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! Density scales: 1012 cm-3 
! Interparticle spacing comparable with the wavelength of visible light 

Optical lattices, disorder, mesoscopic structures 

! Neutral particles with a complex internal structure 
! Controls the mechanical action of light onto atoms 
! Spectroscopic addressing of internal degrees of freedom 
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! Quantum Point Contact for cold Fermions 
! Transport measurement technique 
! Quantized conductance 

! Interacting systems 
! Feshbach resonances 
! Fate of quantized conductance across the BCS-BEC crossover 
! Mesoscopic lattices 

! Future prospects
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~ 105 6Li atoms 
T = 0.1 TF
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x-frequency 1 - 50 kHz

z-frequency 10 kHz

Chemical potential 0.352 µK + Vg

Temperature 42 nK
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ing referred to as the entrance channel. The other po-
tential Vc!R", representing the closed channel, is impor-
tant as it can support bound molecular states near the
threshold of the open channel.

A Feshbach resonance occurs when the bound mo-
lecular state in the closed channel energetically ap-
proaches the scattering state in the open channel. Then
even weak coupling can lead to strong mixing between
the two channels. The energy difference can be con-
trolled via a magnetic field when the corresponding
magnetic moments are different. This leads to a mag-
netically tuned Feshbach resonance. The magnetic tun-
ing method is the common way to achieve resonant cou-
pling and it has found numerous applications, as
discussed in this review. Alternatively, resonant coupling
can be achieved by optical methods, leading to optical
Feshbach resonances with many conceptual similarities
to the magnetically tuned case !see Sec. VI.A". Such
resonances are promising for cases where magnetically
tunable resonances are absent.

A magnetically tuned Feshbach resonance can be de-
scribed by a simple expression,2 introduced by Moerdijk
et al. !1995", for the s-wave scattering length a as a func-
tion of the magnetic field B,

a!B" = abg#1 −
!

B − B0
$ . !1"

Figure 2!a" shows this resonance expression. The back-
ground scattering length abg, which is the scattering
length associated with Vbg!R", represents the off-
resonant value. It is directly related to the energy of the
last-bound vibrational level of Vbg!R". The parameter B0
denotes the resonance position, where the scattering

length diverges !a→ ±"", and the parameter ! is the
resonance width. Note that both abg and ! can be posi-
tive or negative. An important point is the zero crossing
of the scattering length associated with a Feshbach reso-
nance; it occurs at a magnetic field B=B0+!. Note also
that we use G as the magnetic field unit in this paper
because of its near-universal usage among groups work-
ing in this field, 1 G=10−4 T.

The energy of the weakly bound molecular state near
the resonance position B0 is shown in Fig. 2!b" relative
to the threshold of two free atoms with zero kinetic en-
ergy. The energy approaches threshold at E=0 on the
side of the resonance where a is large and positive.
Away from resonance, the energy varies linearly with B
with a slope given by #$, the difference in magnetic mo-
ments of the open and closed channels. Near resonance
the coupling between the two channels mixes in
entrance-channel contributions and strongly bends the
molecular state.

In the vicinity of the resonance position at B0, where
the two channels are strongly coupled, the scattering
length is very large. For large positive values of a, a
“dressed” molecular state exists with a binding energy
given by

Eb = %2/2$a2, !2"

where $ is the reduced mass of the atom pair. In this
limit Eb depends quadratically on the magnetic detuning
B−B0 and results in the bend shown in the inset of Fig.
2. This region is of particular interest because of its uni-
versal properties; here the state can be described in
terms of a single effective molecular potential having
scattering length a. In this case, the wave function for
the relative atomic motion is a quantum halo state which
extends to a large size on the order of a; the molecule is
then called a halo dimer !see Sec. V.B.2".

2This simple expression applies to resonances without inelas-
tic two-body channels. Some Feshbach resonances, especially
the optical ones, feature two-body decay. For a more general
discussion including inelastic decay see Sec. II.A.3.
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FIG. 1. !Color online" Basic two-channel model for a Fesh-
bach resonance. The phenomenon occurs when two atoms col-
liding at energy E in the entrance channel resonantly couple to
a molecular bound state with energy Ec supported by the
closed channel potential. In the ultracold domain, collisions
take place near zero energy, E→0. Resonant coupling is then
conveniently realized by magnetically tuning Ec near 0 if the
magnetic moments of the closed and open channels differ.
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FIG. 2. !Color online" Feshbach resonance properties. !a"
Scattering length a and !b" molecular state energy E near a
magnetically tuned Feshbach resonance. The binding energy is
defined to be positive, Eb=−E. The inset shows the universal
regime near the point of resonance where a is very large and
positive.
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Equation of state : N. Navon et al, Science 328 729 (2010)

! Many-body physics (BCS-BEC crossover): 
! Attractive interactions lead to Cooper pairing at low Temperature 
! Negative a: BCS type pairing / Positive a: chemically bound molecules 

form a BEC
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FIG. 3: Particle conductance versus horizontal confinement, gate potential and interaction strength. a, Particle
conductance G

N

as a function of the horizontal confinement frequency ⌫

x

of the QPC, at fixed gate potential V
g

= 0.42µK;
and b, as a function of the gate potential V

g

at fixed confinement frequency ⌫

x

= 23.2kHz, for di↵erent interaction strengths
1/(kF,resa) in the reservoirs. The solid lines are theoretical predictions for 1/(kF,resa) = 2.1 and 1.9 respectively, based on
the Landauer formula of conductance including mean-field attraction (Methods). Each data point represents the mean over 5
measurements and error bars indicate one standard deviation. c, and d, Two-dimensional colour plot of G

N

as a function of
interaction strength 1/(kF,resa) and horizontal confinement (c) or gate potential (d). Both plots contain the cuts of Fig. 3a
and b (grey dotted lines), and an estimation of the local superfluid transition at the QPC exits (black dashed line).

pears in the superfluid regime as expected, as well as the
breakdown of conductance quantization in Fig. 3.

We now focus on the plateau conductances observed
for the di↵erent data sets. Fig. 4 presents conductances
extracted from Fig. 3b for fixed ⌫

x

= 14.5 kHz and
from Fig. 3d for fixed V

g

= 0.64µK, as a function of
T/T

c

. We observe that the particle conductances ob-
tained from varying gate potential or confinement now
coincide within error bars. It demonstrates that T/T

c

is a key control parameter of the transition, although
universal scaling is not expected due to the complex ge-
ometry of the contact. The conductance increase upon
decreasing T/T

c

strongly suggests a superfluid transition.
Simultaneously, the drop of spin conductance manifests
the strong link between pairing and superfluidity.

The regime of non-universal quantization extends far
above the superfluid transition, and is a generic feature
of all data sets. A possible interpretation is the pres-
ence of strong superfluid fluctuations, due to the large
critical region around the superfluid transition [14, 15],
leading to anomalous correlations that slowly decay in

the normal phase. The Luttinger liquid in one dimension
with attractive interactions in the leads provides an ex-
plicit model with large fluctuations, known to have an en-
hanced conductance [13, 16, 17]. Preformed pairs above
the critical temperature [18] could be another possibil-
ity, that would open another bosonic channel for trans-
port with increasing interactions. Evidence for such non-
Fermi liquid behaviour in the BEC-BCS crossover was
found using photoemission spectroscopy [18], in contrast
to results based on the equation of state [19, 20]. Quan-
tized super currents above T

c

could explain the persis-
tence of a plateau even in the superfluid phase [21].

Our findings, covering the attractively interacting
regime, complement the observations made with repul-
sively attracting electrons in solid state QPCs. Future
work could explore the relation between our results and
the known conductance anomalies in electronic quantum
point contacts [22, 23].

Acknowledgements We thank Shuta Nakajima for
experimental assistance and Thierry Giamarchi, Jan von
Delft and Leonid Glazman for discussions, and Päivi
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FIG. 2: Spin conductance versus gate potential and

interaction strength. a, Spin conductance G

�

as a func-
tion of the gate potential V

g

for di↵erent interaction strengths
1/(kF,resa) in the reservoirs. Each data point represents the
mean over 9 measurements and error bars indicate one stan-
dard deviation plotted for every third point. Inset: G

�

ob-
tained from a mean-field phenomenological model, reproduc-
ing the non-monotonic behaviour of the experimental data. b,
Two-dimensional color plot of G

�

as a function of 1/(kF,resa),
with cuts of Fig. 2a indicated as grey dotted lines. The
points where G

�

is maximum, obtained from a parabolic fit
along V

g

, are displayed as orange circles for comparison, while
the black dashed line represents the superfluid critical line es-
timated at the entrance and exit regions of the QPC, using
the calculation in [9].

