging over one period of the ac
driving, the net dissipation occurs only in the electrodes
and we can write

Ṡ =
Q̇L

TL
+

Q̇R

TR
, (4)

where the average heat flux in lead � is given by Q̇� =

Ė� � µ�Ṅ�. The energies E� and particle numbers N�

satisfy the conservation laws

ṄR = �ṄL, ĖL + ĖR = Ẇ . (5)

While particle-number conservation takes the same form
as in standard thermoelectrics, energy conservation must
account for the additional work W performed by the ac
potentials on the electron system. The corresponding
power can be expressed as Ẇ = �

⇧
j Fj(t)V̇j(t), yielding

the entropy production

Ṡ = ṄR
⇥µ

T
+ Q̇R

⇥T

T 2
�

⌃

j

Fj(t)
V̇j(t)

T
(6)

to linear oder in the applied bias ⇥µ = µL�µR and tem-
perature di⇥erence ⇥T = TL � TR. Note that after aver-
aging over a period, the conservative Born-Oppenheimer
forces in Eq. (2) do not contribute to entropy production.
Then, the power can be expressed in linear response and
for ⇥T = 0 as

Ẇ = �
⌃

j

⇤
(�̂fc

t )j V̇j(t)⇥µ+
⌃

l

(�̂ff
t )jlV̇j(t)V̇l(t)

⌅
.(7)

Here, the first term on the right-hand side describes the
work performed by the nonconservative force originating
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Im
⇥
�OF
t (⌦)

⇤
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Introduction. Describing the relation between parti-
cle and energy currents is at the heart of thermoelectrics
[1–5]. For dc driving with small temperature gradients
and bias voltages, linear-response relations between the
currents and the applied forces constitute the basis to de-
scribe thermoelectric phenomena. When combined with
the basic principles of thermodynamics, the resulting the-
ory has the beauty of simplicity and the strength of high
predictive power. Specifically, it allows for a successful
characterization of the e⌅ciency of various thermoelec-
tric machines in terms of the figure of merit introduced
by Io�e in 1949 [6].

An important challenge is to incorporate genuine quan-
tum e�ects associated with coherent transport in nan-
odevices into this theoretical framework for thermoelec-
tric e�ects. Here, we address how to include adiabatic
quantum pumping as a paradigm of coherent-transport
e�ects into a suitably generalized thermoelectric frame-
work and explore the fundamental relations of the cor-
responding quantum machines. Quantum pumping gen-
erates nonzero dc currents by locally applying purely ac
drivings to a quantum coherent conductor [7–9]. It gen-
erates both charge and energy currents [10] and enables
heat pumping and the exchange of work between di�erent
driving forces [11, 12]. By combining adiabatic ac driving
with the application of dc voltages it is also possible to
exchange work between the dc electromotive forces and
the ac ones [13]. Furthermore, by a suitable architecture
of the device, part of the electrical work can be trans-
formed into mechanical work, providing a basis for the
operation of nanomotors and nanoengines [13–18]. The
e�ect of ac driving to pump charge and heat against dc
chemical potentials and temperature gradients was also
investigated in arrays of quantum dots [19].

The aim of the present work is to extend linear-
response theory to systems under adiabatic driving, in-
cluding the energy flux between the electrons and the ac
forces on equal footing with the heat and particle fluxes.
This allows us to describe the operation of the generic

two-terminal device sketched in Fig. 1 as a motor, gen-
erator (Fig. 1a), heat engine, or heat pump (Fig. 1b).
Specifically, we derive generalized Osager relations and
an appropriate figure of merit for this device which is
driven by ac potentials in addition to gradients of chem-
ical potential and temperature.

Adiabatic response. We begin by evaluating the cur-
rents and forces which are induced by a set of time-
periodic parameters in the adiabatic approximation. We
collect the parameters Vi(t) of the Hamiltonian Ĥ into
a vector V(t) = V(t + T ) = (V1(t), V2(t), . . .) so that
Ĥ = Ĥ(V(t)), where T = 2�/⇤ is the driving period.
At lowest order in the adiabatic approximation, the sys-
tem is described by the frozen density matrix ⇥̂t for the
Hamiltonian Ĥt with t treated as a parameter. Ac-
counting for the temporal variation of V(t) to lowest or-
der, we can approximate the time evolution operator as
Û(t, t0) ⇤ Texp{�iĤt(t� t0)� i

� t
t0
dt0(t� t0)F̂ · V̇(t)} in

terms of the generalized force F̂(t) = ��Ĥ(t)
�V(t) . To linear

order in the small “velocity” V̇(t), we can now follow the
usual steps of linear response theory [20] and express the

FIG. 1. Sketch of the setup. A coherent quantum conductor
is driven by time-periodic potentials and connected to two
reservoirs biased by (a) a chemical-potential di�erence ⇥µ or

(b) a temperature gradient ⇥T , or both. Charge Ṅ� and

heat Ṅ� (� = L,R) and power Ẇ are exchanged between
the reservoirs and the ac sources. The solid (dashed) arrow
indicate (a) the motor (generator) mode of the device, and
(b) the heat engine (heat pump) mode.
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expectation value O(t) of an observable Ô at time t as

O(t) ⌅ ⌃Ô⌥t � i

⌥ t

t0

dt�(t� t�)⌃
�
Ô(t), F̂(t�)

 
⌥tV̇(t)

= ⌃Ô⌥t +�OF
t · V̇(t). (1)

Here, the operators Ô(t) and F̂(t�) are defined in the
Heisenberg representation with respect to the frozen
Hamiltonian Ht and ⌃. . .⌥t denotes the expectation value
with respect to the frozen density matrix ⇧̂t, while �OF

t

can be expressed through the retarded adiabatic suscepti-
bility ⌃O,F

t (t�t�) = �i⇤(t�t�)⌃[Ô(t), F̂(t�)]⌥t. We now ex-
pand the frozen average to linear order in an applied bias
⇥µ, yielding ⌃Ô⌥t ⌅ �Oc

t ⇥µ, where the linear-response co-
e⇧cient �Oc

t is given by the usual Kubo formula. Ap-
plying this procedure specifically to the charge current
Jc(t) and the forces F(t) (and postponing the heat cur-
rents and temperature gradients for further below), we
obtain

�
Jc(t)
F(t)

⇥
=

�
Jc
t

Ft

⇥
+

�
�cc
t �cf

t

�fc
t �̂ff

t

⇥�
⇥µ
V̇(t)

⇥
, (2)

to linear order in ⇥µ and V̇(t).
The terms in Eq. (2) have clear physical interpreta-

tions. The first term on the right hand side collects
the currents and forces evaluated with the frozen den-
sity matrix ⇧̂t in equilibrium (i.e., for ⇥µ = 0). These
terms have zero mean when averaged over one period of
the ac fields. The forces can be thought of as conserva-
tive Born-Oppenheimer forces and expressed as a gradi-
ent of the equilibrium energy of the system with respect
to V(t). For several potentials this term may lead to ex-
change of work between the di⇥erent forces Fj without
dissipation. Such processes were considered in Refs. 11
and 12. Adiabatic quantum pumping of charge by the
ac potentials is described by �cf

t , while �fc
t captures the

modification of the forces by the applied bias ⇥µ. Both
contributions are generally nonzero when averaged over
a period, implying that this contribution to the force is
nonconservative. This was discussed for non-interacting
electrons coupled to adiabatic nanomechanical systems
[21, 22] and nanomagnets [23], where in the latter case
it corresponds to the spin-transfer torque. The diago-
nal components describe the usual conductivity through
�cc
t and the velocity-dependent force through �̂ff

t . In
time-reversal symmetric systems, the latter is symmetric
and describes a frictional force. Without time-reversal
symmetry, �̂ff

t may have an antisymmetric part which
is analogous to the Lorenz force [22].

Equation (2) has an important consequence. The co-
e⇧cients are related to susceptibilities evaluated with
the frozen equilibrium state ⇧t. Thus, we can ap-
ply arguments based on the microreversibility of time-
independent Hamiltonians and consequently, the re-
sponse coe⇧cients �ij

t satisfy the generalized Onsager

relations (see the Supplementary Material 1 for details)

�cc
t (B) = �cc

t (�B) , �̂ff
ij (B) = sisj�̂

ff
ji (�B)

�cf
j (B) = sj�

fc
j (�B), (3)

where sj = ±1 depending on the parity of the operators

F̂j under time reversal. Similar relations were found for
closed systems [24]. The second line imposes a relation
between the adiabatic quantum pumping of charge and
the nonconservative force. This relation was previously
found for noninteracting adiabatic quantum motors at
zero-temperature and B = 0 [13]. Eqs. (3) are valid at
finite T and in the presence of many-body interactions.

Generalized thermoelectric framework. Thermo-
electrics considers particle and heat currents in response
to chemical-potential and temperature di⇥erences. In the
presence of ac driving as in the devices in Fig. 1, we have
to include the quantum pumping of particles and heat as
well as the work performed by or on the ac potentials on
the same footing. To develop the corresponding quantum
thermoelectrics, we first consider the entropy production
of the system. After averaging over one period of the ac
driving, the net dissipation occurs only in the electrodes
and we can write

Ṡ =
Q̇L

TL
+

Q̇R

TR
, (4)

where the average heat flux in lead � is given by Q̇� =

Ė� � µ�Ṅ�. The energies E� and particle numbers N�

satisfy the conservation laws

ṄR = �ṄL, ĖL + ĖR = Ẇ . (5)

While particle-number conservation takes the same form
as in standard thermoelectrics, energy conservation must
account for the additional work W performed by the ac
potentials on the electron system. The corresponding
power can be expressed as Ẇ = �

⇧
j Fj(t)V̇j(t), yielding

the entropy production

Ṡ = ṄR
⇥µ

T
+ Q̇R

⇥T

T 2
�

⌃

j

Fj(t)
V̇j(t)

T
(6)

to linear oder in the applied bias ⇥µ = µL�µR and tem-
perature di⇥erence ⇥T = TL � TR. Note that after aver-
aging over a period, the conservative Born-Oppenheimer
forces in Eq. (2) do not contribute to entropy production.
Then, the power can be expressed in linear response and
for ⇥T = 0 as

Ẇ = �
⌃

j

⇤
(�̂fc

t )j V̇j(t)⇥µ+
⌃

l

(�̂ff
t )jlV̇j(t)V̇l(t)

⌅
.(7)

Here, the first term on the right-hand side describes the
work performed by the nonconservative force originating
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the dissipation of the energy received from the ac source is
purely associated to the electron current. Many body interac-
tions in the quantum dot are expected to modify this picture.
In fact, interactions are typically associated to inelastic scat-
tering processes which in turn are expected to generate addi-
tional dissipation processes. In the case of Coulomb electron-
electron interactions, a very interesting scenario takes place
below the so called Kondo temperature TK when the quantum
dot is strongly connected to the reservoirs and occupied by an
odd number of electrons [16]. A screening cloud is formed
with the electrons of the reservoir, which combine with the
e⇤ective spin 1/2 localized at the quantum dot resulting in a
many-body singlet state. This is the celebrated Kondo e⇤ect,
which has dramatic consequences in the dc transport proper-
ties of quantum dots. Due to the Fermi-liquid nature of this
phenomenon, however, it has no consequences in the dissipa-
tion dynamics within the linear response and for low frequen-
cies. In fact, this is precisely the regime where the universality
of Rq holds [11–15] and this is consistent with a dissipation
dynamics is ruled by the IJL of Eq. (2). The second goal of
the present work is the study the dynamics of the dissipation
dynamics beyond linear response. We will show that for large
enough amplitudes of the driving potential the Kondo cloud
breaks down liberating extra dissipated heat.
Model. We consider the system shown in (1). The quan-
tum dot is described by an Anderson Hamiltonian with a sin-
gle electron level, Coulomb interaction U and time-dependent
gate voltage ⌦d(t) = ⌦0 + Vg(t). It reads

Hdot =
⌅

⌥

⌦d(t)nd⌥ + U
�
n⇤ �

1
2

⇥ �
n⌅ �

1
2

⇥
, (3)

with nd⌥ denoting the number operator of the dot with spin
projection ⌥ =⇤, ⌅. The full Hamiltonian for the setup is
H(t) = Hdot(t) + Hres + HT. It also includes the reservoir
Hres =

⇤
⌥,k ⇥kc†k⌥ck⌥, which is a system of free electrons at

temperature T = 0 with chemical potential µ = 0. For sim-
plicity, we will assume that the corresponding density of states
is constant within a bandwidth D. The last term of the Hamil-
tonian describes the coupling between the dot and reservoir,
HT = Vc

⇤
k⌥

⌃
c†k⌥d⌥ + c†k⌥d⌥ + h.c

⌥
.

Charge and energy adiabatic dynamics. The conservation of
the charge in the full system implies

eṅd(t) = �IC(t), (4)

where nd(t) =
⇤
⌥⌃nd⌥(t)⌥ is the occupation of the dot at time

t and IC(t) is charge the current entering the reservoir. The
power generated by the ac potential is

P(t) = nd(t)V̇g(t), (5)

and it equals the total heat production rate at time t [19]. The
latter typically contains a purely ac component Pcons, which
is associated to the reversible heat produced by the conserva-
tive forces and a dissipative component which has a non-zero

mean when averaged over the cycle Pdiss. An appealing fea-
ture of this problem is that the dynamics of the heat produc-
tion, as well as the charge current, are fully determined by the
time-dependent behavior of the occupation of the dot.
For low frequencies, we can follow the adiabatic response of
Ref. 18, according to which

nd(t) = n f (t) + ⇥(t)V̇g(t), (6)

where n f (t) =
⇤
⌥⌃nd⌥⌥t is the occupation of the dot evaluated

with the exact equilibrium density matrix ⌃t corresponding to
the Hamiltonian H(t) frozen at the time t. This term corre-
sponds to the conservative (Born-Oppenheimer) component
of the force induced by the ac source, F(t) = ��⌃H(t)⌥/�t.
The second term of (6) is associated to the frictional compo-
nent of the force. The coe⌅cient reads

⇥(t) = lim
 ⇥0

Im[�c
t ( )]
~ 

. (7)

Here �c
t ( ) is the Fourier transform of the charge susceptibil-

ity �c
t (t � t⇧) = �i⇤(t � t⇧)

⇤
⌥⌥⇧ ⌃[nd⌥(t), nd⌥⇧ (t⇧)]⌥t computed

with ⌃t. This susceptibility di⇤ers from the one of usual
linear response theory. In fact, the latter is evaluated with
the equilibrium density matrix corresponding to Vg(t) = 0,
while �c

t ( ) corresponds to the one with Vg(t) frozen at time
t. The current flowing into the reservoir is obtained from
IC(t) = �e�nd(t)/�t. We can write

IC(t) = �e
�nt

�Vg
V̇g(t) � e

�
⌃
⇥(t)V̇g(t)

⌥

�t
. (8)

By comparing with the NLC equation (1) we identify

C(t) = e
�n f (t)
�Vg

, R(t)C2(t) = �e⇥(t). (9)

