MEASURING HEAT CURRENT AND NOISE IN QUANTUM CIRCUITS

<u>Bayan Karimi,</u> Jukka P. Pekola

QTF Centre of Excellence, Department of Applied Physics, Aalto University, Finland

Fredrik Brange, Peter Samuelsson

Department of Physics and NanoLund, Lund University, Sweden

How to measure heat current?

Measurement of temperature by a fast thermometer

How to measure heat current?

Quantum Otto refrigerator¹

¹B. Karimi and J. P. Pekola, Otto refrigerator based on a superconducting qubit: classical and quantum performance, Phys. Rev. B 94, 184503 (2016). *Editor's suggestion*

11.5.2018

System and Hamiltonian

C

 L_1

M

R_H

The Hamiltonian of the whole set-up

The Hamiltonian of the qubit

$$H_Q = -E_0(\Delta\sigma_x + q\sigma_z)$$

 $H = H_{R_H} + H_{R_C} + H_{C_H} + H_{C_C} + H_Q$

The transition rates between the two levels

$$\Gamma_{\downarrow\uparrow,j} = \frac{E_0^2 M_j^2}{\hbar^2 \Phi_0^2} \frac{\Delta^2}{q^2 + \Delta^2} S_{I,j} \left(\pm \frac{E}{\hbar}\right)$$

Master equation for the Qubit density matrix¹

$$\begin{split} \dot{\rho}_{gg} &= -\frac{\Delta}{q^2 + \Delta^2} \dot{q} \, \Re e \left[\rho_{ge} \, e^{i \int_0^t E(t')^{dt'} / \hbar} \right] - \Gamma_{\Sigma} \rho_{gg} + \Gamma_{\downarrow} \\ \dot{\rho}_{ge} &= \frac{\Delta}{q^2 + \Delta^2} \dot{q} \, \left(\rho_{gg} - \frac{1}{2} \right) e^{-i \int_0^t E(t')^{dt'} / \hbar} - \frac{1}{2} \Gamma_{\Sigma} \rho_{ge} \end{split}$$

The power to the resistor j from the qubit

$$P_j = E(t)(\rho_{ee}\Gamma_{\downarrow,j} - \rho_{gg}\Gamma_{\uparrow,j})$$

¹J.P.Pekola, D.S. Golubev, and D.A. Averin, Maxwell's demon based on a single qubit. PRB. 93,024501 (2016)

11.5.2018

SPICE 8-11 May 2018, Mainz

 C_2

R_C

 L_2

M,

Nearly adiabatic regime (at very low frequencies)

$$\delta\Lambda_{j,Q} = \frac{1}{\pi} \int_0^{2\pi} du \frac{\Delta^2}{(q^2 + \Delta^2)^{3/2}} (\frac{dq}{du})^2 \frac{(\xi_{\downarrow} - \xi_{\uparrow})\xi_{\Sigma,j}}{\xi_{\Sigma}[\xi_{\Sigma}^2 + 16(q^2 + \Delta^2)]} > 0$$

Quantum coherence degrades the performance of the refrigerator

11.5.2018

Quantum Otto refrigerator

11.5.2018

NIS-thermometry

$$I = \frac{1}{2eR_T} \int n_S(E) [f_N(E - eV) - f_N(E + eV)] dE$$

Phys. Rev. Appl. 4, 034001 (2015).