For intermediate interaction strengths �1.8 <

1/k
F,res

a < �0.5, a conductance plateau centered at
⌫

x

⇠ 12.5 kHz remains clearly visible. The height of the
plateau continuously increases from the universal value to
⇠ 4/h for 1/(k

F,res

a) = �0.5. Such non-universal quan-
tization appears also with varying gate potential at fixed
horizontal confinement ⌫

x

= 23.2 kHz, as shown in Fig.
3b. There again, plateaux with conductances higher than
1/h are observed for interaction strengths 1/(k

F,res

a) <
�1.3. As interactions are further increased to the vicin-
ity of the unitary regime (�0.5 < 1/(k

F,res

a) . 0 for

Fig. 3a and c, �1.0 < 1/(k
F,res

a) . 0 for Fig. 3b and
d), no conductance plateaux can be distinguished any
more, and G

N

increases continuously from zero to very
large values. Contrary to variations of the confinement,
variations of the gate potential change the density at the
entrance and exit of the QPC, e↵ecting the disappear-
ance of the plateau at a lower interaction strength. The
full crossover from quantized conductance of weakly in-
teracting atoms to its breakdown for strong interactions
is mapped in Fig. 3c for fixed V

g

and varying ⌫

x

, and
Fig. 3d for fixed ⌫

x

and varying V

g

. The latter demon-
strates that the conductance plateau, evident as green
area, shrinks gradually when the interaction strength is
increased from 1/(k

F,res

a) < �2 to 1/(k
F,res

a) < �1.
In this regime the plateau width is well predicted by a
mean-field model of the QPC, which takes into account
intra- and inter-mode attraction in the QPC (Methods
and Extended Data Fig. 2). Furthermore, we observe
little di↵erence between the unitary and the strongly re-
pulsive interactions in the experimentally accessible re-
gion, 0 < 1/k

F,res

a < 0.5, where the reservoirs form a
condensate of molecules.

In the deep superfluid regime (deep purple regions in
Fig. 3c and d), deviations from a linear response to the
bias are observed in agreement with our previous mea-
surements for a QPC in a unitary superfluid (Methods
and Extended Data Fig. 3). There, the values stated for
G

N

represent the ratio of current to the non-infinitesimal
bias applied to initiate the current.

In the Landauer theory, conductance is quantized as a
result of the Pauli exclusion principle, enforcing unit oc-
cupancy of all energetically available modes in the reser-
voirs. As a consequence, the universal conductance quan-
tum sets the upper bound for the conductance of an in-
dividual mode, reached only for perfect ballistic conduc-
tance, adiabatic coupling and zero temperature [11, 12].
Our observation of plateau heights larger than 1/h can
thus only be explained by a breakdown of the Fermi liq-
uid description of the reservoirs [13], which is expected
at the onset of superfluidity.

We now relate our data to the superfluid transition
that, at fixed temperature imposed by the reservoirs, is
crossed by increasing the interaction strength and/or V

g

.
The gas turns superfluid first in the minima of the ef-
fective potential drawn in Fig. 1c, which we define as
the entrance and exit of the QPC (Methods). To obtain
the critical temperature T

c

at those points we use the

state-of-the-art calculation of T
c

/T̃

F

⇣
1/(k̃

F

a)
⌘
[9], with

k

B

T̃

F

= ~2k̃2
F

/(2m) = ~2(6⇡2

n)2/3/(2m) being the Fermi
energy of a homogeneous gas with density n. We estimate
n at the entrance and exit of the QPC from the trap ge-
ometry and the equation of state of the low-temperature,
tunable Fermi gas (Methods). The resulting critical line
is displayed in Fig. 2b and 3c, d. It closely tracks the
maximum of the spin conductance in Fig. 2b, which ap-
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FIG. 3: Particle conductance versus horizontal confinement, gate potential and interaction strength. a, Particle
conductance G

N

as a function of the horizontal confinement frequency ⌫

x

of the QPC, at fixed gate potential V
g

= 0.42µK;
and b, as a function of the gate potential V

g

at fixed confinement frequency ⌫

x

= 23.2kHz, for di↵erent interaction strengths
1/(kF,resa) in the reservoirs. The solid lines are theoretical predictions for 1/(kF,resa) = 2.1 and 1.9 respectively, based on
the Landauer formula of conductance including mean-field attraction (Methods). Each data point represents the mean over 5
measurements and error bars indicate one standard deviation. c, and d, Two-dimensional colour plot of G

N

as a function of
interaction strength 1/(kF,resa) and horizontal confinement (c) or gate potential (d). Both plots contain the cuts of Fig. 3a
and b (grey dotted lines), and an estimation of the local superfluid transition at the QPC exits (black dashed line).

pears in the superfluid regime as expected, as well as the
breakdown of conductance quantization in Fig. 3.

We now focus on the plateau conductances observed
for the di↵erent data sets. Fig. 4 presents conductances
extracted from Fig. 3b for fixed ⌫

x

= 14.5 kHz and
from Fig. 3d for fixed V

g

= 0.64µK, as a function of
T/T

c

. We observe that the particle conductances ob-
tained from varying gate potential or confinement now
coincide within error bars. It demonstrates that T/T

c

is a key control parameter of the transition, although
universal scaling is not expected due to the complex ge-
ometry of the contact. The conductance increase upon
decreasing T/T

c

strongly suggests a superfluid transition.
Simultaneously, the drop of spin conductance manifests
the strong link between pairing and superfluidity.

The regime of non-universal quantization extends far
above the superfluid transition, and is a generic feature
of all data sets. A possible interpretation is the pres-
ence of strong superfluid fluctuations, due to the large
critical region around the superfluid transition [14, 15],
leading to anomalous correlations that slowly decay in

the normal phase. The Luttinger liquid in one dimension
with attractive interactions in the leads provides an ex-
plicit model with large fluctuations, known to have an en-
hanced conductance [13, 16, 17]. Preformed pairs above
the critical temperature [18] could be another possibil-
ity, that would open another bosonic channel for trans-
port with increasing interactions. Evidence for such non-
Fermi liquid behaviour in the BEC-BCS crossover was
found using photoemission spectroscopy [18], in contrast
to results based on the equation of state [19, 20]. Quan-
tized super currents above T

c

could explain the persis-
tence of a plateau even in the superfluid phase [21].

Our findings, covering the attractively interacting
regime, complement the observations made with repul-
sively attracting electrons in solid state QPCs. Future
work could explore the relation between our results and
the known conductance anomalies in electronic quantum
point contacts [22, 23].
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FIG. 2: Spin conductance versus gate potential and

interaction strength. a, Spin conductance G

�

as a func-
tion of the gate potential V

g

for di↵erent interaction strengths
1/(kF,resa) in the reservoirs. Each data point represents the
mean over 9 measurements and error bars indicate one stan-
dard deviation plotted for every third point. Inset: G

�

ob-
tained from a mean-field phenomenological model, reproduc-
ing the non-monotonic behaviour of the experimental data. b,
Two-dimensional color plot of G

�

as a function of 1/(kF,resa),
with cuts of Fig. 2a indicated as grey dotted lines. The
points where G

�

is maximum, obtained from a parabolic fit
along V

g

, are displayed as orange circles for comparison, while
the black dashed line represents the superfluid critical line es-
timated at the entrance and exit regions of the QPC, using
the calculation in [9].