On the other hand, by substituting (6) into (5) we find that
within the adiabatic regime

Pcons = n f (t)V̇g(t), Pdiss(t) = ⇥(t)[V̇g(t)]2, (10)

Non-interacting limit. So far, the expressions are com-
pletely general and valid for arbitrary temperature, for non-
interacting as well as interacting systems. We now discuss the
above expressions in relation to the non-interacting results of
Refs. 7, 17–19. Following Refs. 17, 19, and 20, we get

C(t) = �e
⌅

⌥

⇧
d⇥
� f
�⇥
⇧ f ,⌥(t, ⇥),

⇥(t) = �he
2

⌅

⌥

⇧
d⇥
� f
�⇥

⌃
⇧ f ,⌥(t, ⇥)

⌥2
, (11)

where ⇧ f ,⌥(t, ⇥) = �/
⌃
(⇥ � ⌦d(t))2 + (�/2)2

⌥
is the non-

interacting frozen density of states of the quantum dot con-
nected to a reservoir with a hybridization � and f (⇥) is the
Fermi distribution function. The resistance can be calculated
Eq. (9). At T = 0, we have �� f /�⇥ = �(⇥ � µ), where µ is the
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Non-linear charge and energy dynamics of an adiabatically driven correlated quantum dot
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We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically
driven interacting quantum dot in contact to a reservoir for arbitrary amplitudes of the driving potential. We
study within this framework the Anderson impurity model with a local ac gate voltage, by evaluating the dy-
namical response functions with the numerical renormalization group (NRG). The time-resolved heat production
exhibits a pronounced feature described by an instantaneous Joule law characterized by an universal resistance
quantum. In the strongly correlated regime there is an additional mechanism for energy dissipation associated
to the exothermic disruption of the screening cloud.
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Introduction. The generation of electron currents by locally
applying time-dependent voltages in coherent conductors is a
topic of intensive research activity for some years now. Any
mechanism to be implemented with this goal is accompanied
by energy dissipation.
Quantum capacitors are prominent experimental realizations
of these systems [1–3]. They were introduced by Büttiker,
Thomas, Prêtre as quantum equivalents of the classical lin-
ear RC circuits [4–6], by assuming a small amplitude of the
driving voltage. The corresponding ac complex impedance
depends on the driving frequency, the capacitance of the quan-
tum dot and the resistance of the circuit. In the original the-
ory [4–6], transport coherence is assumed along the full setup,
and the only resistive element is the contact, which results
in a quantized electron relaxation resistance Rq = h/(2Nce2),
where Nc is the number of transport channels. The univer-
sality of this resistance remains robust in the low frequency
regime upon adding electron-electron interactions in the quan-
tum dot provided that the system behaves as a Fermi liquid
[14–18].
While in some experiments the driving amplitudes were
within the range of linear response theory [1], further experi-
mental [2, 3] and theoretical [7, 11–13] contributions focused
on quantum capacitors as single-electron sources, implying
large amplitudes. In Ref. 7 a theory for the regime of large
amplitudes was proposed, with focus on non-interacting sys-
tems. The effect of many-body interactions was later consid-
ered within perturbation theory [8] and mean-field approxi-
mations [9]. One of the goals of the present contribution is to
study the low-frequency non-linear regime while fully taking
into account many-body interactions.
We start by formulating an equation for the low-frequency
regime of the classical non-linear circuit (NLC) consisting of
a capacitance C(t) in series with a R(t), with a total voltage
drop Vg(t). This is sketched at the top of Fig. 1 and it can be
regarded as the classical analog of the structure at the bottom.
The latter consists of a quantum dot driven by a gate voltage
Vg(t) and connected to an electron reservoir. For the classical
linear circuit [10], R andC are constants independent of Vg(t).

FIG. 1. (Color online) Sketch of the setup. A quantum dot described
by a single electron level with Coulomb interaction U is driven by an
ac gate voltage Vg(t) = V0 sin(Ωt) and is connected to a normal lead.

In our case, these two quantities depend on Vg(t), while we
assume that V̇g(t) is small. Therefore, we generalize the linear
equation describing the charge in the capacitor at time t [10]
to the non-linear one: Q(t) =

∫ t
t0
dt′C(t′)V̇g(t′) −C(t)R(t)IC(t),

while IC(t) = Q̇(t) is the charge flow exiting the reservoir due
to the variation of the charge of the quantum dot. For small
V̇g(t) it reads

IC(t) = C(t)V̇g(t) −
∂
[

R(t)C2(t)V̇g(t)
]

∂t
. (1)

The quantum dot-reservoir circuit dissipates the energy re-
ceived from the ac source in the form of heat that flows into
the reservoir. For a non-interacting quantum dot connected
to a single-channel reservoir at zero temperature and for slow
frequency but arbitrary amplitude of the driving potential, the
time-dependent rate for the dissipation of energy was found
to obey an instantaneous Joule law (IJL), with the universal
resistance Rq, [19, 20],

PJoule(t) = Rq[IC(t)]2. (2)

Many-body interactions are expected to modify this picture,

T=0

MODEL AND CLASSICAL ANALOG2

the charge dynamics cannot be properly represented by this
circuit.

The quantum dot-reservoir system dissipates the energy re-
ceived from the ac source in the form of heat that flows into
the reservoir. For a non-interacting quantum dot connected
to a single-channel reservoir at zero temperature and for low
frequency but arbitrary amplitude of the driving potential, the
time-dependent rate for the dissipation of energy was found
to obey an instantaneous Joule law (IJL), with the universal
resistance R0,19,21

PJoule(t) = R0

∑

σ

[IC,σ(t)]2, (1)

where IC,σ(t) is the instantaneous charge current of electrons
with spin σ flowing from the quantum dot to the reservoir.
Here we investigate to what an extent the Coulomb inter-
action at the quantum dot affects this picture. We analyze
this ingredient in the framework of the Anderson impurity
model. One of the scenarios in this context is the Kondo ef-
fect, which takes place below the so called Kondo tempera-
ture TK when the quantum dot is strongly connected to the
reservoirs and occupied by an odd number of electrons.23 The
electrons of the reservoir and the effective spin 1/2 localized
at the quantum dot form a many-body singlet state. Other
scenario is the Coulomb blockade, according to which it is
necessary to overcome the energy of the Coulomb interac-
tion to introduce an additional electron in the quantum dot
once it is already filled with one electron. In all the regimes,
the single impurity Anderson model behaves as a FL, even in
the presence of a magnetic field. We show that, due to this
fact, the dynamics for the energy dissipation in the adiabatic
regime is ruled by the IJL of Eq. (1) even beyond linear re-
sponse. However, the mechanisms for the energy transport
depend on the interactions and the spin polarization. We show
that in systems without spin polarization (interacting and non-
interacting), as well as in non-interacting systems (with and
without spin-polarization), electrons with each spin orienta-
tion separately dissipate energy at a rate described by a Joule
law PJoule,σ(t) = R0[IC,σ(t)]2. Instead, the interplay between
many-body interactions and spin polarization leads to regimes
where electrons with a given spin orientation exchange energy
with electrons with the opposite spin orientation, although the
total rate for the energy dissipation is described by Eq. (1).

The work is organized as follows. We present the theoret-
ical treatment in Section II. In Section III we discuss the
case where the quantum dot is non-interacting. We show
that the exact description of the adiabatic dynamics is fully
determined by the behavior of the charge susceptibility of
the frozen system described by the equilibrium Hamiltonian
frozen at a given time. The effect of many-body interactions
is discussed in Section IV. In Section V we present numer-
ical results obtained with Numerical Renormalization Group
(NRG). For systems without spin polarization, we also use ex-
act results of static properties obtained using the Bethe Ansatz
(BA). We present the summary and conclusions in Section VI.

II. THEORETICAL TREATMENT

A. Model

We consider the system of Fig. 1. A driven quantum dot is
connected to a normal lead of free electrons at zero tempera-
ture and chemical potential µ. The full setup is described by
an Anderson Hamiltonian,

H(t) = Hdot(t) + Hres + HT. (2)

The first term describes the dot

Hdot(t) =
∑

σ

εd,σ(t)ndσ + U

(

n↑ −
1

2

) (

n↓ −
1

2

)

, (3)

with ndσ denoting the number operator with spin σ =↑, ↓, U
is the Coulomb repulsion, and εd,σ(t) = ε0 + sσ

δZ
2 + Vg(t)

is the single-particle energy modulated by the applied gate
voltage Vg(t), with Vg(t) = eVg(t) = V0 sin(Ωt), δZ is the
Zeeman splitting due to the presence of an external mag-
netic field, sσ = ±1 for σ =↑, ↓, and −e is the charge of
the electron. The reservoir is described by the Hamiltonian

Hres =
∑

σ,k ϵkc†
kσ

ckσ, which is assumed to have a constant
density of states within a bandwidth 2D. The coupling be-

tween dot and reservoir is HT = Vc
∑

kσ

[

c†
kσ

dσ + h.c
]

.

B. Charge and energy adiabatic dynamics

The conservation of the charge in the full system implies

eṅd(t) = e
∑

σ

ṅdσ(t) =
∑

σ

IC,σ(t), (4)

where ndσ(t) ≡ ⟨ndσ(t)⟩ is the occupancy of the dot by elec-
trons with spin σ at time t, IC,σ(t) is the contribution of the
electrons with spin σ to the charge current flowing out of the
dot at time t, and e > 0 the elementary charge.
The power developed by the external ac source on the electron
system is defined as20 Pac(t) = −⟨∂H/∂t⟩ = −e

∑

σ ndσ(t)V̇g(t).
This leads to a net heat production in the electron system at
a rate Q̇(t) = −Pac(t).

21 We find it convenient to define the
power

P(t) = e
∑

σ

ndσ(t)V̇g(t), (5)

such that P > 0 implies work delivered from the electron sys-
tem against the ac sources. With this definition, the rate for
the heat production in the electron system reads Q̇(t) = P(t) =
Pcons(t)+Pdiss(t).

22 This power contains a purely ac component
Pcons(t) associated to the reversible heat produced by the con-
servative (Born-Oppenheimer) forces, and a dissipative com-
ponent Pdiss(t) with a non-zero time average.
The dynamics of the heat production and the charge current
is fully determined by ndσ(t). For low frequencies, the latter
can be calculated within the adiabatic formalism of Ref. 24,

"d,�(t) = "0 ±
�Z
2

+ Vg(t)

2

the charge dynamics cannot be properly represented by this
circuit.
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to a single-channel reservoir at zero temperature and for low
frequency but arbitrary amplitude of the driving potential, the
time-dependent rate for the dissipation of energy was found
to obey an instantaneous Joule law (IJL), with the universal
resistance R0,19,21
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[IC,σ(t)]2, (1)

where IC,σ(t) is the instantaneous charge current of electrons
with spin σ flowing from the quantum dot to the reservoir.
Here we investigate to what an extent the Coulomb inter-
action at the quantum dot affects this picture. We analyze
this ingredient in the framework of the Anderson impurity
model. One of the scenarios in this context is the Kondo ef-
fect, which takes place below the so called Kondo tempera-
ture TK when the quantum dot is strongly connected to the
reservoirs and occupied by an odd number of electrons.23 The
electrons of the reservoir and the effective spin 1/2 localized
at the quantum dot form a many-body singlet state. Other
scenario is the Coulomb blockade, according to which it is
necessary to overcome the energy of the Coulomb interac-
tion to introduce an additional electron in the quantum dot
once it is already filled with one electron. In all the regimes,
the single impurity Anderson model behaves as a FL, even in
the presence of a magnetic field. We show that, due to this
fact, the dynamics for the energy dissipation in the adiabatic
regime is ruled by the IJL of Eq. (1) even beyond linear re-
sponse. However, the mechanisms for the energy transport
depend on the interactions and the spin polarization. We show
that in systems without spin polarization (interacting and non-
interacting), as well as in non-interacting systems (with and
without spin-polarization), electrons with each spin orienta-
tion separately dissipate energy at a rate described by a Joule
law PJoule,σ(t) = R0[IC,σ(t)]2. Instead, the interplay between
many-body interactions and spin polarization leads to regimes
where electrons with a given spin orientation exchange energy
with electrons with the opposite spin orientation, although the
total rate for the energy dissipation is described by Eq. (1).

The work is organized as follows. We present the theoret-
ical treatment in Section II. In Section III we discuss the
case where the quantum dot is non-interacting. We show
that the exact description of the adiabatic dynamics is fully
determined by the behavior of the charge susceptibility of
the frozen system described by the equilibrium Hamiltonian
frozen at a given time. The effect of many-body interactions
is discussed in Section IV. In Section V we present numer-
ical results obtained with Numerical Renormalization Group
(NRG). For systems without spin polarization, we also use ex-
act results of static properties obtained using the Bethe Ansatz
(BA). We present the summary and conclusions in Section VI.

II. THEORETICAL TREATMENT

A. Model

We consider the system of Fig. 1. A driven quantum dot is
connected to a normal lead of free electrons at zero tempera-
ture and chemical potential µ. The full setup is described by
an Anderson Hamiltonian,

H(t) = Hdot(t) + Hres + HT. (2)

The first term describes the dot

Hdot(t) =
∑

σ

εd,σ(t)ndσ + U

(

n↑ −
1

2

) (

n↓ −
1

2

)

, (3)

with ndσ denoting the number operator with spin σ =↑, ↓, U
is the Coulomb repulsion, and εd,σ(t) = ε0 + sσ

δZ
2 + Vg(t)

is the single-particle energy modulated by the applied gate
voltage Vg(t), with Vg(t) = eVg(t) = V0 sin(Ωt), δZ is the
Zeeman splitting due to the presence of an external mag-
netic field, sσ = ±1 for σ =↑, ↓, and −e is the charge of
the electron. The reservoir is described by the Hamiltonian

Hres =
∑

σ,k ϵkc†
kσ

ckσ, which is assumed to have a constant
density of states within a bandwidth 2D. The coupling be-

tween dot and reservoir is HT = Vc
∑

kσ

[

c†
kσ

dσ + h.c
]

.

B. Charge and energy adiabatic dynamics

The conservation of the charge in the full system implies

eṅd(t) = e
∑

σ

ṅdσ(t) =
∑

σ

IC,σ(t), (4)

where ndσ(t) ≡ ⟨ndσ(t)⟩ is the occupancy of the dot by elec-
trons with spin σ at time t, IC,σ(t) is the contribution of the
electrons with spin σ to the charge current flowing out of the
dot at time t, and e > 0 the elementary charge.
The power developed by the external ac source on the electron
system is defined as20 Pac(t) = −⟨∂H/∂t⟩ = −e

∑

σ ndσ(t)V̇g(t).
This leads to a net heat production in the electron system at
a rate Q̇(t) = −Pac(t).

21 We find it convenient to define the
power

P(t) = e
∑

σ

ndσ(t)V̇g(t), (5)

such that P > 0 implies work delivered from the electron sys-
tem against the ac sources. With this definition, the rate for
the heat production in the electron system reads Q̇(t) = P(t) =
Pcons(t)+Pdiss(t).