11.5.2018

Experiment on quantum heat switch

B. Karimi, J. Pekola, M. Campisi, and R. Fazio, Quantum Science and Technology **2**, 044007 (2017).

A. Ronzani, B. Karimi, J. Senior, Y. C.Chang, J. T. Peltonen, C. D. Chen, and J. P. Pekola, arxiv:1801.09312

11.5.2018

Experimental realization: Quantum heat switch¹

^{3 μm} RESERVOIR AND THERMOMETERS

1 mm

TRANSMON QUBIT

11.5.2018

SPICE 8-11 May 2018, Mainz

11

Theory vs. experiment: non-Hamiltonian

$$P_{\rm D} = \pi hg f_{\rm r}^2 \frac{n(\beta_{\rm S} h f_{\rm q}) - n(\beta_{\rm D} h f_{\rm q})}{[1 + Q_{\rm r}^2 (r - 1/r)^2] [\coth(\beta_{\rm S} h f_{\rm q}/2) + \coth(\beta_{\rm D} h f_{\rm q}/2)]} + \pi h \kappa f_{\rm r}^2 \int_0^\infty \frac{n(x \beta_{\rm S} h f_{\rm r}) - n(x \beta_{\rm D} h f_{\rm r})}{[1 + Q_{\rm r}^2 (x - 1/x)^2]^2} x^3 dx$$
$$n(\beta_{\rm S/D} h f) = 1/(\exp(\beta_{\rm S/D} h f) - 1)$$

 $f_{\rm q} \equiv r f_{\rm r}$

11.5.2018

SPICE 8-11 May 2018, Mainz

;

Theory vs. experiment: non-Hamiltonian

11.5.2018

Theoretical estimation of heat current noise of a small metallic island

11.5.2018

Description of the system

• Hamiltonian of the system

$$H = H_e + H_s + H_p + H_{ep} + H_t$$

• The unperturbed Hamiltonian $H_0 = H_e + H_s + H_p$

$$H_0 = \sum_e \epsilon_e a_e^{\dagger} a_e + \sum_s \epsilon_s a_s^{\dagger} a_s + \sum_q \hbar \omega_p c_p^{\dagger} c_p$$

• Considering weak coupling

$$H_{ep} = \sum_{e,s} (t_{es} a_e^{\dagger} a_s + t_{se} a_s^{\dagger} a_e) + \gamma \sum_{e,p} \omega_p^{1/2} (a_e^{\dagger} a_{e-p} c_p + a_{e-p}^{\dagger} a_e c_p^{\dagger})$$

Electron-phonon coupling to the bath

- The operator of heat flux from the electron system to phonons due to ep coupling $\dot{H}_{ep} = \frac{i}{\hbar} [H_{ep}, H_p] = i\gamma \sum \omega_q^{3/2} (a_k^{\dagger} a_{k-q} c_q - a_{k-q}^{\dagger} a_k c_q^{\dagger})$
 - Heat current into the phonon bath and thermal conductance of the ep coupling

$$\dot{Q}_{ep} = \Sigma \mathcal{V} (T_e^5 - T_p^5)$$

 $G_{th}^{ep} = 5\Sigma \Omega T_e^4$

F. C. Wellstood, C. Urbina, and John Clarke, Phys. Rev. B **49**, 5942 (1994)

• Spectral density of noise due to ep coupling

$$\begin{split} S_{\dot{Q}_{ep}}(\omega) &= \frac{\Sigma \mathcal{V}}{96\zeta(5)k_B^5} \int_0^\infty d\epsilon \, \epsilon^2 \Big[(2\epsilon - \hbar\omega)^2 \frac{1}{1 - e^{-\beta_p \epsilon}} \, \frac{\epsilon - \hbar\omega}{e^{\beta_e(\epsilon - \hbar\omega)} - 1} \\ &+ (2\epsilon + \hbar\omega)^2 \frac{1}{e^{\beta_p \epsilon} - 1} \, \frac{\epsilon + \hbar\omega}{1 - e^{-\beta_e(\epsilon + \hbar\omega)}} \Big] \end{split}$$

¹J. P. Pekola and B. Karimi, Quantum noise of electron-phonon heat current, J. Low Temp. Phys. doi.org/10.1007/s10909-018-1854-y