For intermediate interaction strengths �1.8 <

1/k
F,res

a < �0.5, a conductance plateau centered at
⌫

x

⇠ 12.5 kHz remains clearly visible. The height of the
plateau continuously increases from the universal value to
⇠ 4/h for 1/(k

F,res

a) = �0.5. Such non-universal quan-
tization appears also with varying gate potential at fixed
horizontal confinement ⌫

x

= 23.2 kHz, as shown in Fig.
3b. There again, plateaux with conductances higher than
1/h are observed for interaction strengths 1/(k

F,res

a) <
�1.3. As interactions are further increased to the vicin-
ity of the unitary regime (�0.5 < 1/(k

F,res

a) . 0 for

Fig. 3a and c, �1.0 < 1/(k
F,res

a) . 0 for Fig. 3b and
d), no conductance plateaux can be distinguished any
more, and G

N

increases continuously from zero to very
large values. Contrary to variations of the confinement,
variations of the gate potential change the density at the
entrance and exit of the QPC, e↵ecting the disappear-
ance of the plateau at a lower interaction strength. The
full crossover from quantized conductance of weakly in-
teracting atoms to its breakdown for strong interactions
is mapped in Fig. 3c for fixed V

g

and varying ⌫

x

, and
Fig. 3d for fixed ⌫

x

and varying V

g

. The latter demon-
strates that the conductance plateau, evident as green
area, shrinks gradually when the interaction strength is
increased from 1/(k

F,res

a) < �2 to 1/(k
F,res

a) < �1.
In this regime the plateau width is well predicted by a
mean-field model of the QPC, which takes into account
intra- and inter-mode attraction in the QPC (Methods
and Extended Data Fig. 2). Furthermore, we observe
little di↵erence between the unitary and the strongly re-
pulsive interactions in the experimentally accessible re-
gion, 0 < 1/k

F,res

a < 0.5, where the reservoirs form a
condensate of molecules.

In the deep superfluid regime (deep purple regions in
Fig. 3c and d), deviations from a linear response to the
bias are observed in agreement with our previous mea-
surements for a QPC in a unitary superfluid (Methods
and Extended Data Fig. 3). There, the values stated for
G

N

represent the ratio of current to the non-infinitesimal
bias applied to initiate the current.

In the Landauer theory, conductance is quantized as a
result of the Pauli exclusion principle, enforcing unit oc-
cupancy of all energetically available modes in the reser-
voirs. As a consequence, the universal conductance quan-
tum sets the upper bound for the conductance of an in-
dividual mode, reached only for perfect ballistic conduc-
tance, adiabatic coupling and zero temperature [11, 12].
Our observation of plateau heights larger than 1/h can
thus only be explained by a breakdown of the Fermi liq-
uid description of the reservoirs [13], which is expected
at the onset of superfluidity.

We now relate our data to the superfluid transition
that, at fixed temperature imposed by the reservoirs, is
crossed by increasing the interaction strength and/or V

g

.
The gas turns superfluid first in the minima of the ef-
fective potential drawn in Fig. 1c, which we define as
the entrance and exit of the QPC (Methods). To obtain
the critical temperature T

c

at those points we use the

state-of-the-art calculation of T
c

/T̃

F

⇣
1/(k̃

F

a)
⌘
[9], with

k

B

T̃

F

= ~2k̃2
F

/(2m) = ~2(6⇡2

n)2/3/(2m) being the Fermi
energy of a homogeneous gas with density n. We estimate
n at the entrance and exit of the QPC from the trap ge-
ometry and the equation of state of the low-temperature,
tunable Fermi gas (Methods). The resulting critical line
is displayed in Fig. 2b and 3c, d. It closely tracks the
maximum of the spin conductance in Fig. 2b, which ap-
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FIG. 3: Particle conductance versus horizontal confinement, gate potential and interaction strength. a, Particle
conductance G

N

as a function of the horizontal confinement frequency ⌫

x

of the QPC, at fixed gate potential V
g

= 0.42µK;
and b, as a function of the gate potential V

g

at fixed confinement frequency ⌫

x

= 23.2kHz, for di↵erent interaction strengths
1/(kF,resa) in the reservoirs. The solid lines are theoretical predictions for 1/(kF,resa) = 2.1 and 1.9 respectively, based on
the Landauer formula of conductance including mean-field attraction (Methods). Each data point represents the mean over 5
measurements and error bars indicate one standard deviation. c, and d, Two-dimensional colour plot of G

N

as a function of
interaction strength 1/(kF,resa) and horizontal confinement (c) or gate potential (d). Both plots contain the cuts of Fig. 3a
and b (grey dotted lines), and an estimation of the local superfluid transition at the QPC exits (black dashed line).

pears in the superfluid regime as expected, as well as the
breakdown of conductance quantization in Fig. 3.

We now focus on the plateau conductances observed
for the di↵erent data sets. Fig. 4 presents conductances
extracted from Fig. 3b for fixed ⌫

x

= 14.5 kHz and
from Fig. 3d for fixed V

g

= 0.64µK, as a function of
T/T

c

. We observe that the particle conductances ob-
tained from varying gate potential or confinement now
coincide within error bars. It demonstrates that T/T

c

is a key control parameter of the transition, although
universal scaling is not expected due to the complex ge-
ometry of the contact. The conductance increase upon
decreasing T/T

c

strongly suggests a superfluid transition.
Simultaneously, the drop of spin conductance manifests
the strong link between pairing and superfluidity.

The regime of non-universal quantization extends far
above the superfluid transition, and is a generic feature
of all data sets. A possible interpretation is the pres-
ence of strong superfluid fluctuations, due to the large
critical region around the superfluid transition [14, 15],
leading to anomalous correlations that slowly decay in

the normal phase. The Luttinger liquid in one dimension
with attractive interactions in the leads provides an ex-
plicit model with large fluctuations, known to have an en-
hanced conductance [13, 16, 17]. Preformed pairs above
the critical temperature [18] could be another possibil-
ity, that would open another bosonic channel for trans-
port with increasing interactions. Evidence for such non-
Fermi liquid behaviour in the BEC-BCS crossover was
found using photoemission spectroscopy [18], in contrast
to results based on the equation of state [19, 20]. Quan-
tized super currents above T

c

could explain the persis-
tence of a plateau even in the superfluid phase [21].

Our findings, covering the attractively interacting
regime, complement the observations made with repul-
sively attracting electrons in solid state QPCs. Future
work could explore the relation between our results and
the known conductance anomalies in electronic quantum
point contacts [22, 23].
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FIG. 2: Spin conductance versus gate potential and

interaction strength. a, Spin conductance G

�

as a func-
tion of the gate potential V

g

for di↵erent interaction strengths
1/(kF,resa) in the reservoirs. Each data point represents the
mean over 9 measurements and error bars indicate one stan-
dard deviation plotted for every third point. Inset: G

�

ob-
tained from a mean-field phenomenological model, reproduc-
ing the non-monotonic behaviour of the experimental data. b,
Two-dimensional color plot of G

�

as a function of 1/(kF,resa),
with cuts of Fig. 2a indicated as grey dotted lines. The
points where G

�

is maximum, obtained from a parabolic fit
along V

g

, are displayed as orange circles for comparison, while
the black dashed line represents the superfluid critical line es-
timated at the entrance and exit regions of the QPC, using
the calculation in [9].

For intermediate interaction strengths �1.8 <

1/k
F,res

a < �0.5, a conductance plateau centered at
⌫

x

⇠ 12.5 kHz remains clearly visible. The height of the
plateau continuously increases from the universal value to
⇠ 4/h for 1/(k

F,res

a) = �0.5. Such non-universal quan-
tization appears also with varying gate potential at fixed
horizontal confinement ⌫

x

= 23.2 kHz, as shown in Fig.
3b. There again, plateaux with conductances higher than
1/h are observed for interaction strengths 1/(k

F,res

a) <
�1.3. As interactions are further increased to the vicin-
ity of the unitary regime (�0.5 < 1/(k

F,res

a) . 0 for

Fig. 3a and c, �1.0 < 1/(k
F,res

a) . 0 for Fig. 3b and
d), no conductance plateaux can be distinguished any
more, and G

N

increases continuously from zero to very
large values. Contrary to variations of the confinement,
variations of the gate potential change the density at the
entrance and exit of the QPC, e↵ecting the disappear-
ance of the plateau at a lower interaction strength. The
full crossover from quantized conductance of weakly in-
teracting atoms to its breakdown for strong interactions
is mapped in Fig. 3c for fixed V

g

and varying ⌫

x

, and
Fig. 3d for fixed ⌫

x

and varying V

g

. The latter demon-
strates that the conductance plateau, evident as green
area, shrinks gradually when the interaction strength is
increased from 1/(k

F,res

a) < �2 to 1/(k
F,res

a) < �1.
In this regime the plateau width is well predicted by a
mean-field model of the QPC, which takes into account
intra- and inter-mode attraction in the QPC (Methods
and Extended Data Fig. 2). Furthermore, we observe
little di↵erence between the unitary and the strongly re-
pulsive interactions in the experimentally accessible re-
gion, 0 < 1/k

F,res

a < 0.5, where the reservoirs form a
condensate of molecules.