22 This power contains a purely ac component
Pcons(t) associated to the reversible heat produced by the con-
servative (Born-Oppenheimer) forces, and a dissipative com-
ponent Pdiss(t) with a non-zero time average.
The dynamics of the heat production and the charge current
is fully determined by ndσ(t). For low frequencies, the latter
can be calculated within the adiabatic formalism of Ref. 24,
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the dissipation of the energy received from the ac source is
purely associated to the electron current. Many body interac-
tions in the quantum dot are expected to modify this picture.
In fact, interactions are typically associated to inelastic scat-
tering processes which in turn are expected to generate addi-
tional dissipation processes. In the case of Coulomb electron-
electron interactions, a very interesting scenario takes place
below the so called Kondo temperature TK when the quantum
dot is strongly connected to the reservoirs and occupied by an
odd number of electrons [16]. A screening cloud is formed
with the electrons of the reservoir, which combine with the
e⇤ective spin 1/2 localized at the quantum dot resulting in a
many-body singlet state. This is the celebrated Kondo e⇤ect,
which has dramatic consequences in the dc transport proper-
ties of quantum dots. Due to the Fermi-liquid nature of this
phenomenon, however, it has no consequences in the dissipa-
tion dynamics within the linear response and for low frequen-
cies. In fact, this is precisely the regime where the universality
of Rq holds [11–15] and this is consistent with a dissipation
dynamics is ruled by the IJL of Eq. (2). The second goal of
the present work is the study the dynamics of the dissipation
dynamics beyond linear response. We will show that for large
enough amplitudes of the driving potential the Kondo cloud
breaks down liberating extra dissipated heat.
Model. We consider the system shown in (1). The quan-
tum dot is described by an Anderson Hamiltonian with a sin-
gle electron level, Coulomb interaction U and time-dependent
gate voltage ⌦d(t) = ⌦0 + Vg(t). It reads

Hdot =
⌅

⌥

⌦d(t)nd⌥ + U
�
n⇤ �

1
2

⇥ �
n⌅ �

1
2

⇥
, (3)

with nd⌥ denoting the number operator of the dot with spin
projection ⌥ =⇤, ⌅. The full Hamiltonian for the setup is
H(t) = Hdot(t) + Hres + HT. It also includes the reservoir
Hres =

⇤
⌥,k ⇥kc†k⌥ck⌥, which is a system of free electrons at

temperature T = 0 with chemical potential µ = 0. For sim-
plicity, we will assume that the corresponding density of states
is constant within a bandwidth D. The last term of the Hamil-
tonian describes the coupling between the dot and reservoir,
HT = Vc

⇤
k⌥

⌃
c†k⌥d⌥ + c†k⌥d⌥ + h.c

⌥
.

Charge and energy adiabatic dynamics. The conservation of
the charge in the full system implies

eṅd(t) = �IC(t), (4)

where nd(t) =
⇤
⌥⌃nd⌥(t)⌥ is the occupation of the dot at time

t and IC(t) is charge the current entering the reservoir. The
power generated by the ac potential is

P(t) = nd(t)V̇g(t), (5)

and it equals the total heat production rate at time t [19]. The
latter typically contains a purely ac component Pcons, which
is associated to the reversible heat produced by the conserva-
tive forces and a dissipative component which has a non-zero

mean when averaged over the cycle Pdiss. An appealing fea-
ture of this problem is that the dynamics of the heat produc-
tion, as well as the charge current, are fully determined by the
time-dependent behavior of the occupation of the dot.
For low frequencies, we can follow the adiabatic response of
Ref. 18, according to which

nd(t) = n f (t) + ⇥(t)V̇g(t), (6)

where n f (t) =
⇤
⌥⌃nd⌥⌥t is the occupation of the dot evaluated

with the exact equilibrium density matrix ⌃t corresponding to
the Hamiltonian H(t) frozen at the time t. This term corre-
sponds to the conservative (Born-Oppenheimer) component
of the force induced by the ac source, F(t) = ��⌃H(t)⌥/�t.
The second term of (6) is associated to the frictional compo-
nent of the force. The coe⌅cient reads

⇥(t) = lim
 ⇥0

Im[�c
t ( )]
~ 

. (7)

Here �c
t ( ) is the Fourier transform of the charge susceptibil-

ity �c
t (t � t⇧) = �i⇤(t � t⇧)

⇤
⌥⌥⇧ ⌃[nd⌥(t), nd⌥⇧ (t⇧)]⌥t computed

with ⌃t. This susceptibility di⇤ers from the one of usual
linear response theory. In fact, the latter is evaluated with
the equilibrium density matrix corresponding to Vg(t) = 0,
while �c

t ( ) corresponds to the one with Vg(t) frozen at time
t. The current flowing into the reservoir is obtained from
IC(t) = �e�nd(t)/�t. We can write

IC(t) = �e
�nt

�Vg
V̇g(t) � e

�
⌃
⇥(t)V̇g(t)

⌥

�t
. (8)

By comparing with the NLC equation (1) we identify

C(t) = e
�n f (t)
�Vg

, R(t)C2(t) = �e⇥(t). (9)

On the other hand, by substituting (6) into (5) we find that
within the adiabatic regime

Pcons = n f (t)V̇g(t), Pdiss(t) = ⇥(t)[V̇g(t)]2, (10)

Non-interacting limit. So far, the expressions are com-
pletely general and valid for arbitrary temperature, for non-
interacting as well as interacting systems. We now discuss the
above expressions in relation to the non-interacting results of
Refs. 7, 17–19. Following Refs. 17, 19, and 20, we get

C(t) = �e
⌅

⌥

⇧
d⇥
� f
�⇥
⇧ f ,⌥(t, ⇥),

⇥(t) = �he
2

⌅

⌥

⇧
d⇥
� f
�⇥

⌃
⇧ f ,⌥(t, ⇥)

⌥2
, (11)

where ⇧ f ,⌥(t, ⇥) = �/
⌃
(⇥ � ⌦d(t))2 + (�/2)2

⌥
is the non-

interacting frozen density of states of the quantum dot con-
nected to a reservoir with a hybridization � and f (⇥) is the
Fermi distribution function. The resistance can be calculated
Eq. (9). At T = 0, we have �� f /�⇥ = �(⇥ � µ), where µ is the
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which corresponds to linear-response in V̇g(t) (see Appendix
A). The result is

ndσ(t) = n fσ(t) + eΛσ(t)V̇g(t), (6)

where n f ,σ(t) ≡ ⟨ndσ⟩t is the snapshot occupancy of the dot,
evaluated with the exact equilibrium density matrix ρt corre-
sponding to the Hamiltonian H(t) frozen at the time t. The
coefficient of the second term is

Λσ(t) = − lim
ω→0

Im[χσσt (ω) + χσσt (ω)]

!ω
, (7)

with ↑ =↓ and ↓ =↑. χσσ′t (ω) is the Fourier transform of the
charge susceptibility χσσ

′

t (t−t′) = −iθ(t−t′)⟨[ndσ(t), ndσ′(t
′)]⟩t

evaluated with ρt.
In the case of the system with applied magnetic field, it is
appropriate to analyze separately the current and the power
developed by electrons with the different spin components.
The current per spin can be calculated by the derivative of
Eq. (6)

IC,σ(t) = e
dn f ,σ

dVg
V̇g(t) + e2

d
[

Λσ(t)V̇g(t)
]

dt
, (8)

where the first term is related to the static charge susceptibility
through dn f ,σ/dVg = χ

σσ
t (0).

The frozen component n f ,σ(t) contributes to the conservative
component of this power, while the last term of Eq. (6) con-
tributes to the non-conservative one. They read, respectively

Pcons,σ(t) = en fσ(t)V̇g(t), Pσ(t) = e2Λσ(t)[V̇g(t)]2. (9)

It is important to notice that the non-conservative components
Pσ(t) are not necessarily fully dissipative. They certainly con-
tribute to the total dissipation, but they may also contain a
non-dissipative ”exchange” part Pex(t), such that P↑(↓)(t) =
±Pex(t)+Pdiss,↑(↓)(t). The exchange component is associated to
time-dependent induced forces that are proportional to V̇g(t).
In this sense, these forces are akin to the ”Lorentz” forces
discussed in Ref. 25. However, in the present case they may
develop work only instantaneously while the average over one
period is zero.
The total power has conservative Pcons(t) =

∑

σ Pcons,σ(t), and
dissipative components Pdiss(t) =

∑

σ Pdiss,σ(t), which read

Pcons(t) = e
∑

σ

n fσ(t)V̇g(t),

Pdiss(t) = e2
∑

σ

Λσ(t)[V̇g(t)]2. (10)

For later use we also define

Λσσ′ (t) = − lim
ω→0

Im[χσσ
′

t (ω)]

!ω
,

Pσσ′ (t) = e2Λσσ′ (t)[V̇g(t)]2. (11)

When performing the averages over one period τ = 2π/Ω

for these two contributions to the power, Pcons,diss =

(1/τ)
∫ τ

0
dtPcons,diss(t), we find Pcons = 0 and Pdiss ≥ 0 in ac-

cordance to the second law of thermodynamics.

FIG. 2. (Color online) Sketch of the circuit. Upper and lower branch
corresponds to ↑ and ↓ spin channels.

We see that the full charge and energy dynamics in the adi-
abatic regime is completely determined by the behavior of
the frozen charge susceptibility χσσ

′

t (ω), irrespective of the
strength of the interactions and the amplitude of the driving
potential.

C. Analogy to the non linear classical circuit

We now discuss the representation of the equations for the
dynamics of the charge and energy introduced in the previous
section, in terms of a classical non-linear circuit. We find it
convenient to treat the two spin channels separately as a circuit
with two branches (one for each spin species) connected in
parallel to the ac source, as sketched in Fig. 2. Each branch
contains a capacitance Cσ(t) in series with a resistance Rσ(t).
We assume that the equation relating the current through each
branch of the circuit with the potential Vg(t) is

IC,σ(t) = −Cσ(t)V̇g(t) + e2
d
[

Rσ(t)Cσ(t)2V̇g(t)
]

dt
. (12)

As discussed in Appendix B, this equation corresponds to a
true macroscopic classical RC circuit in the non-linear low-
frequency regime satisfying ΩRσIσ ≪ 1. Identifying linear
and quadratic terms in V̇g in the above equation with those of
the quantum current Eq. (8) one obtains

Cσ(t) = −e
dn f ,σ(t)

dVg
= −eχσσt (0), Rσ(t)C2

σ(t) = e2Λσ(t).

(13)
Here, unlike the linear case, the non-linear capacitance Cσ(t)
and resistance Rσ(t) are, in general, functions of t. In terms of
these coefficients, the dissipated power (10) reads

Pdiss(t) =
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σ

Rσ(t)C2
σ(t)[V̇g(t)]2. (14)

We see that for the case where Rσ(t) = R0, Eq. (14) reduces
to the IJL described by Eq. (1), which is immediately derived
by retaining only the first term of Eq. (8). In fact, the latter is
the only term of Eq. (8) which has a contribution ∝ [V̇g(t)]2 to

Pdiss(t), since dΛσ(t)/dt =
(

dΛσ(t)/dVg(t)
)

V̇g(t).
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the charge dynamics cannot be properly represented by this
circuit.

The quantum dot-reservoir system dissipates the energy re-
ceived from the ac source in the form of heat that flows into
the reservoir. For a non-interacting quantum dot connected
to a single-channel reservoir at zero temperature and for low
frequency but arbitrary amplitude of the driving potential, the
time-dependent rate for the dissipation of energy was found
to obey an instantaneous Joule law (IJL), with the universal
resistance R0,19,21

PJoule(t) = R0

∑

σ

[IC,σ(t)]2, (1)

where IC,σ(t) is the instantaneous charge current of electrons
with spin σ flowing from the quantum dot to the reservoir.
Here we investigate to what an extent the Coulomb inter-
action at the quantum dot affects this picture. We analyze
this ingredient in the framework of the Anderson impurity
model. One of the scenarios in this context is the Kondo ef-
fect, which takes place below the so called Kondo tempera-
ture TK when the quantum dot is strongly connected to the
reservoirs and occupied by an odd number of electrons.23 The
electrons of the reservoir and the effective spin 1/2 localized
at the quantum dot form a many-body singlet state. Other
scenario is the Coulomb blockade, according to which it is
necessary to overcome the energy of the Coulomb interac-
tion to introduce an additional electron in the quantum dot
once it is already filled with one electron. In all the regimes,
the single impurity Anderson model behaves as a FL, even in
the presence of a magnetic field. We show that, due to this
fact, the dynamics for the energy dissipation in the adiabatic
regime is ruled by the IJL of Eq. (1) even beyond linear re-
sponse. However, the mechanisms for the energy transport
depend on the interactions and the spin polarization. We show
that in systems without spin polarization (interacting and non-
interacting), as well as in non-interacting systems (with and
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tion separately dissipate energy at a rate described by a Joule
law PJoule,σ(t) = R0[IC,σ(t)]2. Instead, the interplay between
many-body interactions and spin polarization leads to regimes
where electrons with a given spin orientation exchange energy
with electrons with the opposite spin orientation, although the
total rate for the energy dissipation is described by Eq. (1).

The work is organized as follows. We present the theoret-
ical treatment in Section II. In Section III we discuss the
case where the quantum dot is non-interacting. We show
that the exact description of the adiabatic dynamics is fully
determined by the behavior of the charge susceptibility of
the frozen system described by the equilibrium Hamiltonian
frozen at a given time. The effect of many-body interactions
is discussed in Section IV. In Section V we present numer-
ical results obtained with Numerical Renormalization Group
(NRG). For systems without spin polarization, we also use ex-
act results of static properties obtained using the Bethe Ansatz
(BA). We present the summary and conclusions in Section VI.

II. THEORETICAL TREATMENT

A. Model

We consider the system of Fig. 1. A driven quantum dot is
connected to a normal lead of free electrons at zero tempera-
ture and chemical potential µ. The full setup is described by
an Anderson Hamiltonian,

H(t) = Hdot(t) + Hres + HT. (2)

The first term describes the dot

Hdot(t) =
∑

σ

εd,σ(t)ndσ + U

(

n↑ −
1

2

) (

n↓ −
1

2

)

, (3)

with ndσ denoting the number operator with spin σ =↑, ↓, U
is the Coulomb repulsion, and εd,σ(t) = ε0 + sσ

δZ
2 + Vg(t)

is the single-particle energy modulated by the applied gate
voltage Vg(t), with Vg(t) = eVg(t) = V0 sin(Ωt), δZ is the
Zeeman splitting due to the presence of an external mag-
netic field, sσ = ±1 for σ =↑, ↓, and −e is the charge of
the electron. The reservoir is described by the Hamiltonian

Hres =
∑

σ,k ϵkc†
kσ

ckσ, which is assumed to have a constant
density of states within a bandwidth 2D. The coupling be-

tween dot and reservoir is HT = Vc
∑

kσ

[

c†
kσ

dσ + h.c
]

.