11.5.2018

Electron-phonon coupling to the bath

• Spectral density of noise due to ep coupling

$$S_{\dot{Q}_{ep}}(\omega) = \frac{\Sigma \mathcal{V}}{96\zeta(5)k_{B}^{5}} \int_{0}^{\infty} d\epsilon \, \epsilon^{2} \left[(2\epsilon - \hbar\omega)^{2} \frac{1}{1 - e^{-\beta_{p}\epsilon}} \frac{\epsilon - \hbar\omega}{e^{\beta_{e}(\epsilon - \hbar\omega)} - 1} \stackrel{\textcircled{\basel{eq:spectral}}{=}}{=} \frac{\delta}{2} \int_{0,9}^{\infty} \int_{0,9}^{\infty} \frac{T_{e}/T_{p}}{1 - e^{-\beta_{e}(\epsilon + \hbar\omega)}} \int_{0,6}^{\infty} \int_{0,8}^{\infty} \frac{T_{e}/T_{p}}{1,0} \frac{T_{e}/T_{p}}{1,2} \int_{0,6}^{\infty} \frac{T_{e}/T_{p}}$$

11.5.2018

19

Tunneling

• The operator of heat flux from the superconductor to electrons system due to tunneling

$$\dot{H}_{et} = \frac{i}{\hbar} [H_t, H_e] = \frac{i}{\hbar} \sum_{k,l} \epsilon_k [t_{lk} b_l^{\dagger} a_k - t_{lk}^* b_l a_k^{\dagger}]$$

• Heat current into the phonon bath and thermal conductance of the tunneling

$$\dot{Q}_{t} = \frac{\Delta^{2}}{e^{2}R_{T}} \int du \ n_{S}(u) \ (u-v)[f_{N}(u-v) - f_{S}(u)]$$
$$G_{th}^{t} = \frac{\Delta^{3}}{e^{2}R_{T}k_{B}T^{2}} \int du \ n_{S}(u) \ u^{2}f(u)[1 - f(u)]$$

• Spectral density of noise due to tunneling

 $u = E/\Delta$ and $v = eV/\Delta$

$$S_{\dot{Q}_t}(0) = \frac{\Delta^3}{e^2 R_T} \int du \ n_S(u) \ (u-v)^2 \{ f_S(u) [1 - f_N(u-v)] + f_N(u-v) [1 - f_S(u)] \}$$

Cooling power and noise – numerical results

11.5.2018

Analytical results vs. numerics

11.5.2018

Fast NIS thermometry on electrons

Read-out at 600 MHz of a NIS junction, 10 MHz bandwidth

S. Gasparinetti et al., Phys. Rev.
Applied 3, 014007 (2015);
B. Karimi and J. Pekola, in preparation
Proof of concept: D. Schmidt et al.,
Appl. Phys. Lett. 83, 1002 (2003).

11.5.2018

ZBA based thermometry

Proximity NIS junction

- non-invasive
- operates at low temperature

 $V_1 \bullet \downarrow \overset{C_1}{\vdash}$ (a) $R_{\rm R}$ N S (b)injector thermometer 1 um

See also, O.-P. Saira et al., Phys. Rev. Appl. 6, 024005 (2016); J. Govenius et al., PRL 117, 030802 (2016)

B. Karimi and J. Pekola, in preparation

11.5.2018

Calorimetry for measuring mw photons

Requirements for calorimetry on single microwave quantum level:

Typical parameters

Operating temperature T = 0.03 K

 $E/k_{\rm B} = 0.3...1$ K, $C = 300...1000k_{\rm B}$

 $\Delta T \sim 1...3$ mK, $\tau \sim 0.01...1$ ms

NET = $10 \mu K/(Hz)^{1/2}$ is sufficient for single photon detection

 $\delta E = \text{NET} (C G_{\text{th}})^{1/2}$

J. Pekola, P. Solinas, A. Shnirman, and D. V.Averin., NJP 15, 115006 (2013);F. Brange, P. Samuelsson, B. Karimi, J. P. Pekola., arXiv:1805.2728.

Summary

- Measurement of heat and noise in circuits
- Presented quantum Otto refrigerator
- •Quantum heat switch based on a superconducting qubit realized and analyzed; two regimes of operation observed and theoretically explained arxiv:1801.09312
- Non-invasive and fast thermometry down to 25mK demonstrated