In the deep superfluid regime (deep purple regions in
Fig. 3c and d), deviations from a linear response to the
bias are observed in agreement with our previous mea-
surements for a QPC in a unitary superfluid (Methods
and Extended Data Fig. 3). There, the values stated for
G

N

represent the ratio of current to the non-infinitesimal
bias applied to initiate the current.

In the Landauer theory, conductance is quantized as a
result of the Pauli exclusion principle, enforcing unit oc-
cupancy of all energetically available modes in the reser-
voirs. As a consequence, the universal conductance quan-
tum sets the upper bound for the conductance of an in-
dividual mode, reached only for perfect ballistic conduc-
tance, adiabatic coupling and zero temperature [11, 12].
Our observation of plateau heights larger than 1/h can
thus only be explained by a breakdown of the Fermi liq-
uid description of the reservoirs [13], which is expected
at the onset of superfluidity.

We now relate our data to the superfluid transition
that, at fixed temperature imposed by the reservoirs, is
crossed by increasing the interaction strength and/or V

g

.
The gas turns superfluid first in the minima of the ef-
fective potential drawn in Fig. 1c, which we define as
the entrance and exit of the QPC (Methods). To obtain
the critical temperature T

c

at those points we use the

state-of-the-art calculation of T
c
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⇣
1/(k̃

F
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⌘
[9], with

k

B

T̃

F

= ~2k̃2
F

/(2m) = ~2(6⇡2

n)2/3/(2m) being the Fermi
energy of a homogeneous gas with density n. We estimate
n at the entrance and exit of the QPC from the trap ge-
ometry and the equation of state of the low-temperature,
tunable Fermi gas (Methods). The resulting critical line
is displayed in Fig. 2b and 3c, d. It closely tracks the
maximum of the spin conductance in Fig. 2b, which ap-
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periodic lattice and the correct commensurability, i.e., one
pair per site, leads to the opening of a gap in the charge
sector. This turns the system into a correlated insulator,
even for arbitrarily strong attractive interactions. This is in
stark contrast with the mean-field predictions applicable for
higher dimensions.
Studying the effect of a weak periodic structure on the

transport properties of fermions with an attractive contact

interaction would thus address this challenge and at the
same time serve as a probe for the existence of the Luther-
Emery liquid and its properties. This is the task that we
undertake in the present paper, using and expanding the
toolbox of cold-atom experiments [5–8] to investigate
transport in mesoscopic lattices [9,10]. Thanks to our
ability to optically imprint an arbitrary structure on a one-
dimensional wire between two large atom reservoirs [see
Fig. 1(a)], we perform conductancemeasurements through a
weak periodic potential as a function of the chemical
potential. With reservoirs in the normal phase, we observe
the emergence of a band structure as the number of
individually controlled and equidistantly positioned scat-
terers is increased [Fig. 1(b)]. In addition to changing the
density in the wire, the conductor-to-insulator transition is
further characterized by tuning the lattice height and temper-
ature.We then increase the attractive interactions to unitarity
and still observe an insulating phase at commensurate
filling, with a conductance very close to the one observed
in the normal system, indicating a crossover from a band
insulator to a correlated insulator. The persistence of the
insulating behavior even for resonant interactions and
superfluid reservoirs is a strong indication of the existence
of a Luther-Emery liquid pinned on the weak periodic
potential [Fig. 1(c)]. From a more general perspective, our
work extends recently developed methods for conductance
measurements with cold atoms [11–15] to unexplored
regimes of strongly correlated insulators.
The plan of the paper is as follows. After detailing the

experimental setup in Sec. II, we present measurements of
the conductance as a function of the chemical potential in the
wire and the number of sites in the lattice in Sec. III.We then
study the conductance of a fixed-length lattice as a function
of lattice height and temperature in Sec. IV, showing the
boundaries between band conductor and band insulator. In
Sec. V, we measure the conductance as a function of
chemical potential for various interaction strengths and
compare the outcome with the results of a Tomonaga-
Luttinger liquid model. Finally, we present our conclusions
in Sec. VI. Technical details can be found in theAppendixes.

II. SETUP

The structure central to our experimental setup is a
quantum wire smoothly connected to two reservoirs acting
as a source and a drain [16], typically containing altogether
Nat ¼ 9 × 104 6Li atoms in each of the lowest and third
lowest hyperfine states [Fig. 1(a)]. The wire is created by
intersecting the dark planes of two orthogonal, repulsive,
TEM01-like laser beams. The vertically [horizontally]
propagating beam has a Gaussian envelope with a 1=e2

waist of 9.1ð3Þ μm [30ð1Þ μm]. They confine atoms to a
quasi-one-dimensional geometry with transverse frequen-
cies ωx ¼ 2π × 22ð9Þ kHz and ωz ¼ 2π × 13ð5Þ kHz,
respectively, at the center. We tune the local chemical
potential in and around the wire using an attractive

x
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FIG. 1. Concept and experimental realization. (a) Sketch of a
one-dimensional lattice projected onto a quantum wire that
connects two macroscopic atom reservoirs. The lattice beam
here is made up of six repulsive, holographically shaped barriers
that are imaged into the atomic plane with a high-resolution
microscope. The sites are spaced by 0.97 μm. An attractive gate
beam allows us to locally increase the chemical potential by an
energy Vg. (b) Real part of the wave function ψðyÞ and trans-
mission T for a single atom incoming on a one-dimensional
lattice of barriers for various energies E. T ðEÞ is zero for energies
below the lattice zero-point energy (green arrow), and features a
conduction band (yellow) and a band gap (purple). The nonzero
transmission in the gap as well as the modulation in the
conduction band originate from the finite size. (c) Possible
insulating and conducting states for two-component fermions
in a one-dimensional lattice. The atoms are delocalized at
incommensurate densities and become localized at lattice fillings
close to two particles per site. For strong attractive interactions,
the conductor is made of extended pairs, and the insulator is made
of pairs pinned to lattice sites. For noninteracting particles, the
system forms a band conductor and a band insulator for
incommensurate and commensurate fillings, respectively.

MARTIN LEBRAT et al. PHYS. REV. X 8, 011053 (2018)

011053-2
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ofGwith number of barriers is well fitted by an exponential
decay. We first use these fits to estimate the initial variation
of conductance with length, yielding dG=dN at N ¼ 1 as a
function of Vg [Fig. 2(d)]. A sharp threshold at Vg;c ¼
0.85ð2Þ μK is observed: below Vg;c, conductance is unaf-
fected by extending the lattice beyond a single barrier—a
regime that can be empirically termed as “ballistic.” On the
contrary, we measure above Vg;c a conductance decay of
1=h per additional lattice site—a “nonballistic” regime.
The fit also provides a decay coefficient κ which, for

single particles with energies inside the band gap, should
reflect the nonzero imaginary part of their Bloch wave
vector in an infinite lattice. We present in Fig. 2(e) the
associated length scale κ−1 as a function of Vg. Inside the
band gap for Vg ≈ 1.15 μK (white area), it is about two
lattice periods d and is indeed comparable to the minimum
decay length 1.4d that is theoretically expected for Bloch
waves. For gate potentials Vg < 1.05 μK inside the band,
the precise evolution of conductance with number of
barriers greatly depends on the uniformity of the potential,
as observed with numerical simulations in Appendix C. We
therefore do not give any specific meaning to the minimum
measured at Vg ≈ Vg;c. For Vg > 1.3 μK above the gap, the
second transverse mode of the wire then becomes

populated and conductance cannot be interpreted as the
transmission of a one-dimensional lattice.
The decay length is overall bounded by the length of the

quantum wire, set by the shorter confining beam with a
1=e2 waist of 9 μm, which is about 9 lattice periods d. It is
below 6d for most values of Vg, which motivates the use of
a finite-size lattice made of 6 barriers to investigate the
properties of the infinite system in what follows.