B. Charge and energy adiabatic dynamics

The conservation of the charge in the full system implies

eṅd(t) = e
∑

σ

ṅdσ(t) =
∑

σ

IC,σ(t), (4)

where ndσ(t) ≡ ⟨ndσ(t)⟩ is the occupancy of the dot by elec-
trons with spin σ at time t, IC,σ(t) is the contribution of the
electrons with spin σ to the charge current flowing out of the
dot at time t, and e > 0 the elementary charge.
The power developed by the external ac source on the electron
system is defined as20 Pac(t) = −⟨∂H/∂t⟩ = −e

∑

σ ndσ(t)V̇g(t).
This leads to a net heat production in the electron system at
a rate Q̇(t) = −Pac(t).

21 We find it convenient to define the
power

P(t) = e
∑

σ

ndσ(t)V̇g(t), (5)

such that P > 0 implies work delivered from the electron sys-
tem against the ac sources. With this definition, the rate for
the heat production in the electron system reads Q̇(t) = P(t) =
Pcons(t)+Pdiss(t).

22 This power contains a purely ac component
Pcons(t) associated to the reversible heat produced by the con-
servative (Born-Oppenheimer) forces, and a dissipative com-
ponent Pdiss(t) with a non-zero time average.
The dynamics of the heat production and the charge current
is fully determined by ndσ(t). For low frequencies, the latter
can be calculated within the adiabatic formalism of Ref. 24,
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which corresponds to linear-response in V̇g(t) (see Appendix
A). The result is

ndσ(t) = n fσ(t) + eΛσ(t)V̇g(t), (6)

where n f ,σ(t) ≡ ⟨ndσ⟩t is the snapshot occupancy of the dot,
evaluated with the exact equilibrium density matrix ρt corre-
sponding to the Hamiltonian H(t) frozen at the time t. The
coefficient of the second term is

Λσ(t) = − lim
ω→0

Im[χσσt (ω) + χσσt (ω)]

!ω
, (7)

with ↑ =↓ and ↓ =↑. χσσ′t (ω) is the Fourier transform of the
charge susceptibility χσσ

′

t (t−t′) = −iθ(t−t′)⟨[ndσ(t), ndσ′(t
′)]⟩t

evaluated with ρt.
In the case of the system with applied magnetic field, it is
appropriate to analyze separately the current and the power
developed by electrons with the different spin components.
The current per spin can be calculated by the derivative of
Eq. (6)

IC,σ(t) = e
dn f ,σ

dVg
V̇g(t) + e2

d
[

Λσ(t)V̇g(t)
]

dt
, (8)

where the first term is related to the static charge susceptibility
through dn f ,σ/dVg = χ

σσ
t (0).

The frozen component n f ,σ(t) contributes to the conservative
component of this power, while the last term of Eq. (6) con-
tributes to the non-conservative one. They read, respectively

Pcons,σ(t) = en fσ(t)V̇g(t), Pσ(t) = e2Λσ(t)[V̇g(t)]2. (9)

It is important to notice that the non-conservative components
Pσ(t) are not necessarily fully dissipative. They certainly con-
tribute to the total dissipation, but they may also contain a
non-dissipative ”exchange” part Pex(t), such that P↑(↓)(t) =
±Pex(t)+Pdiss,↑(↓)(t). The exchange component is associated to
time-dependent induced forces that are proportional to V̇g(t).
In this sense, these forces are akin to the ”Lorentz” forces
discussed in Ref. 25. However, in the present case they may
develop work only instantaneously while the average over one
period is zero.
The total power has conservative Pcons(t) =

∑

σ Pcons,σ(t), and
dissipative components Pdiss(t) =

∑

σ Pdiss,σ(t), which read

Pcons(t) = e
∑

σ

n fσ(t)V̇g(t),

Pdiss(t) = e2
∑

σ

Λσ(t)[V̇g(t)]2. (10)

For later use we also define

Λσσ′ (t) = − lim
ω→0

Im[χσσ
′

t (ω)]

!ω
,

Pσσ′ (t) = e2Λσσ′ (t)[V̇g(t)]2. (11)

When performing the averages over one period τ = 2π/Ω

for these two contributions to the power, Pcons,diss =

(1/τ)
∫ τ

0
dtPcons,diss(t), we find Pcons = 0 and Pdiss ≥ 0 in ac-

cordance to the second law of thermodynamics.

FIG. 2. (Color online) Sketch of the circuit. Upper and lower branch
corresponds to ↑ and ↓ spin channels.

We see that the full charge and energy dynamics in the adi-
abatic regime is completely determined by the behavior of
the frozen charge susceptibility χσσ

′

t (ω), irrespective of the
strength of the interactions and the amplitude of the driving
potential.

C. Analogy to the non linear classical circuit

We now discuss the representation of the equations for the
dynamics of the charge and energy introduced in the previous
section, in terms of a classical non-linear circuit. We find it
convenient to treat the two spin channels separately as a circuit
with two branches (one for each spin species) connected in
parallel to the ac source, as sketched in Fig. 2. Each branch
contains a capacitance Cσ(t) in series with a resistance Rσ(t).
We assume that the equation relating the current through each
branch of the circuit with the potential Vg(t) is

IC,σ(t) = −Cσ(t)V̇g(t) + e2
d
[

Rσ(t)Cσ(t)2V̇g(t)
]

dt
. (12)

As discussed in Appendix B, this equation corresponds to a
true macroscopic classical RC circuit in the non-linear low-
frequency regime satisfying ΩRσIσ ≪ 1. Identifying linear
and quadratic terms in V̇g in the above equation with those of
the quantum current Eq. (8) one obtains

Cσ(t) = −e
dn f ,σ(t)

dVg
= −eχσσt (0), Rσ(t)C2

σ(t) = e2Λσ(t).

(13)
Here, unlike the linear case, the non-linear capacitance Cσ(t)
and resistance Rσ(t) are, in general, functions of t. In terms of
these coefficients, the dissipated power (10) reads

Pdiss(t) =
∑

σ

Rσ(t)C2
σ(t)[V̇g(t)]2. (14)

We see that for the case where Rσ(t) = R0, Eq. (14) reduces
to the IJL described by Eq. (1), which is immediately derived
by retaining only the first term of Eq. (8). In fact, the latter is
the only term of Eq. (8) which has a contribution ∝ [V̇g(t)]2 to

Pdiss(t), since dΛσ(t)/dt =
(

dΛσ(t)/dVg(t)
)

V̇g(t).

3

which corresponds to linear-response in V̇g(t) (see Appendix
A). The result is

ndσ(t) = n fσ(t) + eΛσ(t)V̇g(t), (6)

where n f ,σ(t) ≡ ⟨ndσ⟩t is the snapshot occupancy of the dot,
evaluated with the exact equilibrium density matrix ρt corre-
sponding to the Hamiltonian H(t) frozen at the time t. The
coefficient of the second term is

Λσ(t) = − lim
ω→0

Im[χσσt (ω) + χσσt (ω)]

!ω
, (7)

with ↑ =↓ and ↓ =↑. χσσ′t (ω) is the Fourier transform of the
charge susceptibility χσσ

′

t (t−t′) = −iθ(t−t′)⟨[ndσ(t), ndσ′(t
′)]⟩t

evaluated with ρt.
In the case of the system with applied magnetic field, it is
appropriate to analyze separately the current and the power
developed by electrons with the different spin components.
The current per spin can be calculated by the derivative of
Eq. (6)

IC,σ(t) = e
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V̇g(t) + e2
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, (8)

where the first term is related to the static charge susceptibility
through dn f ,σ/dVg = χ

σσ
t (0).

The frozen component n f ,σ(t) contributes to the conservative
component of this power, while the last term of Eq. (6) con-
tributes to the non-conservative one. They read, respectively

Pcons,σ(t) = en fσ(t)V̇g(t), Pσ(t) = e2Λσ(t)[V̇g(t)]2. (9)

It is important to notice that the non-conservative components
Pσ(t) are not necessarily fully dissipative. They certainly con-
tribute to the total dissipation, but they may also contain a
non-dissipative ”exchange” part Pex(t), such that P↑(↓)(t) =
±Pex(t)+Pdiss,↑(↓)(t). The exchange component is associated to
time-dependent induced forces that are proportional to V̇g(t).
In this sense, these forces are akin to the ”Lorentz” forces
discussed in Ref. 25. However, in the present case they may
develop work only instantaneously while the average over one
period is zero.
The total power has conservative Pcons(t) =

∑

σ Pcons,σ(t), and
dissipative components Pdiss(t) =

∑

σ Pdiss,σ(t), which read
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∑
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For later use we also define

Λσσ′ (t) = − lim
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t (ω)]
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,

Pσσ′ (t) = e2Λσσ′ (t)[V̇g(t)]2. (11)

When performing the averages over one period τ = 2π/Ω

for these two contributions to the power, Pcons,diss =

(1/τ)
∫ τ

0
dtPcons,diss(t), we find Pcons = 0 and Pdiss ≥ 0 in ac-

cordance to the second law of thermodynamics.

FIG. 2. (Color online) Sketch of the circuit. Upper and lower branch
corresponds to ↑ and ↓ spin channels.

We see that the full charge and energy dynamics in the adi-
abatic regime is completely determined by the behavior of
the frozen charge susceptibility χσσ

′

t (ω), irrespective of the
strength of the interactions and the amplitude of the driving
potential.

C. Analogy to the non linear classical circuit

We now discuss the representation of the equations for the
dynamics of the charge and energy introduced in the previous
section, in terms of a classical non-linear circuit. We find it
convenient to treat the two spin channels separately as a circuit
with two branches (one for each spin species) connected in
parallel to the ac source, as sketched in Fig. 2. Each branch
contains a capacitance Cσ(t) in series with a resistance Rσ(t).
We assume that the equation relating the current through each
branch of the circuit with the potential Vg(t) is

IC,σ(t) = −Cσ(t)V̇g(t) + e2
d
[

Rσ(t)Cσ(t)2V̇g(t)
]

dt
. (12)

As discussed in Appendix B, this equation corresponds to a
true macroscopic classical RC circuit in the non-linear low-
frequency regime satisfying ΩRσIσ ≪ 1. Identifying linear
and quadratic terms in V̇g in the above equation with those of
the quantum current Eq. (8) one obtains

Cσ(t) = −e
dn f ,σ(t)

dVg
= −eχσσt (0), Rσ(t)C2

σ(t) = e2Λσ(t).

(13)
Here, unlike the linear case, the non-linear capacitance Cσ(t)
and resistance Rσ(t) are, in general, functions of t. In terms of
these coefficients, the dissipated power (10) reads

Pdiss(t) =
∑

σ

Rσ(t)C2
σ(t)[V̇g(t)]2. (14)

We see that for the case where Rσ(t) = R0, Eq. (14) reduces
to the IJL described by Eq. (1), which is immediately derived
by retaining only the first term of Eq. (8). In fact, the latter is
the only term of Eq. (8) which has a contribution ∝ [V̇g(t)]2 to

Pdiss(t), since dΛσ(t)/dt =
(

dΛσ(t)/dVg(t)
)

V̇g(t).
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which corresponds to linear-response in V̇g(t) (see Appendix
A). The result is

ndσ(t) = n fσ(t) + eΛσ(t)V̇g(t), (6)

where n f ,σ(t) ≡ ⟨ndσ⟩t is the snapshot occupancy of the dot,
evaluated with the exact equilibrium density matrix ρt corre-
sponding to the Hamiltonian H(t) frozen at the time t. The
coefficient of the second term is

Λσ(t) = − lim
ω→0

Im[χσσt (ω) + χσσt (ω)]

!ω
, (7)

with ↑ =↓ and ↓ =↑. χσσ′t (ω) is the Fourier transform of the
charge susceptibility χσσ

′

t (t−t′) = −iθ(t−t′)⟨[ndσ(t), ndσ′(t
′)]⟩t

evaluated with ρt.
In the case of the system with applied magnetic field, it is
appropriate to analyze separately the current and the power
developed by electrons with the different spin components.
The current per spin can be calculated by the derivative of
Eq. (6)

IC,σ(t) = e
dn f ,σ

dVg
V̇g(t) + e2
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[

Λσ(t)V̇g(t)
]

dt
, (8)

where the first term is related to the static charge susceptibility
through dn f ,σ/dVg = χ

σσ
t (0).

The frozen component n f ,σ(t) contributes to the conservative
component of this power, while the last term of Eq. (6) con-
tributes to the non-conservative one. They read, respectively

Pcons,σ(t) = en fσ(t)V̇g(t), Pσ(t) = e2Λσ(t)[V̇g(t)]2. (9)

It is important to notice that the non-conservative components
Pσ(t) are not necessarily fully dissipative. They certainly con-
tribute to the total dissipation, but they may also contain a
non-dissipative ”exchange” part Pex(t), such that P↑(↓)(t) =
±Pex(t)+Pdiss,↑(↓)(t). The exchange component is associated to
time-dependent induced forces that are proportional to V̇g(t).
In this sense, these forces are akin to the ”Lorentz” forces
discussed in Ref. 25. However, in the present case they may
develop work only instantaneously while the average over one
period is zero.
The total power has conservative Pcons(t) =

∑

σ Pcons,σ(t), and
dissipative components Pdiss(t) =
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When performing the averages over one period τ = 2π/Ω

for these two contributions to the power, Pcons,diss =

(1/τ)
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dtPcons,diss(t), we find Pcons = 0 and Pdiss ≥ 0 in ac-

cordance to the second law of thermodynamics.
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We see that the full charge and energy dynamics in the adi-
abatic regime is completely determined by the behavior of
the frozen charge susceptibility χσσ

′

t (ω), irrespective of the
strength of the interactions and the amplitude of the driving
potential.

C. Analogy to the non linear classical circuit

We now discuss the representation of the equations for the
dynamics of the charge and energy introduced in the previous
section, in terms of a classical non-linear circuit. We find it
convenient to treat the two spin channels separately as a circuit
with two branches (one for each spin species) connected in
parallel to the ac source, as sketched in Fig. 2. Each branch
contains a capacitance Cσ(t) in series with a resistance Rσ(t).
We assume that the equation relating the current through each
branch of the circuit with the potential Vg(t) is

IC,σ(t) = −Cσ(t)V̇g(t) + e2
d
[

Rσ(t)Cσ(t)2V̇g(t)
]

dt
. (12)

As discussed in Appendix B, this equation corresponds to a
true macroscopic classical RC circuit in the non-linear low-
frequency regime satisfying ΩRσIσ ≪ 1. Identifying linear
and quadratic terms in V̇g in the above equation with those of
the quantum current Eq. (8) one obtains

Cσ(t) = −e
dn f ,σ(t)

dVg
= −eχσσt (0), Rσ(t)C2

σ(t) = e2Λσ(t).

(13)
Here, unlike the linear case, the non-linear capacitance Cσ(t)
and resistance Rσ(t) are, in general, functions of t. In terms of
these coefficients, the dissipated power (10) reads

Pdiss(t) =
∑

σ

Rσ(t)C2
σ(t)[V̇g(t)]2. (14)

We see that for the case where Rσ(t) = R0, Eq. (14) reduces
to the IJL described by Eq. (1), which is immediately derived
by retaining only the first term of Eq. (8). In fact, the latter is
the only term of Eq. (8) which has a contribution ∝ [V̇g(t)]2 to
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which corresponds to linear-response in V̇g(t) (see Appendix
A). The result is

ndσ(t) = n fσ(t) + eΛσ(t)V̇g(t), (6)

where n f ,σ(t) ≡ ⟨ndσ⟩t is the snapshot occupancy of the dot,
evaluated with the exact equilibrium density matrix ρt corre-
sponding to the Hamiltonian H(t) frozen at the time t. The
coefficient of the second term is

Λσ(t) = − lim
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, (7)

with ↑ =↓ and ↓ =↑. χσσ′t (ω) is the Fourier transform of the
charge susceptibility χσσ
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t (t−t′) = −iθ(t−t′)⟨[ndσ(t), ndσ′(t
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evaluated with ρt.
In the case of the system with applied magnetic field, it is
appropriate to analyze separately the current and the power
developed by electrons with the different spin components.
The current per spin can be calculated by the derivative of
Eq. (6)
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where the first term is related to the static charge susceptibility
through dn f ,σ/dVg = χ
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The frozen component n f ,σ(t) contributes to the conservative
component of this power, while the last term of Eq. (6) con-
tributes to the non-conservative one. They read, respectively
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It is important to notice that the non-conservative components
Pσ(t) are not necessarily fully dissipative. They certainly con-
tribute to the total dissipation, but they may also contain a
non-dissipative ”exchange” part Pex(t), such that P↑(↓)(t) =
±Pex(t)+Pdiss,↑(↓)(t). The exchange component is associated to
time-dependent induced forces that are proportional to V̇g(t).
In this sense, these forces are akin to the ”Lorentz” forces
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C. Analogy to the non linear classical circuit

We now discuss the representation of the equations for the
dynamics of the charge and energy introduced in the previous
section, in terms of a classical non-linear circuit. We find it
convenient to treat the two spin channels separately as a circuit
with two branches (one for each spin species) connected in
parallel to the ac source, as sketched in Fig. 2. Each branch
contains a capacitance Cσ(t) in series with a resistance Rσ(t).
We assume that the equation relating the current through each
branch of the circuit with the potential Vg(t) is

IC,σ(t) = −Cσ(t)V̇g(t) + e2
d
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Rσ(t)Cσ(t)2V̇g(t)
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dt
. (12)

As discussed in Appendix B, this equation corresponds to a
true macroscopic classical RC circuit in the non-linear low-
frequency regime satisfying ΩRσIσ ≪ 1. Identifying linear
and quadratic terms in V̇g in the above equation with those of
the quantum current Eq. (8) one obtains

Cσ(t) = −e
dn f ,σ(t)

dVg
= −eχσσt (0), Rσ(t)C2

σ(t) = e2Λσ(t).

(13)
Here, unlike the linear case, the non-linear capacitance Cσ(t)
and resistance Rσ(t) are, in general, functions of t. In terms of
these coefficients, the dissipated power (10) reads
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which corresponds to linear-response in V̇g(t) (see Appendix
A). The result is
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where n f ,σ(t) ≡ ⟨ndσ⟩t is the snapshot occupancy of the dot,
evaluated with the exact equilibrium density matrix ρt corre-
sponding to the Hamiltonian H(t) frozen at the time t. The
coefficient of the second term is

Λσ(t) = − lim
ω→0

Im[χσσt (ω) + χσσt (ω)]

!ω
, (7)

with ↑ =↓ and ↓ =↑. χσσ′t (ω) is the Fourier transform of the
charge susceptibility χσσ

′

t (t−t′) = −iθ(t−t′)⟨[ndσ(t), ndσ′(t
′)]⟩t

evaluated with ρt.
In the case of the system with applied magnetic field, it is
appropriate to analyze separately the current and the power
developed by electrons with the different spin components.
The current per spin can be calculated by the derivative of
Eq. (6)
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The frozen component n f ,σ(t) contributes to the conservative
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tributes to the non-conservative one. They read, respectively

Pcons,σ(t) = en fσ(t)V̇g(t), Pσ(t) = e2Λσ(t)[V̇g(t)]2. (9)

It is important to notice that the non-conservative components
Pσ(t) are not necessarily fully dissipative. They certainly con-
tribute to the total dissipation, but they may also contain a
non-dissipative ”exchange” part Pex(t), such that P↑(↓)(t) =
±Pex(t)+Pdiss,↑(↓)(t). The exchange component is associated to
time-dependent induced forces that are proportional to V̇g(t).
In this sense, these forces are akin to the ”Lorentz” forces
discussed in Ref. 25. However, in the present case they may
develop work only instantaneously while the average over one
period is zero.
The total power has conservative Pcons(t) =

∑

σ Pcons,σ(t), and
dissipative components Pdiss(t) =
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σ Pdiss,σ(t), which read
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,

Pσσ′ (t) = e2Λσσ′ (t)[V̇g(t)]2. (11)

When performing the averages over one period τ = 2π/Ω

for these two contributions to the power, Pcons,diss =

(1/τ)
∫ τ

0
dtPcons,diss(t), we find Pcons = 0 and Pdiss ≥ 0 in ac-

cordance to the second law of thermodynamics.

FIG. 2. (Color online) Sketch of the circuit. Upper and lower branch
corresponds to ↑ and ↓ spin channels.

We see that the full charge and energy dynamics in the adi-
abatic regime is completely determined by the behavior of
the frozen charge susceptibility χσσ

′

t (ω), irrespective of the
strength of the interactions and the amplitude of the driving
potential.
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We now discuss the representation of the equations for the
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section, in terms of a classical non-linear circuit. We find it
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with two branches (one for each spin species) connected in
parallel to the ac source, as sketched in Fig. 2. Each branch
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We assume that the equation relating the current through each
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IC,σ(t) = −Cσ(t)V̇g(t) + e2
d
[

Rσ(t)Cσ(t)2V̇g(t)
]

dt
. (12)

As discussed in Appendix B, this equation corresponds to a
true macroscopic classical RC circuit in the non-linear low-
frequency regime satisfying ΩRσIσ ≪ 1. Identifying linear
and quadratic terms in V̇g in the above equation with those of
the quantum current Eq. (8) one obtains

Cσ(t) = −e
dn f ,σ(t)

dVg
= −eχσσt (0), Rσ(t)C2

σ(t) = e2Λσ(t).

(13)
Here, unlike the linear case, the non-linear capacitance Cσ(t)
and resistance Rσ(t) are, in general, functions of t. In terms of
these coefficients, the dissipated power (10) reads

Pdiss(t) =
∑

σ

Rσ(t)C2
σ(t)[V̇g(t)]2. (14)

We see that for the case where Rσ(t) = R0, Eq. (14) reduces
to the IJL described by Eq. (1), which is immediately derived
by retaining only the first term of Eq. (8). In fact, the latter is
the only term of Eq. (8) which has a contribution ∝ [V̇g(t)]2 to

Pdiss(t), since dΛσ(t)/dt =
(

dΛσ(t)/dVg(t)
)

V̇g(t).

3

which corresponds to linear-response in V̇g(t) (see Appendix
A). The result is

ndσ(t) = n fσ(t) + eΛσ(t)V̇g(t), (6)

where n f ,σ(t) ≡ ⟨ndσ⟩t is the snapshot occupancy of the dot,
evaluated with the exact equilibrium density matrix ρt corre-
sponding to the Hamiltonian H(t) frozen at the time t. The
coefficient of the second term is

Λσ(t) = − lim
ω→0

Im[χσσt (ω) + χσσt (ω)]

!ω
, (7)

with ↑ =↓ and ↓ =↑. χσσ′t (ω) is the Fourier transform of the
charge susceptibility χσσ

′

t (t−t′) = −iθ(t−t′)⟨[ndσ(t), ndσ′(t
′)]⟩t

evaluated with ρt.
In the case of the system with applied magnetic field, it is
appropriate to analyze separately the current and the power
developed by electrons with the different spin components.
The current per spin can be calculated by the derivative of
Eq. (6)

IC,σ(t) = e
dn f ,σ

dVg
V̇g(t) + e2

d
[

Λσ(t)V̇g(t)
]

dt
, (8)

where the first term is related to the static charge susceptibility
through dn f ,σ/dVg = χ

σσ
t (0).

The frozen component n f ,σ(t) contributes to the conservative
component of this power, while the last term of Eq. (6) con-
tributes to the non-conservative one. They read, respectively

Pcons,σ(t) = en fσ(t)V̇g(t), Pσ(t) = e2Λσ(t)[V̇g(t)]2. (9)

It is important to notice that the non-conservative components
Pσ(t) are not necessarily fully dissipative. They certainly con-
tribute to the total dissipation, but they may also contain a
non-dissipative ”exchange” part Pex(t), such that P↑(↓)(t) =
±Pex(t)+Pdiss,↑(↓)(t). The exchange component is associated to
time-dependent induced forces that are proportional to V̇g(t).
In this sense, these forces are akin to the ”Lorentz” forces
discussed in Ref. 25. However, in the present case they may
develop work only instantaneously while the average over one
period is zero.
The total power has conservative Pcons(t) =

∑

σ Pcons,σ(t), and
dissipative components Pdiss(t) =

∑

σ Pdiss,σ(t), which read

Pcons(t) = e
∑

σ

n fσ(t)V̇g(t),

Pdiss(t) = e2
∑

σ

Λσ(t)[V̇g(t)]2. (10)

For later use we also define

Λσσ′ (t) = − lim
ω→0

Im[χσσ
′

t (ω)]

!ω
,

Pσσ′ (t) = e2Λσσ′ (t)[V̇g(t)]2. (11)

When performing the averages over one period τ = 2π/Ω

for these two contributions to the power, Pcons,diss =

(1/τ)
∫ τ

0
dtPcons,diss(t), we find Pcons = 0 and Pdiss ≥ 0 in ac-

cordance to the second law of thermodynamics.

FIG. 2. (Color online) Sketch of the circuit. Upper and lower branch
corresponds to ↑ and ↓ spin channels.

We see that the full charge and energy dynamics in the adi-
abatic regime is completely determined by the behavior of
the frozen charge susceptibility χσσ

′

t (ω), irrespective of the
strength of the interactions and the amplitude of the driving
potential.

C. Analogy to the non linear classical circuit

We now discuss the representation of the equations for the
dynamics of the charge and energy introduced in the previous
section, in terms of a classical non-linear circuit. We find it
convenient to treat the two spin channels separately as a circuit
with two branches (one for each spin species) connected in
parallel to the ac source, as sketched in Fig. 2. Each branch
contains a capacitance Cσ(t) in series with a resistance Rσ(t).
We assume that the equation relating the current through each
branch of the circuit with the potential Vg(t) is

IC,σ(t) = −Cσ(t)V̇g(t) + e2
d
[

Rσ(t)Cσ(t)2V̇g(t)
]

dt
. (12)

As discussed in Appendix B, this equation corresponds to a
true macroscopic classical RC circuit in the non-linear low-
frequency regime satisfying ΩRσIσ ≪ 1. Identifying linear
and quadratic terms in V̇g in the above equation with those of
the quantum current Eq. (8) one obtains

Cσ(t) = −e
dn f ,σ(t)

dVg
= −eχσσt (0), Rσ(t)C2

σ(t) = e2Λσ(t).

(13)
Here, unlike the linear case, the non-linear capacitance Cσ(t)
and resistance Rσ(t) are, in general, functions of t. In terms of
these coefficients, the dissipated power (10) reads

Pdiss(t) =
∑

σ

Rσ(t)C2
σ(t)[V̇g(t)]2. (14)

We see that for the case where Rσ(t) = R0, Eq. (14) reduces
to the IJL described by Eq. (1), which is immediately derived
by retaining only the first term of Eq. (8). In fact, the latter is
the only term of Eq. (8) which has a contribution ∝ [V̇g(t)]2 to

Pdiss(t), since dΛσ(t)/dt =
(

dΛσ(t)/dVg(t)
)

V̇g(t).

3

which corresponds to linear-response in V̇g(t) (see Appendix
A). The result is

ndσ(t) = n fσ(t) + eΛσ(t)V̇g(t), (6)

where n f ,σ(t) ≡ ⟨ndσ⟩t is the snapshot occupancy of the dot,
evaluated with the exact equilibrium density matrix ρt corre-
sponding to the Hamiltonian H(t) frozen at the time t. The
coefficient of the second term is

Λσ(t) = − lim
ω→0

Im[χσσt (ω) + χσσt (ω)]

!ω
, (7)

with ↑ =↓ and ↓ =↑. χσσ′t (ω) is the Fourier transform of the
charge susceptibility χσσ

′

t (t−t′) = −iθ(t−t′)⟨[ndσ(t), ndσ′(t
′)]⟩t

evaluated with ρt.
In the case of the system with applied magnetic field, it is
appropriate to analyze separately the current and the power
developed by electrons with the different spin components.
The current per spin can be calculated by the derivative of
Eq. (6)

IC,σ(t) = e
dn f ,σ

dVg
V̇g(t) + e2

d
[

Λσ(t)V̇g(t)
]

dt
, (8)

where the first term is related to the static charge susceptibility
through dn f ,σ/dVg = χ

σσ
t (0).

The frozen component n f ,σ(t) contributes to the conservative
component of this power, while the last term of Eq. (6) con-
tributes to the non-conservative one. They read, respectively

Pcons,σ(t) = en fσ(t)V̇g(t), Pσ(t) = e2Λσ(t)[V̇g(t)]2. (9)

It is important to notice that the non-conservative components
Pσ(t) are not necessarily fully dissipative. They certainly con-
tribute to the total dissipation, but they may also contain a
non-dissipative ”exchange” part Pex(t), such that P↑(↓)(t) =
±Pex(t)+Pdiss,↑(↓)(t). The exchange component is associated to
time-dependent induced forces that are proportional to V̇g(t).
In this sense, these forces are akin to the ”Lorentz” forces
discussed in Ref. 25. However, in the present case they may
develop work only instantaneously while the average over one
period is zero.
The total power has conservative Pcons(t) =

∑

σ Pcons,σ(t), and
dissipative components Pdiss(t) =

∑

σ Pdiss,σ(t), which read

Pcons(t) = e
∑

σ

n fσ(t)V̇g(t),

Pdiss(t) = e2
∑

σ

Λσ(t)[V̇g(t)]2. (10)

For later use we also define

Λσσ′ (t) = − lim
ω→0

Im[χσσ
′

t (ω)]

!ω
,

Pσσ′ (t) = e2Λσσ′ (t)[V̇g(t)]2. (11)

When performing the averages over one period τ = 2π/Ω

for these two contributions to the power, Pcons,diss =

(1/τ)
∫ τ

0
dtPcons,diss(t), we find Pcons = 0 and Pdiss ≥ 0 in ac-

cordance to the second law of thermodynamics.

FIG. 2. (Color online) Sketch of the circuit. Upper and lower branch
corresponds to ↑ and ↓ spin channels.