IV. CONDUCTOR-INSULATOR TRANSITION

We now map out the conductance of a six-barrier lattice
as a function of both chemical potential and lattice depth,
demonstrating the emergence of a band structure in a
different way. The full map is presented in Fig. 3. For low
attractive gate potential Vg, the lattice is empty and the
conductance is zero. Upon increasing Vg, the lattice band is
visible as a first triangular lobe of nonzero conductance. Its
bandwidth decreases from 0.4 μK to less than 0.1 μK by
increasing the lattice height Vl from 0.2 to 1.0 μK, and the
band is shifted upwards as a result of a larger lattice zero-
point energy. A second triangular lobe of even larger
conductance, associated with additional transport in the
second transverse mode of the wire, is visible above the
band. Both lobes are separated by a gap that increases with

FIG. 2. Building up a lattice site by site. (a) Conductance G as a function of attractive gate potential Vg without scattering structure,
with one barrier, and with a lattice of 2–9 barriers. The potential height of the central barrier is set to Vl ¼ 0.40ð2Þ μK ¼ 0.94ð5ÞEr,
where Er is the lattice recoil energy. The first and second bands of an infinite lattice of the same height are indicated by gray areas,
separated by a gap which coincides with the location of the conductance minimum for 9 barriers. Right-hand panels: Actual quasi-one-
dimensional potentials for 1, 2, 4, and 9 barriers. (b) Conductance GLB obtained from noninteracting Landauer-Büttiker theory at a
temperature T ¼ 67 nK and a typical chemical potential difference Δμ ¼ 0.1 μK between the reservoirs. (c) Conductance G as a
function of number of barriers N for four gate potentials Vg ¼ 0.55, 0.73, 0.95, and 1.11 μK (light to dark blue), together with
exponential fits GðNÞ ¼ ðG1 − G∞Þ exp½−κðN − 1Þ% þG∞. (d) Fitted derivative of the conductance for one lattice site G0ð1Þ. A sharp
drop is located at Vg;c ¼ 0.85ð2Þ μK using a sigmoid fit, hinting that transport is becoming nonballistic. (e) Characteristic length scale
κ−1 associated with the exponential decay and normalized by the lattice spacing d. It reflects the inverse imaginary part of the wave
vector of a Bloch wave in the lattice gap (white area).
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ofGwith number of barriers is well fitted by an exponential
decay. We first use these fits to estimate the initial variation
of conductance with length, yielding dG=dN at N ¼ 1 as a
function of Vg [Fig. 2(d)]. A sharp threshold at Vg;c ¼
0.85ð2Þ μK is observed: below Vg;c, conductance is unaf-
fected by extending the lattice beyond a single barrier—a
regime that can be empirically termed as “ballistic.” On the
contrary, we measure above Vg;c a conductance decay of
1=h per additional lattice site—a “nonballistic” regime.
The fit also provides a decay coefficient κ which, for

single particles with energies inside the band gap, should
reflect the nonzero imaginary part of their Bloch wave
vector in an infinite lattice. We present in Fig. 2(e) the
associated length scale κ−1 as a function of Vg. Inside the
band gap for Vg ≈ 1.15 μK (white area), it is about two
lattice periods d and is indeed comparable to the minimum
decay length 1.4d that is theoretically expected for Bloch
waves. For gate potentials Vg < 1.05 μK inside the band,
the precise evolution of conductance with number of
barriers greatly depends on the uniformity of the potential,
as observed with numerical simulations in Appendix C. We
therefore do not give any specific meaning to the minimum
measured at Vg ≈ Vg;c. For Vg > 1.3 μK above the gap, the
second transverse mode of the wire then becomes

populated and conductance cannot be interpreted as the
transmission of a one-dimensional lattice.
The decay length is overall bounded by the length of the

quantum wire, set by the shorter confining beam with a
1=e2 waist of 9 μm, which is about 9 lattice periods d. It is
below 6d for most values of Vg, which motivates the use of
a finite-size lattice made of 6 barriers to investigate the
properties of the infinite system in what follows.

IV. CONDUCTOR-INSULATOR TRANSITION

We now map out the conductance of a six-barrier lattice
as a function of both chemical potential and lattice depth,
demonstrating the emergence of a band structure in a
different way. The full map is presented in Fig. 3. For low
attractive gate potential Vg, the lattice is empty and the
conductance is zero. Upon increasing Vg, the lattice band is
visible as a first triangular lobe of nonzero conductance. Its
bandwidth decreases from 0.4 μK to less than 0.1 μK by
increasing the lattice height Vl from 0.2 to 1.0 μK, and the
band is shifted upwards as a result of a larger lattice zero-
point energy. A second triangular lobe of even larger
conductance, associated with additional transport in the
second transverse mode of the wire, is visible above the
band. Both lobes are separated by a gap that increases with

FIG. 2. Building up a lattice site by site. (a) Conductance G as a function of attractive gate potential Vg without scattering structure,
with one barrier, and with a lattice of 2–9 barriers. The potential height of the central barrier is set to Vl ¼ 0.40ð2Þ μK ¼ 0.94ð5ÞEr,
where Er is the lattice recoil energy. The first and second bands of an infinite lattice of the same height are indicated by gray areas,
separated by a gap which coincides with the location of the conductance minimum for 9 barriers. Right-hand panels: Actual quasi-one-
dimensional potentials for 1, 2, 4, and 9 barriers. (b) Conductance GLB obtained from noninteracting Landauer-Büttiker theory at a
temperature T ¼ 67 nK and a typical chemical potential difference Δμ ¼ 0.1 μK between the reservoirs. (c) Conductance G as a
function of number of barriers N for four gate potentials Vg ¼ 0.55, 0.73, 0.95, and 1.11 μK (light to dark blue), together with
exponential fits GðNÞ ¼ ðG1 − G∞Þ exp½−κðN − 1Þ% þG∞. (d) Fitted derivative of the conductance for one lattice site G0ð1Þ. A sharp
drop is located at Vg;c ¼ 0.85ð2Þ μK using a sigmoid fit, hinting that transport is becoming nonballistic. (e) Characteristic length scale
κ−1 associated with the exponential decay and normalized by the lattice spacing d. It reflects the inverse imaginary part of the wave
vector of a Bloch wave in the lattice gap (white area).
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ofGwith number of barriers is well fitted by an exponential
decay. We first use these fits to estimate the initial variation
of conductance with length, yielding dG=dN at N ¼ 1 as a
function of Vg [Fig. 2(d)]. A sharp threshold at Vg;c ¼
0.85ð2Þ μK is observed: below Vg;c, conductance is unaf-
fected by extending the lattice beyond a single barrier—a
regime that can be empirically termed as “ballistic.” On the
contrary, we measure above Vg;c a conductance decay of
1=h per additional lattice site—a “nonballistic” regime.
The fit also provides a decay coefficient κ which, for

single particles with energies inside the band gap, should
reflect the nonzero imaginary part of their Bloch wave
vector in an infinite lattice. We present in Fig. 2(e) the
associated length scale κ−1 as a function of Vg. Inside the
band gap for Vg ≈ 1.15 μK (white area), it is about two
lattice periods d and is indeed comparable to the minimum
decay length 1.4d that is theoretically expected for Bloch
waves. For gate potentials Vg < 1.05 μK inside the band,
the precise evolution of conductance with number of
barriers greatly depends on the uniformity of the potential,
as observed with numerical simulations in Appendix C. We
therefore do not give any specific meaning to the minimum
measured at Vg ≈ Vg;c. For Vg > 1.3 μK above the gap, the
second transverse mode of the wire then becomes

populated and conductance cannot be interpreted as the
transmission of a one-dimensional lattice.
The decay length is overall bounded by the length of the

quantum wire, set by the shorter confining beam with a
1=e2 waist of 9 μm, which is about 9 lattice periods d. It is
below 6d for most values of Vg, which motivates the use of
a finite-size lattice made of 6 barriers to investigate the
properties of the infinite system in what follows.