We see that the full charge and energy dynamics in the adi-
abatic regime is completely determined by the behavior of
the frozen charge susceptibility χσσ

′

t (ω), irrespective of the
strength of the interactions and the amplitude of the driving
potential.

C. Analogy to the non linear classical circuit

We now discuss the representation of the equations for the
dynamics of the charge and energy introduced in the previous
section, in terms of a classical non-linear circuit. We find it
convenient to treat the two spin channels separately as a circuit
with two branches (one for each spin species) connected in
parallel to the ac source, as sketched in Fig. 2. Each branch
contains a capacitance Cσ(t) in series with a resistance Rσ(t).
We assume that the equation relating the current through each
branch of the circuit with the potential Vg(t) is

IC,σ(t) = −Cσ(t)V̇g(t) + e2
d
[

Rσ(t)Cσ(t)2V̇g(t)
]

dt
. (12)

As discussed in Appendix B, this equation corresponds to a
true macroscopic classical RC circuit in the non-linear low-
frequency regime satisfying ΩRσIσ ≪ 1. Identifying linear
and quadratic terms in V̇g in the above equation with those of
the quantum current Eq. (8) one obtains

Cσ(t) = −e
dn f ,σ(t)

dVg
= −eχσσt (0), Rσ(t)C2

σ(t) = e2Λσ(t).

(13)
Here, unlike the linear case, the non-linear capacitance Cσ(t)
and resistance Rσ(t) are, in general, functions of t. In terms of
these coefficients, the dissipated power (10) reads

Pdiss(t) =
∑

σ
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σ(t)[V̇g(t)]2. (14)

We see that for the case where Rσ(t) = R0, Eq. (14) reduces
to the IJL described by Eq. (1), which is immediately derived
by retaining only the first term of Eq. (8). In fact, the latter is
the only term of Eq. (8) which has a contribution ∝ [V̇g(t)]2 to
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The above equations are exact and valid in general within the
adiabatic regime. However, in order to establish a meaningful
correspondence between the charge and energy dynamics of
the quantum system and the classical circuit of Fig. 2, the co-
efficients defined in Eq. (13) should also verify Rσ(t) > 0 and
Cσ(t) > 0. As we will discuss in detail in the next sections,
such a correspondence is valid in the system without spin po-
larization (δZ = 0) for arbitrary Coulomb interaction U, as
well as in the non-interacting case (U = 0) with arbitrary δZ .
We also argue in Sections IV and V that the dynamics of the
driven interacting quantum dot in the presence of a magnetic
field cannot be interpreted in terms of the circuit of Fig. 2.

III. NON-INTERACTING ELECTRONS

A. Review of the spinless case

The expressions of the previous sections are completely gen-
eral and valid for arbitrary temperatures, for non-interacting
as well as interacting systems. We now relate them to the
non-interacting results for spinless electrons of Refs. 12,
19, 21, and 24. This corresponds to the Hamiltonian (3) with
U = δZ = 0 and with only one spin species. Following Refs.
19, 21, and 27, we get

C(t) = −e

∫

dϵ
∂ f

∂ϵ
ρ f (t, ϵ),

Λ(t) = −
h

2

∫

dϵ
∂ f

∂ϵ

[

ρ f (t, ϵ)
]2
, (15)

where ρ f (t, ϵ) = (∆/π)/
[

(ϵ − εd(t))2 + ∆2
]

is the non-

interacting frozen density of states of the quantum dot con-
nected to a reservoir with constant density of states ν, ∆ =
πνV2

c , and f (ϵ) is the Fermi distribution function.

The resistance can be directly calculated from Eq. (13). At
T = 0, we have −∂ f /∂ϵ = δ(ϵ − µ). Hence, the coefficients
simplify to C(t) = e2ρ f (t, µ) and R(t) = R0 = h/(2e2). The
latter corresponds to the universal resistance quantum for a
single channel. By substituting these expressions in Pdiss(t)
and IC(t), and keeping terms up to O(V̇2

g ), we recover the IJL
of Eq. (1) as in Ref. 19. Interestingly, we get the same expres-
sion of the current IC(t) in the non-interacting limit as the one
of Ref. 12. However the definition of R(t) presented there
differs from the definition of Eq. (13) with Λ(t) given by Eq.
(15). Such difference should be traced back to the equation for
the non-linear circuit (12). Unlike the one considered in Ref.
12, Eq. (12) includes the factor RC inside the time-derivative
of the second term. The structure of the latter Eq. is moti-
vated by the adiabatic expansion of the occupancy Eq. (6), by
identifying the coefficient Λ(t) as the dissipative contribution.
Remarkably, our definition of R(t) can be easily related to R0

in the limit of T = 0 and it consistently leads to the Joule law
of Eq. (1), while it is also in agreement with the effective
resistance defining the noise.12

B. Spinfull electrons

We now consider the case with U = 0 and arbitrary δZ . Notice
that for non-interacting electrons the ”crossed-susceptibility”

χσ,σt (ω) = 0. Hence the coefficient Λσ(t) is fully determined
by the susceptibilities χσ,σt (ω). The calculations of Refs.
12, 19, 21, and 24 can be easily extended to non-interacting
electrons with spin.
The frozen occupancy of the quantum dot with spin σ is

n f ,σ(t) =

∫

dϵρ f ,σ(t, ϵ) f (ϵ), (16)

where ρ f ,σ(t, ϵ) = (∆σ/π)/
[

(

ϵ − εd,σ(t)
)2
+ ∆2

σ

]

. For this

model ∂ρ f ,σ(t, ϵ)/∂t = e
(

∂ρ f ,σ(t, ϵ)/∂ϵ
)

V̇g(t). Hence, after

integrating by parts the above equation, we get for T = 0

Cσ(t) = eρ f ,σ(t, µ). (17)

In addition, we get an expression like (15) for each spin ori-
entation σ. For T = 0, it reads

Λσ(t) =
h

2
[ρ f ,σ(t, µ)]2 =

h

2
[χσσt (0)]2, (18)

which is a special case of the Korringa-Shiba (KS) law dis-
cussed in the next section. Inserting these expressions in Eqs.
(13) we obtain Rσ(t) = R0. Substituting in (10), we see that
the dissipated power is ruled by the IJL of Eq. (1).
Therefore, for non-interacting electrons, Korringa-Shiba law
of Eq. (18) implies that there is a full one-to one correspon-
dence between the charge and energy dynamics of the driven
electron system and the two-branch circuit sketched in Fig. 2,
with resistances Rσ(t) = R0, even when the electrons are spin-
polarized. This also means that the ac forces associated to the
induced charge for each spin orientation dissipate heat in the
form of a Joule law, Pσ(t) = R0[IC,σ(t)]2 = PJoule,σ(t). Hence,
Pdiss(t) =

∑

σ PJoule,σ(t) = Rq[IC(t)]2, with IC(t) =
∑

σ IC,σ(t)
and Rq = R0/2.

IV. INTERACTING ELECTRONS

A. Exact results

For interacting electrons, the crossed susceptibility χσ,σt (ω)
contributes to the coefficient Λσ(t), in addition to χσ,σt (ω).
For Fermi liquids, an important relation exists for the total

charge susceptibility χc
t (ω) =

∑

σ,σ′ χ
σ,σ′

t (ω), which receives
the name of Korringa-Shiba law.26 In the non-interacting case,
it is expressed in Eq. (18). In the interacting case, it is a non-
trivial result, which was originally proved by Shiba in the An-
derson model26 and later generalized by Fillipone et al. when
a magnetic field is also considered.10,11 It reads

lim
ω→0

Im
[

χc
t (ω)

]

!ω
= −

h

2

∑

σ

[χσσt (0)]2. (19)

This relation has been used to study the present problem
within the linear response regime.7–11 Here, we show that the
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12, 19, 21, and 24 can be easily extended to non-interacting
electrons with spin.
The frozen occupancy of the quantum dot with spin σ is

n f ,σ(t) =

∫

dϵρ f ,σ(t, ϵ) f (ϵ), (16)

where ρ f ,σ(t, ϵ) = (∆σ/π)/
[

(

ϵ − εd,σ(t)
)2
+ ∆2

σ

]

. For this

model ∂ρ f ,σ(t, ϵ)/∂t = e
(

∂ρ f ,σ(t, ϵ)/∂ϵ
)

V̇g(t). Hence, after

integrating by parts the above equation, we get for T = 0

Cσ(t) = eρ f ,σ(t, µ). (17)

In addition, we get an expression like (15) for each spin ori-
entation σ. For T = 0, it reads

Λσ(t) =
h

2
[ρ f ,σ(t, µ)]2 =

h

2
[χσσt (0)]2, (18)

which is a special case of the Korringa-Shiba (KS) law dis-
cussed in the next section. Inserting these expressions in Eqs.
(13) we obtain Rσ(t) = R0. Substituting in (10), we see that
the dissipated power is ruled by the IJL of Eq. (1).
Therefore, for non-interacting electrons, Korringa-Shiba law
of Eq. (18) implies that there is a full one-to one correspon-
dence between the charge and energy dynamics of the driven
electron system and the two-branch circuit sketched in Fig. 2,
with resistances Rσ(t) = R0, even when the electrons are spin-
polarized. This also means that the ac forces associated to the
induced charge for each spin orientation dissipate heat in the
form of a Joule law, Pσ(t) = R0[IC,σ(t)]2 = PJoule,σ(t). Hence,
Pdiss(t) =

∑

σ PJoule,σ(t) = Rq[IC(t)]2, with IC(t) =
∑

σ IC,σ(t)
and Rq = R0/2.

IV. INTERACTING ELECTRONS

A. Exact results

For interacting electrons, the crossed susceptibility χσ,σt (ω)
contributes to the coefficient Λσ(t), in addition to χσ,σt (ω).
For Fermi liquids, an important relation exists for the total

charge susceptibility χc
t (ω) =

∑

σ,σ′ χ
σ,σ′

t (ω), which receives
the name of Korringa-Shiba law.26 In the non-interacting case,
it is expressed in Eq. (18). In the interacting case, it is a non-
trivial result, which was originally proved by Shiba in the An-
derson model26 and later generalized by Fillipone et al. when
a magnetic field is also considered.10,11 It reads

lim
ω→0

Im
[

χc
t (ω)

]

!ω
= −

h

2

∑

σ

[χσσt (0)]2. (19)

This relation has been used to study the present problem
within the linear response regime.7–11 Here, we show that the
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The above equations are exact and valid in general within the
adiabatic regime. However, in order to establish a meaningful
correspondence between the charge and energy dynamics of
the quantum system and the classical circuit of Fig. 2, the co-
efficients defined in Eq. (13) should also verify Rσ(t) > 0 and
Cσ(t) > 0. As we will discuss in detail in the next sections,
such a correspondence is valid in the system without spin po-
larization (δZ = 0) for arbitrary Coulomb interaction U, as
well as in the non-interacting case (U = 0) with arbitrary δZ .
We also argue in Sections IV and V that the dynamics of the
driven interacting quantum dot in the presence of a magnetic
field cannot be interpreted in terms of the circuit of Fig. 2.

III. NON-INTERACTING ELECTRONS

A. Review of the spinless case

The expressions of the previous sections are completely gen-
eral and valid for arbitrary temperatures, for non-interacting
as well as interacting systems. We now relate them to the
non-interacting results for spinless electrons of Refs. 12,
19, 21, and 24. This corresponds to the Hamiltonian (3) with
U = δZ = 0 and with only one spin species. Following Refs.
19, 21, and 27, we get

C(t) = −e

∫

dϵ
∂ f

∂ϵ
ρ f (t, ϵ),

Λ(t) = −
h

2

∫

dϵ
∂ f

∂ϵ

[

ρ f (t, ϵ)
]2
, (15)

where ρ f (t, ϵ) = (∆/π)/
[

(ϵ − εd(t))2 + ∆2
]

is the non-

interacting frozen density of states of the quantum dot con-
nected to a reservoir with constant density of states ν, ∆ =
πνV2

c , and f (ϵ) is the Fermi distribution function.

The resistance can be directly calculated from Eq. (13). At
T = 0, we have −∂ f /∂ϵ = δ(ϵ − µ). Hence, the coefficients
simplify to C(t) = e2ρ f (t, µ) and R(t) = R0 = h/(2e2). The
latter corresponds to the universal resistance quantum for a
single channel. By substituting these expressions in Pdiss(t)
and IC(t), and keeping terms up to O(V̇2

g ), we recover the IJL
of Eq. (1) as in Ref. 19. Interestingly, we get the same expres-
sion of the current IC(t) in the non-interacting limit as the one
of Ref. 12. However the definition of R(t) presented there
differs from the definition of Eq. (13) with Λ(t) given by Eq.
(15). Such difference should be traced back to the equation for
the non-linear circuit (12). Unlike the one considered in Ref.
12, Eq. (12) includes the factor RC inside the time-derivative
of the second term. The structure of the latter Eq. is moti-
vated by the adiabatic expansion of the occupancy Eq. (6), by
identifying the coefficient Λ(t) as the dissipative contribution.
Remarkably, our definition of R(t) can be easily related to R0

in the limit of T = 0 and it consistently leads to the Joule law
of Eq. (1), while it is also in agreement with the effective
resistance defining the noise.12

B. Spinfull electrons

We now consider the case with U = 0 and arbitrary δZ . Notice
that for non-interacting electrons the ”crossed-susceptibility”
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electron system and the two-branch circuit sketched in Fig. 2,
with resistances Rσ(t) = R0, even when the electrons are spin-
polarized. This also means that the ac forces associated to the
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Non-linear charge and energy dynamics of an adiabatically driven interacting quantum dot
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We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically
driven interacting quantum dot in contact to a reservoir for arbitrary amplitudes of the driving potential. We
study within this framework the Anderson impurity model with a local ac gate voltage. We show that the exact
adiabatic quantum dynamics of this system is fully determined by the behavior of the charge susceptibility of
the frozen problem. At T = 0, we evaluate the dynamic response functions with the numerical renormalization
group (NRG). The time-resolved heat production exhibits a pronounced feature described by an instantaneous
Joule law characterized by an universal resistance quantum R0 = h/(2e2) for each spin channel. We show that
this law holds in non-interacting as well as in the interacting system and also when the system is spin-polarized.
In addition, in the presence of a static magnetic field, the interplay between many-body interactions and spin
polarization leads to a non-trivial energy exchange between electrons with different spin components.

PACS numbers: 73.23.-b, 73.63.Kv,72.15.Qm

I. INTRODUCTION

The generation of electron currents by locally applying time-
dependent voltages in coherent conductors is a topic of inten-
sive research activity for some years now. Any mechanism
to be implemented with this goal is accompanied by energy
dissipation.