IV. CONDUCTOR-INSULATOR TRANSITION

We now map out the conductance of a six-barrier lattice
as a function of both chemical potential and lattice depth,
demonstrating the emergence of a band structure in a
different way. The full map is presented in Fig. 3. For low
attractive gate potential Vg, the lattice is empty and the
conductance is zero. Upon increasing Vg, the lattice band is
visible as a first triangular lobe of nonzero conductance. Its
bandwidth decreases from 0.4 μK to less than 0.1 μK by
increasing the lattice height Vl from 0.2 to 1.0 μK, and the
band is shifted upwards as a result of a larger lattice zero-
point energy. A second triangular lobe of even larger
conductance, associated with additional transport in the
second transverse mode of the wire, is visible above the
band. Both lobes are separated by a gap that increases with

FIG. 2. Building up a lattice site by site. (a) Conductance G as a function of attractive gate potential Vg without scattering structure,
with one barrier, and with a lattice of 2–9 barriers. The potential height of the central barrier is set to Vl ¼ 0.40ð2Þ μK ¼ 0.94ð5ÞEr,
where Er is the lattice recoil energy. The first and second bands of an infinite lattice of the same height are indicated by gray areas,
separated by a gap which coincides with the location of the conductance minimum for 9 barriers. Right-hand panels: Actual quasi-one-
dimensional potentials for 1, 2, 4, and 9 barriers. (b) Conductance GLB obtained from noninteracting Landauer-Büttiker theory at a
temperature T ¼ 67 nK and a typical chemical potential difference Δμ ¼ 0.1 μK between the reservoirs. (c) Conductance G as a
function of number of barriers N for four gate potentials Vg ¼ 0.55, 0.73, 0.95, and 1.11 μK (light to dark blue), together with
exponential fits GðNÞ ¼ ðG1 − G∞Þ exp½−κðN − 1Þ% þG∞. (d) Fitted derivative of the conductance for one lattice site G0ð1Þ. A sharp
drop is located at Vg;c ¼ 0.85ð2Þ μK using a sigmoid fit, hinting that transport is becoming nonballistic. (e) Characteristic length scale
κ−1 associated with the exponential decay and normalized by the lattice spacing d. It reflects the inverse imaginary part of the wave
vector of a Bloch wave in the lattice gap (white area).

MARTIN LEBRAT et al. PHYS. REV. X 8, 011053 (2018)

011053-4



From weak to strong interactions

SPICE workshop - 2018 
Jean-Philippe Brantut

5

FIG. 3. Opening a gap by increasing the lattice height.
Experimental conductance through a 6-scatterer lattice as a
function of lattice height V

l

and gate potential V
g

(normalized
by the recoil energy E

r

= 0.42 K in the right and top axes).
Two conduction regions (tapered zones in light blue and yel-
low) are separated by an insulating region that broadens upon
increasing the lattice height. Inset: theoretical conductance
as a function of lattice height V

l

and mean chemical poten-
tial in the reservoirs µres at a temperature of 60 nK through
a realistic 6-scatterer lattice.

governed by the reservoir-induced proximity e↵ect. The
wire with the periodic potential is then described by a
sine-Gordon equation, for which the interaction deter-
mine the parameters of the model. We compute these
parameters (Appendix H) as a function of the interac-
tion.

We evaluate the resistance using numerical simulations
based on the solution of the classical sine-Gordon equa-
tion in a noisy thermal background. This description
is only approximately able to take account for the de-
tailed complexity of the lattice potential shape and ne-
glects the change of interactions between the wire and
the reservoirs. It thus gives only a qualitative descrip-
tion (see supplementary material). We expect however
that it does correctly capture the main e↵ects of the in-
teractions.

The results are in good qualitative agreement with the
experiment (inset in Fig. 5) and correctly predict the for-

FIG. 4. Smearing conductance by thermal decoher-
ence. Experimental conductance G through a 6-scatterer lat-
tice of height V

l

= 0.46(2) K for three di↵erent temperatures
as a function of gate potential V

g

, shifted by the reservoir
chemical potential µres to account for di↵erent optical trap
frequencies. Inset: Variation of conductance with tempera-
ture obtained from a linear fit to temperatures T = 63, 82, 97
and 113 nK. The sign of dG/dT changes across the critical
value V

g

+ µres = 1.42 K.

FIG. 5. Robustness of the gap with increasing interac-
tions. Conductance G through a 6-scatterer lattice of height
V

l

= 0.46(2) K as a function of gate potential V
g

for di↵erent
scattering lengths ranging from moderately attractive (BCS,
yellow) to resonant interactions (unitary, black). Inset: pre-
dictions of the Tomonaga-Luttinger model (T ⇠ 110 nK) for
the dip in conductance due to formation of the band insulator,
the axes are the same as in the main panel.

definitions. In the following, we extend the use of the latter
definition to stronger interactions and look for the presence
of a conductance minimum as a signature of an insulat-
ing state.

V. INTERACTIONS

Interferences, giving rise to the band structure, are
essentially single-particle properties. The control over
interactions in our system offers a unique opportunity to
explore the interplay of interferences with interactions. We
now investigate their effect on transport by increasing
attractive interactions up to the unitary limit. We tune
them to scattering lengths a < −7.5 × 103a0 so that the
region close to the wire ends is always superfluid for
attractive gate potentials Vg > 0.7 μK, contrary to the
measurements shown in Figs. 2–4. As in the previous
sections, conductance is obtained assuming a linear relation
between current and chemical potential bias, which here is
small compared to all other energy scales except temper-
ature (Appendix B). This assumption is further justified by
the absence of nonlinearities without lattice at moderate
interactions [14]. As the currents measured through the
lattice are low, we could not see any conclusive deviation
from this hypothesis within our experimental error.
The nonmonotonic behavior of the conductance

versus gate potential is very robust against interactions,
as shown in Fig. 5 for a six-barrier lattice of height
Vl ¼ 0.46ð2Þ μK ¼ 1.09ð5ÞEr. The contrast of the gap
varies very little as interactions are increased up to unitarity,
with a local conductance minimum (maximum) of about
0.3=h (0.9=h). The positions of the local extrema are
shifted towards lower Vg as attractive interactions are
increased, which is consistent with an increase of the atom
density at the center of the cloud when approaching
unitarity. The persistence of local extrema is very surprising
considering the dramatic consequences of attractive inter-
actions on transport in an atomic quantum wire, both
experimentally observed and theoretically expected in
the absence of a lattice [14,22–24].
The way the interactions affect transport in a periodic

lattice depends on dimensionality and on whether inter-
actions are attractive or repulsive. In dimensions greater or
equal to two, repulsive interactions usually lead to a Fermi
liquid state [25], very similar to noninteracting particles up
to the redefinition of a few parameters such as mass or
compressibility. For moderate lattices, the band behavior is
thus essentially unaffected. New effects, such as the
existence of a Mott insulator for commensurate fillings
of one particle per site, can thus occur only for large lattices
in the repulsive case. Attractive interactions, on the other
hand, lead to a drastic change of the excitations and turn a
fermionic system into a superconductor, a collective state
for which the flow of particles is impervious to obstacles
such as disorder or a weak lattice. As a result, the effects of
the lattice are reduced and even at a commensurate filling

the band gap disappears when it is smaller than the
superconducting gap in the absence of a lattice [3].
This competition between a band insulator and super-

conductivity has, however, a very different outcome in one
dimension where the effects of interactions are drastically
enhanced. These effects are captured at low energy by the
Tomonaga-Luttinger liquid theory [2], in which no indi-
vidual quasiparticles similar to free particles exist, and
where excitations of the many-body state separate into
collective charge and spin excitations. This has several
consequences on the ground state of an interacting quantum
system. For bosons, in marked contrast to the higher-
dimensional counterparts, even an infinitesimal lattice is
able to lead to a Mott state for repulsive interactions at
commensurability of one boson per site [26], provided the
repulsion between the bosons exceeds a certain threshold.
This existence of this critical value and the corresponding
phase transition has been demonstrated with cold atoms
[27–29]. For fermions, repulsive interactions lead to a
Tomonaga-Luttinger liquid state [2] in which the spin
sector has dominant antiferromagnetic tendencies. The
charge sector is fully decoupled, spin-charge separation
being one of the remarkable properties of one-dimensional
interacting systems. In a one-dimensional periodic

FIG. 5. Robustness of the gap with increasing interactions.
Conductance G through a six-barrier lattice of height Vl ¼
0.46ð2Þ μK as a function of gate potential Vg for different
scattering lengths ranging from moderately attractive (yellow)
to resonant interactions (dark purple). For a one-dimensional
density of two particles per site, where the conductance
minimum is observed, the Gaudin-Yang parameter at the wire
center is equal to −1.7, −1.9, −2.3, −2.6, and −3.0 for the five
values of the scattering length ranging from −7.5 × 103a0 to
−∞; it increases upon decreasing density or equivalently gate
potential (Appendix D). Inset: Conductance GTL obtained from
Tomonaga-Luttinger theory around the conductance dip at
temperature T ¼ 150 nK.
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FIG. 3. Opening a gap by increasing the lattice height.
Experimental conductance through a 6-scatterer lattice as a
function of lattice height V

l

and gate potential V
g

(normalized
by the recoil energy E

r

= 0.42 K in the right and top axes).
Two conduction regions (tapered zones in light blue and yel-
low) are separated by an insulating region that broadens upon
increasing the lattice height. Inset: theoretical conductance
as a function of lattice height V

l

and mean chemical poten-
tial in the reservoirs µres at a temperature of 60 nK through
a realistic 6-scatterer lattice.

governed by the reservoir-induced proximity e↵ect. The
wire with the periodic potential is then described by a
sine-Gordon equation, for which the interaction deter-
mine the parameters of the model. We compute these
parameters (Appendix H) as a function of the interac-
tion.