Quantum capacitors are prominent experimental realizations
of these systems.1–3 They were introduced by Büttiker,
Thomas and Prêtre as quantum equivalents of the classical
linear RC circuits,4–6 by assuming a small amplitude of the
driving voltage. The corresponding ac complex impedance
depends on the driving frequency, the capacitance of the quan-
tum dot and the resistance of the circuit. In the original
theory,4–6 transport coherence is assumed along the full setup,
and the only resistive element is the contact, which results in a
quantized electron relaxation resistance Rq = R0/Nc where Nc

is the number of transport channels and R0 = h/(2e2), is the re-
sistance quantum. The universality of this resistance remains
robust in the low frequency regime upon adding electron-
electron interactions in the quantum dot provided that the sys-
tem behaves as a Fermi liquid (FL).7–11

While in some experiments the driving amplitudes were
within the range of linear response theory,1 further
experimental2,3 and theoretical12–15 contributions focused on
quantum capacitors as single-electron sources, implying large
amplitudes. In Ref. 12 a theory for the regime of large am-
plitudes was proposed for non-interacting systems. The effect
of many-body interactions was later considered within pertur-
bation theory,16 mean-field approximations,17 and exact ap-
proaches valid in the large-transparency limit.18 One of the
goals of the present contribution is to study the low-frequency
non-linear regime while fully taking into account many-body
interactions and spin-polarization effects caused by external
magnetic fields.

The setup consists of a quantum dot driven by a gate voltage
Vg(t) and connected to an electron reservoir, as sketched in

FIG. 1. (Color online) Sketch of the setup. A quantum dot described
by a single electron level with Coulomb interaction U and is driven
by an ac gate voltage Vg(t) = V0 sin(Ωt) and is connected to a nor-
mal lead. Top: representation of the setup in terms of a resistance
connected in series with a capacitor.

Fig.1. We focus on the so called adiabatic regime where the
time scale associated to a variation of Vg(t) is much larger than
the characteristic time scale for the dynamics of the electrons
inside the quantum dot.

As mentioned before, in linear response, it is usual to repre-
sent this setup in terms of a resistance in series with a capaci-
tor, as sketched at the top of Fig.1.1–11 In this paper, we show
that this representation with R = Rq is also sound to describe
the adiabatic dynamics of the interacting system without mag-
netic field beyond linear response. In the case of a magnetic
field applied at the quantum dot, we analyze the setup in the
context of the circuit sketched in Fig. 2, where each spin chan-
nel is regarded as a branch of a circuit with a capacitance in
series with a resistance accounting for a total voltage drop
Vg(t). For the quantum dot without many-body interactions,
we show that the resistance per spin channel is R0, while we
argue that for the interacting quantum dot with magnetic field,

Büttiker resistance
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We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically
driven interacting quantum dot in contact to a reservoir for arbitrary amplitudes of the driving potential. We
study within this framework the Anderson impurity model with a local ac gate voltage, by evaluating the dy-
namical response functions with the numerical renormalization group (NRG). The time-resolved heat production
exhibits a pronounced feature described by an instantaneous Joule law characterized by an universal resistance
quantum. In the strongly correlated regime there is an additional mechanism for energy dissipation associated
to the exothermic disruption of the screening cloud.
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Introduction. The generation of electron currents by locally
applying time-dependent voltages in coherent conductors is a
topic of intensive research activity for some years now. Any
mechanism to be implemented with this goal is accompanied
by energy dissipation.
Quantum capacitors are prominent experimental realizations
of these systems [1–3]. They were introduced by Büttiker,
Thomas, Prêtre as quantum equivalents of the classical lin-
ear RC circuits [4–6], by assuming a small amplitude of the
driving voltage. The corresponding ac complex impedance
depends on the driving frequency, the capacitance of the quan-
tum dot and the resistance of the circuit. In the original the-
ory [4–6], transport coherence is assumed along the full setup,
and the only resistive element is the contact, which results
in a quantized electron relaxation resistance Rq = h/(2Nce2),
where Nc is the number of transport channels. The univer-
sality of this resistance remains robust in the low frequency
regime upon adding electron-electron interactions in the quan-
tum dot provided that the system behaves as a Fermi liquid
(FL) [14–18].
While in some experiments the driving amplitudes were
within the range of linear response theory [1], further experi-
mental [2, 3] and theoretical [7, 11–13] contributions focused
on quantum capacitors as single-electron sources, implying
large amplitudes. In Ref. 7 a theory for the regime of large
amplitudes was proposed for non-interacting systems. The
e⇥ect of many-body interactions was later considered within
perturbation theory [8] and mean-field approximations [9].
One of the goals of the present contribution is to study the
low-frequency non-linear regime while fully taking into ac-
count many-body interactions.
We start by formulating an equation for the low-frequency
regime of the classical non-linear circuit (NLC) with a capac-
itance C(t) in series with a resistance R(t) and a total voltage
drop Vg(t). This is sketched at the top of Fig. 1 and it can be
regarded as the classical analog of the structure at the bottom.
The latter consists of a quantum dot driven by a gate voltage
Vg(t) and connected to an electron reservoir. For the classi-
cal linear circuit [10], R and C are constants. In our case,

FIG. 1. (Color online) Sketch of the setup. A quantum dot described
by a single electron level with Coulomb interaction U is driven by an
ac gate voltage Vg(t) = V0 sin(�t) and is connected to a normal lead.

they depend on Vg(t), while we assume that V̇g(t) is small.
Therefore, we generalize the linear equation describing the
charge in the capacitor at time t [10] to the non-linear one:
Q(t) =

� t
t0

dt⇥C(t⇥)V̇g(t⇥) � C(t)R(t)IC(t), while IC(t) = Q̇(t) is
the charge flow exiting the reservoir due to the variation of the
charge of the quantum dot. For small V̇g(t) it reads

IC(t) = C(t)V̇g(t) �
⇤
⇥
R(t)C2(t)V̇g(t)

⇤

⇤t
. (1)

The quantum dot-reservoir circuit dissipates the energy re-
ceived from the ac source in the form of heat that flows into
the reservoir. For a non-interacting quantum dot connected
to a single-channel reservoir at zero temperature and for slow
frequency but arbitrary amplitude of the driving potential, the
time-dependent rate for the dissipation of energy was found
to obey an instantaneous Joule law (IJL), with the universal
resistance Rq, [19, 20],

PJoule(t) = Rq[IC(t)]2. (2)

Many-body interactions are expected to modify this picture,
since they are typically associated to inelastic scattering pro-
cesses that generate additional dissipation. In the case of

ZERO MAGNETIC FIELD
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The above equations are exact and valid in general within the
adiabatic regime. However, in order to establish a meaningful
correspondence between the charge and energy dynamics of
the quantum system and the classical circuit of Fig. 2, the co-
efficients defined in Eq. (13) should also verify Rσ(t) > 0 and
Cσ(t) > 0. As we will discuss in detail in the next sections,
such a correspondence is valid in the system without spin po-
larization (δZ = 0) for arbitrary Coulomb interaction U, as
well as in the non-interacting case (U = 0) with arbitrary δZ .
We also argue in Sections IV and V that the dynamics of the
driven interacting quantum dot in the presence of a magnetic
field cannot be interpreted in terms of the circuit of Fig. 2.

III. NON-INTERACTING ELECTRONS

A. Review of the spinless case

The expressions of the previous sections are completely gen-
eral and valid for arbitrary temperatures, for non-interacting
as well as interacting systems. We now relate them to the
non-interacting results for spinless electrons of Refs. 12,
19, 21, and 24. This corresponds to the Hamiltonian (3) with
U = δZ = 0 and with only one spin species. Following Refs.
19, 21, and 27, we get

C(t) = −e

∫

dϵ
∂ f

∂ϵ
ρ f (t, ϵ),

Λ(t) = −
h

2

∫

dϵ
∂ f

∂ϵ

[

ρ f (t, ϵ)
]2
, (15)

where ρ f (t, ϵ) = (∆/π)/
[

(ϵ − εd(t))2 + ∆2
]

is the non-

interacting frozen density of states of the quantum dot con-
nected to a reservoir with constant density of states ν, ∆ =
πνV2

c , and f (ϵ) is the Fermi distribution function.

The resistance can be directly calculated from Eq. (13). At
T = 0, we have −∂ f /∂ϵ = δ(ϵ − µ). Hence, the coefficients
simplify to C(t) = e2ρ f (t, µ) and R(t) = R0 = h/(2e2). The
latter corresponds to the universal resistance quantum for a
single channel. By substituting these expressions in Pdiss(t)
and IC(t), and keeping terms up to O(V̇2

g ), we recover the IJL
of Eq. (1) as in Ref. 19. Interestingly, we get the same expres-
sion of the current IC(t) in the non-interacting limit as the one
of Ref. 12. However the definition of R(t) presented there
differs from the definition of Eq. (13) with Λ(t) given by Eq.
(15). Such difference should be traced back to the equation for
the non-linear circuit (12). Unlike the one considered in Ref.
12, Eq. (12) includes the factor RC inside the time-derivative
of the second term. The structure of the latter Eq. is moti-
vated by the adiabatic expansion of the occupancy Eq. (6), by
identifying the coefficient Λ(t) as the dissipative contribution.
Remarkably, our definition of R(t) can be easily related to R0

in the limit of T = 0 and it consistently leads to the Joule law
of Eq. (1), while it is also in agreement with the effective
resistance defining the noise.12

B. Spinfull electrons

We now consider the case with U = 0 and arbitrary δZ . Notice
that for non-interacting electrons the ”crossed-susceptibility”

χσ,σt (ω) = 0. Hence the coefficient Λσ(t) is fully determined
by the susceptibilities χσ,σt (ω). The calculations of Refs.
12, 19, 21, and 24 can be easily extended to non-interacting
electrons with spin.
The frozen occupancy of the quantum dot with spin σ is

n f ,σ(t) =

∫

dϵρ f ,σ(t, ϵ) f (ϵ), (16)

where ρ f ,σ(t, ϵ) = (∆σ/π)/
[

(

ϵ − εd,σ(t)
)2
+ ∆2

σ

]

. For this

model ∂ρ f ,σ(t, ϵ)/∂t = e
(

∂ρ f ,σ(t, ϵ)/∂ϵ
)

V̇g(t). Hence, after

integrating by parts the above equation, we get for T = 0

Cσ(t) = eρ f ,σ(t, µ). (17)

In addition, we get an expression like (15) for each spin ori-
entation σ. For T = 0, it reads

Λσ(t) =
h

2
[ρ f ,σ(t, µ)]2 =

h

2
[χσσt (0)]2, (18)

which is a special case of the Korringa-Shiba (KS) law dis-
cussed in the next section. Inserting these expressions in Eqs.
(13) we obtain Rσ(t) = R0. Substituting in (10), we see that
the dissipated power is ruled by the IJL of Eq. (1).
Therefore, for non-interacting electrons, Korringa-Shiba law
of Eq. (18) implies that there is a full one-to one correspon-
dence between the charge and energy dynamics of the driven
electron system and the two-branch circuit sketched in Fig. 2,
with resistances Rσ(t) = R0, even when the electrons are spin-
polarized. This also means that the ac forces associated to the
induced charge for each spin orientation dissipate heat in the
form of a Joule law, Pσ(t) = R0[IC,σ(t)]2 = PJoule,σ(t). Hence,
Pdiss(t) =

∑

σ PJoule,σ(t) = Rq[IC(t)]2, with IC(t) =
∑

σ IC,σ(t)
and Rq = R0/2.

IV. INTERACTING ELECTRONS

A. Exact results

For interacting electrons, the crossed susceptibility χσ,σt (ω)
contributes to the coefficient Λσ(t), in addition to χσ,σt (ω).
For Fermi liquids, an important relation exists for the total

charge susceptibility χc
t (ω) =

∑

σ,σ′ χ
σ,σ′

t (ω), which receives
the name of Korringa-Shiba law.26 In the non-interacting case,
it is expressed in Eq. (18). In the interacting case, it is a non-
trivial result, which was originally proved by Shiba in the An-
derson model26 and later generalized by Fillipone et al. when
a magnetic field is also considered.10,11 It reads

lim
ω→0

Im
[

χc
t (ω)

]

!ω
= −

h

2

∑

σ

[χσσt (0)]2. (19)

This relation has been used to study the present problem
within the linear response regime.7–11 Here, we show that the
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Korringa-Shiba law Eq. (19) is equivalent to the instantaneous
Joule law Eq. (1), even in the presence of a magnetic field and
also in the non-linear response regime.
In fact, from Eqs. (7) and (10) and taking into account that
Eq. (19) is satisfied, we have

Pdiss(t) =
e2h

2

∑

σ

[χσσt (0)]2V̇g(t)2 (20)

On the other hand, the -up to O(V̇g(t))- charge current with
spin σ is given by the first term of Eq. (8) and reads

IC,σ(t) ≃ e
∂n fσ(t)

∂Vg(t)
V̇g(t) = eχσσt (0)V̇g(t). (21)

Then, substituting in Eq. (20), we get

Pdiss(t) =
h

2e2

∑

σ

[

IC,σ(t)
]2
, (22)

which is, precisely, the IJL. This result holds for electrons
with and without spin polarization, in the non-linear as well
as in the linear regimes.

B. Non-polarized electrons and the representation by the
classical circuit

In the case of non-polarized electrons, where the two spin
orientations are equivalent. The total charge current IC(t) =
∑

σ IC,σ(t) associated to the change in the dot occupancy by
up and down spins is given by [see Eqs. (8) and (13)]

IC(t) = −C(t)V̇g(t) + e2
d
[

Λc(t)V̇g(t)
]

dt
, (23)

with C(t) =
∑

σCσ(t), and Λc(t) =
∑

σΛσ(t).
The definition of the resistance given in Eq. (13), along with
C(t) = −e2χc

t (0) and the KS relation Eq. (19), lead to the re-
sistance R0 for each spin channel or an equivalent resistance
Rq = R0/2 for the equivalent circuit of Fig.1. In fact, because
of the equivalence of both branches of the circuit of Fig. 2,
the voltage drop at the middle point between the resistance
and capacitance for each branch are the same. Therefore, one
can connect this two points with a cable carrying no current
and the circuit becomes equivalent to that at the top of Fig. 1,
with an effective resistance R−1

q = 2R−1
0 in series with the ef-

fective capacitance C(t) = 2Cσ(t). In addition, the arguments
of the next section as well as the numerical results will show
that C(t) ≥ 0. Hence, for non-polarized electrons, the behav-
ior of the charge and energy dynamics is consistent with the
representation of the setup in terms of the parallel circuit of
Fig. 2 or the equivalent one of Fig. 1. The charge dynamics
is described by Eq. (23) with e2Λc(t) = Rq[C(t)]2. while the
dissipated power obeys the IJL Eq. (22).