We evaluate the resistance using numerical simulations
based on the solution of the classical sine-Gordon equa-
tion in a noisy thermal background. This description
is only approximately able to take account for the de-
tailed complexity of the lattice potential shape and ne-
glects the change of interactions between the wire and
the reservoirs. It thus gives only a qualitative descrip-
tion (see supplementary material). We expect however
that it does correctly capture the main e↵ects of the in-
teractions.

The results are in good qualitative agreement with the
experiment (inset in Fig. 5) and correctly predict the for-

FIG. 4. Smearing conductance by thermal decoher-
ence. Experimental conductance G through a 6-scatterer lat-
tice of height V

l

= 0.46(2) K for three di↵erent temperatures
as a function of gate potential V

g

, shifted by the reservoir
chemical potential µres to account for di↵erent optical trap
frequencies. Inset: Variation of conductance with tempera-
ture obtained from a linear fit to temperatures T = 63, 82, 97
and 113 nK. The sign of dG/dT changes across the critical
value V

g

+ µres = 1.42 K.

FIG. 5. Robustness of the gap with increasing interac-
tions. Conductance G through a 6-scatterer lattice of height
V

l

= 0.46(2) K as a function of gate potential V
g

for di↵erent
scattering lengths ranging from moderately attractive (BCS,
yellow) to resonant interactions (unitary, black). Inset: pre-
dictions of the Tomonaga-Luttinger model (T ⇠ 110 nK) for
the dip in conductance due to formation of the band insulator,
the axes are the same as in the main panel.
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Gaudin-Yang Hamiltonian [27, 28]
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where y
i

is the position of the i-th atom in the wire and
g
1

is the strength of the short-range interaction. The
influence of the optical lattice is taken into account by

H
lattice

=

Z
dy V (y)⇢(y), (3)

where V (y) is the potential of the lattice and ⇢(y) is the
total local density of fermions.

We proceed by treating the experimentally relevant
low-energy degrees of freedom of the Gaudin-Yang model
(2) with the Tomonaga-Luttinger liquid theory [21, 29].
This provides the description of the gap in the spin sector,
and the transformation to the Luther-Emery liquid made
of bound pairs of finite extent, strongly repelling each
other as a result of the exclusion principle between their
fermionic constituents. The resulting system is described
by a sine-Gordon equation, whose parameters can be ob-
tained as a function of the strength of the short-range
interaction (Appendix D).

We then compute the transport properties of the sys-
tem by attaching this one-dimensional system to two
reservoirs. The choice of a one-dimensional model is jus-
tified here by the fact that the 9 µm-wire is longer than
the superfluid coherence length ~v

F

/k
B

T ⇡ 3 µm in the
reservoirs, where v

F

is the Fermi velocity. This situation
is di↵erent from previous works with a short quantum
point contact [3] where the physics is governed by the
reservoir-induced proximity e↵ect. We neglect the con-
tact resistance compared to the resistance of the scatter-
ing potential in the wire, and use the approximation of
one-dimensional leads [30].

We evaluate the conductance by numerically solving
the sine-Gordon equation mentioned above in a noisy
thermal background (Appendix E). The results, shown
as inset of Fig. 5, are in good qualitative agreement with
the experiment and correctly predict a conductance mini-
mum compatible with the formation of an insulator. This
occurs at lattice filling of two fermions per site, which can
be translated into gate potentials V

g

⇡ 0.8 µK using an
approximate description of the wire potential. A better
quantitative agreement for the value of the conductance
is found by increasing the e↵ective temperatures used in
the simulations (110 nK in the inset of Fig. 5, compared
to about 70 nK in the experiment). This discrepancy may
stem from neglecting the influence of the reservoirs and
from taking into account only classical fluctuations of the
bosonized fields.

The robustness of the insulating state even at uni-
tarity provides strong indication that we indeed realize
the Luther-Emery state inside the wire. An alternative
way to understand the Luther-Emery liquid is to con-
sider a one-dimensional theory where the elementary con-
stituents are not the fermionic atoms, but instead weakly-

FIG. 5. Robustness of the gap with increasing interac-
tions. Conductance G through a 6-barrier lattice of height
V

l

= 0.46(2) µK as a function of gate potential V

g

for dif-
ferent scattering lengths ranging from moderately attractive
(yellow) to resonant interactions (dark purple). For a one-
dimensional density of two particles per site, where the con-
ductance minimum is observed, the Gaudin-Yang parameter
at the wire center is equal to �1.7,�1.9,�2.3,�2.6 and �3.0
for the five values of the scattering ranging from �7.5·103a0 to
�1; it increases upon decreasing density or equivalently gate
potential (Appendix D). Inset: predictions of the Tomonaga-
Luttinger model (T ⇡ 110 nK) around the conductance dip.

bound bosonic pairs with an e↵ective finite-range repul-
sion (Appendix F). These pairs form a so-called super-
Tonks-Girardeau gas (STG). The insulating state can be
identified with a Mott-type insulator of bosons [21, 29].
We emphasize that in contrast to previous works, where
STG-gases were theoretically predicted [31] and experi-
mentally realized [32] as a highly-excited and strongly-
correlated metastable gas-like state of attractive bosons,
in our case the STG phase is realized with spin-half
fermions [33]. The finite size of the pairs, which is a key
ingredient to the finite-range repulsion, allows to obtain
the essential properties of the STG-gas as a stable ground
state. This demonstrates the potential of our fermionic
setup to simulate novel one-dimensional bosonic phases
as well.

VI. CONCLUSIONS

In this work, we demonstrated local control of the po-
tential landscape in a ballistic quantum wire by project-
ing optical barriers varying on distances of the order of
the Fermi wavelength. We were thus able to build a one-
dimensional lattice one site at a time and to explore its
transport properties. Our study shows that conductance

definitions. In the following, we extend the use of the latter
definition to stronger interactions and look for the presence
of a conductance minimum as a signature of an insulat-
ing state.

V. INTERACTIONS

Interferences, giving rise to the band structure, are
essentially single-particle properties. The control over
interactions in our system offers a unique opportunity to
explore the interplay of interferences with interactions. We
now investigate their effect on transport by increasing
attractive interactions up to the unitary limit. We tune
them to scattering lengths a < −7.5 × 103a0 so that the
region close to the wire ends is always superfluid for
attractive gate potentials Vg > 0.7 μK, contrary to the
measurements shown in Figs. 2–4. As in the previous
sections, conductance is obtained assuming a linear relation
between current and chemical potential bias, which here is
small compared to all other energy scales except temper-
ature (Appendix B). This assumption is further justified by
the absence of nonlinearities without lattice at moderate
interactions [14]. As the currents measured through the
lattice are low, we could not see any conclusive deviation
from this hypothesis within our experimental error.
The nonmonotonic behavior of the conductance

versus gate potential is very robust against interactions,
as shown in Fig. 5 for a six-barrier lattice of height
Vl ¼ 0.46ð2Þ μK ¼ 1.09ð5ÞEr. The contrast of the gap
varies very little as interactions are increased up to unitarity,
with a local conductance minimum (maximum) of about
0.3=h (0.9=h). The positions of the local extrema are
shifted towards lower Vg as attractive interactions are
increased, which is consistent with an increase of the atom
density at the center of the cloud when approaching
unitarity. The persistence of local extrema is very surprising
considering the dramatic consequences of attractive inter-
actions on transport in an atomic quantum wire, both
experimentally observed and theoretically expected in
the absence of a lattice [14,22–24].
The way the interactions affect transport in a periodic

lattice depends on dimensionality and on whether inter-
actions are attractive or repulsive. In dimensions greater or
equal to two, repulsive interactions usually lead to a Fermi
liquid state [25], very similar to noninteracting particles up
to the redefinition of a few parameters such as mass or
compressibility. For moderate lattices, the band behavior is
thus essentially unaffected. New effects, such as the
existence of a Mott insulator for commensurate fillings
of one particle per site, can thus occur only for large lattices
in the repulsive case. Attractive interactions, on the other
hand, lead to a drastic change of the excitations and turn a
fermionic system into a superconductor, a collective state
for which the flow of particles is impervious to obstacles
such as disorder or a weak lattice. As a result, the effects of
the lattice are reduced and even at a commensurate filling

the band gap disappears when it is smaller than the
superconducting gap in the absence of a lattice [3].
This competition between a band insulator and super-

conductivity has, however, a very different outcome in one
dimension where the effects of interactions are drastically
enhanced. These effects are captured at low energy by the
Tomonaga-Luttinger liquid theory [2], in which no indi-
vidual quasiparticles similar to free particles exist, and
where excitations of the many-body state separate into
collective charge and spin excitations. This has several
consequences on the ground state of an interacting quantum
system. For bosons, in marked contrast to the higher-
dimensional counterparts, even an infinitesimal lattice is
able to lead to a Mott state for repulsive interactions at
commensurability of one boson per site [26], provided the
repulsion between the bosons exceeds a certain threshold.
This existence of this critical value and the corresponding
phase transition has been demonstrated with cold atoms
[27–29]. For fermions, repulsive interactions lead to a
Tomonaga-Luttinger liquid state [2] in which the spin
sector has dominant antiferromagnetic tendencies. The
charge sector is fully decoupled, spin-charge separation
being one of the remarkable properties of one-dimensional
interacting systems. In a one-dimensional periodic

FIG. 5. Robustness of the gap with increasing interactions.
Conductance G through a six-barrier lattice of height Vl ¼
0.46ð2Þ μK as a function of gate potential Vg for different
scattering lengths ranging from moderately attractive (yellow)
to resonant interactions (dark purple). For a one-dimensional
density of two particles per site, where the conductance
minimum is observed, the Gaudin-Yang parameter at the wire
center is equal to −1.7, −1.9, −2.3, −2.6, and −3.0 for the five
values of the scattering length ranging from −7.5 × 103a0 to
−∞; it increases upon decreasing density or equivalently gate
potential (Appendix D). Inset: Conductance GTL obtained from
Tomonaga-Luttinger theory around the conductance dip at
temperature T ¼ 150 nK.
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! Observing transport implies sample-to-sample comparison
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definitions. In the following, we extend the use of the latter
definition to stronger interactions and look for the presence
of a conductance minimum as a signature of an insulat-
ing state.

V. INTERACTIONS

Interferences, giving rise to the band structure, are
essentially single-particle properties. The control over
interactions in our system offers a unique opportunity to
explore the interplay of interferences with interactions. We
now investigate their effect on transport by increasing
attractive interactions up to the unitary limit. We tune
them to scattering lengths a < −7.5 × 103a0 so that the
region close to the wire ends is always superfluid for
attractive gate potentials Vg > 0.7 μK, contrary to the
measurements shown in Figs. 2–4. As in the previous
sections, conductance is obtained assuming a linear relation
between current and chemical potential bias, which here is
small compared to all other energy scales except temper-
ature (Appendix B). This assumption is further justified by
the absence of nonlinearities without lattice at moderate
interactions [14]. As the currents measured through the
lattice are low, we could not see any conclusive deviation
from this hypothesis within our experimental error.
The nonmonotonic behavior of the conductance

versus gate potential is very robust against interactions,
as shown in Fig. 5 for a six-barrier lattice of height
Vl ¼ 0.46ð2Þ μK ¼ 1.09ð5ÞEr. The contrast of the gap
varies very little as interactions are increased up to unitarity,
with a local conductance minimum (maximum) of about
0.3=h (0.9=h). The positions of the local extrema are
shifted towards lower Vg as attractive interactions are
increased, which is consistent with an increase of the atom
density at the center of the cloud when approaching
unitarity. The persistence of local extrema is very surprising
considering the dramatic consequences of attractive inter-
actions on transport in an atomic quantum wire, both
experimentally observed and theoretically expected in
the absence of a lattice [14,22–24].
The way the interactions affect transport in a periodic

lattice depends on dimensionality and on whether inter-
actions are attractive or repulsive. In dimensions greater or
equal to two, repulsive interactions usually lead to a Fermi
liquid state [25], very similar to noninteracting particles up
to the redefinition of a few parameters such as mass or
compressibility. For moderate lattices, the band behavior is
thus essentially unaffected. New effects, such as the
existence of a Mott insulator for commensurate fillings
of one particle per site, can thus occur only for large lattices
in the repulsive case. Attractive interactions, on the other
hand, lead to a drastic change of the excitations and turn a
fermionic system into a superconductor, a collective state
for which the flow of particles is impervious to obstacles
such as disorder or a weak lattice. As a result, the effects of
the lattice are reduced and even at a commensurate filling

the band gap disappears when it is smaller than the
superconducting gap in the absence of a lattice [3].
This competition between a band insulator and super-

conductivity has, however, a very different outcome in one
dimension where the effects of interactions are drastically
enhanced. These effects are captured at low energy by the
Tomonaga-Luttinger liquid theory [2], in which no indi-
vidual quasiparticles similar to free particles exist, and
where excitations of the many-body state separate into
collective charge and spin excitations. This has several
consequences on the ground state of an interacting quantum
system. For bosons, in marked contrast to the higher-
dimensional counterparts, even an infinitesimal lattice is
able to lead to a Mott state for repulsive interactions at
commensurability of one boson per site [26], provided the
repulsion between the bosons exceeds a certain threshold.
This existence of this critical value and the corresponding
phase transition has been demonstrated with cold atoms
[27–29]. For fermions, repulsive interactions lead to a
Tomonaga-Luttinger liquid state [2] in which the spin
sector has dominant antiferromagnetic tendencies. The
charge sector is fully decoupled, spin-charge separation
being one of the remarkable properties of one-dimensional
interacting systems. In a one-dimensional periodic

FIG. 5. Robustness of the gap with increasing interactions.
Conductance G through a six-barrier lattice of height Vl ¼
0.46ð2Þ μK as a function of gate potential Vg for different
scattering lengths ranging from moderately attractive (yellow)
to resonant interactions (dark purple). For a one-dimensional
density of two particles per site, where the conductance
minimum is observed, the Gaudin-Yang parameter at the wire
center is equal to −1.7, −1.9, −2.3, −2.6, and −3.0 for the five
values of the scattering length ranging from −7.5 × 103a0 to
−∞; it increases upon decreasing density or equivalently gate
potential (Appendix D). Inset: Conductance GTL obtained from
Tomonaga-Luttinger theory around the conductance dip at
temperature T ¼ 150 nK.
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Transport measurements

! Destructive measurements of the total atom number 

! Observing transport implies sample-to-sample comparison 

! Total number of atoms : 105 
! Chemical potential : 10 kHz 
! Chemical potential bias : 1 kHz             I = 1000 at.s-1
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Signal is about 1% for a fully open point contact 



‘Ideal’ transport measurement
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Watch the particles entering and leaving the reservoirs in real time



‘Ideal’ transport measurement

! Quantum-non demolition and 
continuous measurement of the 
number of atoms in a reservoir
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1. Is it possible ? 
2.Where is the noise floor ?

S. Uchino, M. Ueda and JPB,  
arXiv 1802.04024 



Quantum non-demolition measurement

! Energy absorption rate due to measurement
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For low enough bandwidth:  
QND regime reached 
regardless of interactions

S. Uchino, M. Ueda and JPB,  
arXiv 1802.04024 



Quantum limit to current measurement

! Measuring N induces back action on the conjugate variable
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Experimental setup
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