C. Polarized electrons in the random-phase approximation

In the case of polarized electrons, the two spin orientations
are not equivalent and it is not easy to analyze the dynamics

by simple analogy to the classical circuit. It is important to no-
tice that the Coulomb interaction effectively renormalizes the
gate voltage at a given time. At the mean field level, this can
be accounted by an occupancy-dependent term U⟨n f ,σ⟩ which
adds to Vg(t) in the effective local energy experienced by an
electron with spin σ at the quantum dot. Here, we will ana-
lyze the consequence of this effect on the basis of the behavior
of the charge susceptibility in the ”random phase approxima-
tion” (RPA). In the next section we will present a more accu-
rate analysis based on NRG results.
RPA corresponds to calculating the dynamic susceptibility
from the summation of an infinite perturbative series of ”bub-
ble” diagrams. The result in the present case is

χσσt (ω) =
χ0σ

t (ω)
[

1 + Uχ0σ
t (ω)

]

1 − U2χ0σ
t (ω)χ0σ

t (ω)
, (24)

where χ0σ
t (ω) is the susceptibility for U = 0. The latter is

a function of the gate voltage Vg(t) and satisfies the KS re-
lation (18). The static limit is given by Eq. (17), χ0σ

t (0) =
−ρ f ,σ(µ). In the case of non-polarized electrons, where the
two spin orientations are equivalent, we have χσσt (ω) =

χ0σ
t (ω)/

[

1 + Uχ0σ
t (ω)

]

. Hence, the calculation of the capac-

itance gives Cσ(t) = Cσ,0(t)/
[

1 + UCσ,0(t)/e
]

, where Cσ,0(t)
is the capacitance of the non-interacting system (17), which
indicates that Cσ(t) ≥ 0.
In the case of polarized electrons we have situations where
|χ0σ

t (0)|≪ |χ0σ
t (0)| or vice versa, in which case Eq. (24) leads

to negative values of the coefficient Cσ(t) for large enough U.
This corresponds to a current between the reservoir and the dot
which opposes to the sense of circulation imposed by the volt-
age drop. Furthermore, after some algebra from (24) and the
KS relation for the non-interacting susceptibilities (18), we
can see that in such situations the signs of Λσ(t) and Λσ(t) are
opposite. This would correspond to instantaneous exchange of
power between the two spin species, Pσ(t) ∼ Pex(t) ∼ −Pσ(t).
We can interpret this behavior as electrons with spin σ receiv-
ing energy from the electrons with spin σ to move against the
external voltage drop. In addition to this component, there is a
dissipative component of the power satisfying the IJL [see Eq.
(22)]. Since the behavior explained above is not expected in a
capacitive circuit element, we conclude that the representation
of the dynamics of the driven interacting quantum dot in the
presence of a magnetic field is not properly represented by a
circuit like that of Fig. 2. In the next section, we will verify
that such a behavior indeed takes place when the susceptibili-
ties are exactly calculated with NRG.

V. NUMERICAL RESULTS FOR THE NON-LINEAR
INTERACTING REGIME

We now turn to further analyze the adiabatic fully interacting
case for arbitrary amplitudes of the driving on the basis of nu-
merical results. We use the numerical renormalization group
(NRG) algorithm of Ref. 30 to compute the frozen occupancy
of the dot n fσ(t) and the charge susceptibility χσt (ω). We stress
that the evaluation of these two quantities corresponds to an
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Rq =
R0

2

Instantaneous
Joule law!

(Linear response: Lee, López, Choi, Jonckheere, Martin, PRB (2011); 
Filippone, LeHur, Mora, PRL (2011)



INTERACTIONS + MAGNETIC FIELD

8

0

0.05

0.1

0.15

0.2

(∆
/e

2 ) C
(t)

0

0.002

0.004

0.006

0.008

(∆
2 /

 h
)Λ

c (t)

0 0.2 0.4 0.6 0.8 1
Ωt/π

0

2

4

6

8

(Ω
2 /h

)-1
P di

ss
(t)

U=12.5∆
U=37.5∆
U=62.5∆

FIG. 6. (Color online) Same as Fig. 4 calculated with BA for several
values of U.

moment regime of the Anderson model with a significant spin
polarization.
Starting from the symmetric configuration at t = 0, the energy
of the localized electrons for both spin orientations εd,σ(t) in-
creases in time and the occupancy of the quantum dot evolves
to the empty configuration when εd,↓(t) ∼ U/2 (this situation
is however not reached for the largest U considered). As this
happens, of course also the local spin of the quantum dot van-
ishes. After passing through its maximum at Ωt = π/2, εd,σ(t)
decreases and the quantum dot becomes again filled with a ↓
electron when εd,↓(t) ∼ U/2. As εd,σ(t) continues to decrease
towards its minimum at Ωt = 3π/2, and additional electron
occupies the quantum dot when εd,↓(t) ∼ −U/2. This im-
plies again a vanishing total spin at the quantum dot and as
a consequence, the magnetic field does not lead to a spin po-
larization. In fact, we see in all the panels of the figure that
the two occupancies differ only for values of the gate voltage
where the total mean occupancy is close to one electron, in
which case, there is a finite spin polarization at the quantum
dot,

∑

σ n f ,σ(t) ! 0, 2.
We note that for ε0 = µ = 0 and any magnetic field the Hamil-
tonian is invariant under the following transformation: t → −t
and

d†↑ → d↓, d†↓ → −d↑, c†
k↑ → −ck′↓, c†

k↓ → ck′↑, (27)

assuming a symmetric conduction band such that for any
eigenstate k of the isolated band, there is another one k′ with
ϵk′ = −ϵk. As a consequence of this symmetry, n f ,↑(t) =
1 − n f ,↓(−t) as can be seen in the figure.
Focusing on the interval 0 < Ωt < π/2 of Fig. 7, for which
the one-site energy of the dot increases, we see that the ex-
pected decrease in the occupancy for the majority down spin
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FIG. 7. (Color online) Frozen occupancies nf ,↑(t) and nf ,↓(t) for a
Zeeman splitting δZ = 10−3D and different values of U. Other pa-
rameters are the same as in the previous Figs.

is accompanied by an increase in the occupancy of the minor-
ity up spin, denoting a charge susceptibility of opposite sign
for spin up. As already mentioned in Section IV. C, within a
mean field description, the effective local energy for spin up
is εd,↑(t) = ε0 +

δZ
2 +Vg(t) + Un f↓, and the increase in Vg(t)

is overcome by the decrease in Un f↓ for large enough U and

|χ↓↓t |. For other parts of the cycle similar arguments can be
followed, in particular using the symmetry transformation Eq.
(27).

The behavior of the coefficientsΛσ, which determine the non-
conservative component of the power, is illustrated in Fig. 8
for the largest value of U shown in Fig. 7. These coeffi-
cients display a very interesting behavior as functions of time.
Both exhibit features at those times where the occupancy of
the quantum dot experiences a significant fluctuation, imply-
ing a finite charge current flowing between the reservoir and
the quantum dot. The coefficientΛ↓(t), associated to electrons
with the majority spin polarization is always positive in the in-
terval of time shown. Note that the symmetry transformation
Eq. (27) implies that Λ↑(t) = Λ↓(−t). Instead, the coefficient
Λ↑(t), which is related to the minority spin orientation can
be negative. Notice that this is in strong contrast to the non-
polarized case, where the two coefficients are identical and
positive. The coefficients Λσ(t) do not separately satisfy the
Korringa-Shiba law of the non-interacting system expressed
by Eq. (18). This can be seen by comparing the plots in
symbols with those in lines in the upper panel of the figure.
However, the total coefficient Λc(t) obeys the Korringa-Shiba
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relation (19), as shown in the bottom panel of the figure.

The corresponding behavior of the developed power is pre-
sented in Fig. 9 for the smallest and largest value of U con-
sidered in Fig. 7. We show in the upper panels the coeffi-
cients Λσ(t), and in the middle panels the corresponding non-
conservative powers Pσ(t). Note that P↑(t) = −P↓(−t) as a
consequence of the symmetry transformation Eq. (27). For
comparison, the lower panels show the IJL per spin, PJoule,σ(t).
All these quantities have features at those times t where the oc-
cupancy of the dot changes and a charge current is established
between the dot and the reservoir.

As mentioned in the discussion of the previous figure, the
striking feature is the different sign of Λ↓(t) and Λ↑(t), and
the consequent opposite sign of the powers P↓(t) and P↑(t).
This means that the contributions of different spin to the total
power do not separately dissipate heat in the form of a Joule
law, as is the case of the unpolarized quantum dot but they can
be decomposed as Pσ(t) = ξσPex(t) + PJoule,σ(t), with ξσ = ±.
Here, the component PJoule,σ(t) is associated to the energy dis-
sipated in the form of heat. Instead, Pex(t) is associated to en-
ergy that is transferred in the form of work done by the elec-
trons with the minority spin component on the electrons with
the majority spin component or vice versa. The total dissi-
pated power is given by the addition of the Joule components,
which is shown in the lower panels of the figure. The mech-
anism of energy exchange leading to Pex(t) is a consequence
of the combined effect of many-body interactions and the spin
polarization due to the magnetic field. In fact, we stress that
in the non-interacting case with U = 0, Pex(t) = 0, as shown
in Section III B.

To understand the fundamental difference between the non-
interacting and interacting case, let us notice that in the non-
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interacting case, electrons with the two spin components be-
have independently one another. Due to the Zeeman splitting
there is one energy level for electrons with ↑ spin and one
for electrons with ↓ spin, which are rigidly shifted upwards
and downwards in energy as the gate voltage changes. Ev-
ery time that one of these levels gets aligned with the Fermi
energy of the reservoir, the occupancy of the quantum dot
changes and a current sets between the quantum dot and the
reservoir. Such process is accompanied by Joule heating in
the form of PJoule,σ(t) with resistance R0. Instead, in the in-
teracting regime, the single occupancy is dominated by spins
aligned with the magnetic field, while in the configurations
with 0 and 2 electrons in the quantum dot, both spin orien-
tations are equally populated. For this reason, when the oc-
cupancy changes from singly to double occupancy, there is a
flux of spins oriented opposed to the magnetic field following
the gate voltage, along with a smaller counter flow of electrons
aligned with the magnetic field against the gate voltage. Anal-
ogous situations take place when the configuration changes
from double to single occupancy and from single occupancy
to the empty configuration. The energy to generate the current
of the electrons with one of the spin components that opposes
to the direction dictated by the external gate voltage is pro-
vided by the electrons with the opposite spin component. This
is precisely what we have discussed within the RPA approxi-
mation in Section IV. C. In a full cycle, this energy exchange
averages to zero and only the Joule dissipation remains.

In Fig. 10 we represent the average power over the cycle for
a given spin P̄σ. As a consequence of the symmetry trans-
formation Eq. (27) for the chosen parameters, P̄↓ = P̄↑. We
also represent in the figure the components P̄↑↑ and P̄↑↓, which
correspond to the contributions of the same and opposite spin
to the average total power for spin up, according to Eqs. (9),
(10) and (11). One can see that the crossed component P̄↑↓,
which vanishes for U = 0, decreases rapidly as U is turned on
and saturates when U reaches values much larger than both
∆ and the Zeeman splitting δZ . Instead, for small U, P̄↑↑ in-
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We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically
driven quantum dot in contact to normal and superconducting reservoirs at T = 0. This setup is a generalization
of a quantum RC circuit, with capacitive components due to Andreev processes and induced pairing fluctuations,
in addition to the convencional normal charge fluctuations. The dynamics for the dissipation of energy is ruled
by a Joule law of four channels in parallel with the universal Büttiker resistance R0 = e2/2h per channel. Two
transport channels are associated to the two spin components of the usual charge fluctuations, while the other two
are associated to electrons and holes due to pairing fluctuations. The latter leads to an ”anomalous” component
of the Joule law and take place with a vanishing net current due to the opposite flows of electrons and holes.

I. INTRODUCTION

Time dependent transport at nanoscale is a prominent tool
for probing electronic dynamics at very low temperatures. A
prototypical instance is found in on-demand single electron
sources in which individual electron and hole charges are per-
fectly emitted.1 The simplest device that works as a quantized
emitter is a quantum capacitor, which consists of a single-level
quantum dot tunnel-coupled to an unique reservoir. In such
a case only a purely AC current response is possible when
the dot gate is electrostatically influenced by an AC voltage
source.2–7 Working in a range of frequencies of GHz (⌦) and
at su�ciently slow AC amplitudes (Vg) this setup behaves as
a RC circuit that for the quantum regime exhibits the peculiar-
ity that relaxation processes are featured by an universal quan-
tized resistance R0 = h/2e2.2–4 The quantum analogue to the
classical RC circuit is now done by replacing the geometrical
capacitance by a quantum capacitance which is proportional
to the density of states of the localized level.

Conductance quantization is observed in the stationary regime
as a signature of ballistic transport due to the lack of backscat-
tering events.8,9 In a quantum capacitor operating in condi-
tions where many-body interactions do not play a role, the
resistance quantization is attributed to a particular behavior of
the dwell time. R0 is universal because the mean value for
the square of the dwell time coincides with the square of its
mean value. For interacting systems under AC driving charge
relaxation processes are dictated by the correlation function
of the electron-hole excitations which are proportional to the
available density of electron-hole pairs or, equivalently, to the
charge susceptibility.10–20 In that case, there is a relaxation
resistance R0 per spin channel and such universality resides
in the fullfilment of the Korringa-Shiba relation.15,19–21 The
latter holds for systems that behave as Fermi liquids, which
to some extend behave as noninteracting systems with renor-
malized parameters. Besides, a di↵erent quantization phe-
nomenon in a quantum capacitor is observed, depending on
the way in which the AC amplitude is increased beyond linear
response.5–7,22–28 Such quantization has potential metrological
applications and is suitable for quantum computing designs.

FIG. 1. (a) Sketch of the setup. A quantum dot is driven by an ac
gate voltage Vg(t) = V0 sin(⌦t) and is connected to a normal and
a superconducting lead. (b) Representation of the dynamics of the
charge and energy by means of an e↵ective circuit with capacitive
and resistive elements. The two branches associated to the normal
charge fluctuations are associated to the two components of the spin
of the electrons. The other two describe the ”anomalous” charge
flow due to fluctuations of the induced pairing at the quantum dot.
The corresponding charge fluxes are associated to electrons and holes
and have opposite directions as indicated in the figure by the full dot
pairs (electrons) and empty ones (holes).

Most of the studies on quantum RC circuits belong to the lin-
ear regime being the nonlinear regime less investigated. In
particular, few studies have been reported in the interacting
system beyond linear response.28–31

In the nonlinear regime, it is not obvious how to extend the
concept of relaxation resistance, because the analogy to the
classical circuit is not necessarily valid. Resistive behavior is
related to dissipation of energy. Hence, the analysis of the en-
ergy transport and heat production in parallel with the charge
transport in these systems is a natural strategy. In a recent
work, it was shown that a non-interacting quantum dot driven
in the adiabatic regime obeys an instantaneous Joule law with
an universal resistance R0 per transport channel.42–45 For an
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OUTLOOK

• Extended Kubo formalism for the adiabatic dynamics. 
Application: Dissipation in driven quantum dots in the 
adiabatic regime. Exact numerical results in combination 
with NRG.

• Instantaneous Joule law with Büttiker universal resistance. 
Satisfied by each spin channel in the non-interacting and in 
the interacting regime. Globally satisfied in the presence of  
a magnetic field, where exchange of power between 
electrons with up and down spins takes place. Generalizes 
in proximity to superconductors and has an additional 
anomalous contribution.
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