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Chaos and random matrix theory

[Casati, Guarneri and Val-Gris 1980, Berry 1981, Bohigas, Giannoni and
Schmit 1984, ...]
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Heuristic proof of Quantum chaos conjecture: Semiclassics

[Berry 1985, Sieber and Richter 2001, Miiller, ...and Haake 2004,2005]
A simple key object: Spectral pair correlation function

RO = 5 (ME+500lE - 55)) -1

or the spectral form factor

K(T) _ %/;oo deR(e)eZie‘r ~ <‘Zei€n‘r
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Heuristic proof of Quantum chaos conjecture: Semiclassics

[Berry 1985, Sieber and Richter 2001, Miiller, ...and Haake 2004,2005]
A simple key object: Spectral pair correlation function

RO = 5 (ME+500lE - 55)) -1

or the spectral form factor
1 2ieT ienT 2 —iHT |2
K(t) == deR ~ ‘ E " ~ (|t
(T) ™ /;oo ‘ (e)e < n © > <| te | >

In non-integrable systems with a chaotic classical lomit, form factor has two
regimes:
@ universal described by RMT,

@ non-universal described by short classical periodic orbits.

K(1) > universal
1 | monuaiversal
I e
!
LI 1 t

Tomaz Prosen Quantum chaos in many-body systems



For chaotic (hyperbolic) systems, K(7), to all orders in 7", agrees with RMT!
(based on small /i asymptotics!)
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For chaotic (hyperbolic) systems, K(7), to all orders in 7", agrees with RMT!
(based on small 1 asymptotics!)

To first order, this is captured by the diagonal approximation (Berry 1985)

ZZA e/ A e 1% I 2)Z|A| = (2)t
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For chaotic (hyperbolic) systems, K(7), to all orders in 7", agrees with RMT!
(based on small i asymptotics!)

To first order, this is captured by the diagonal approximation (Berry 1985)

T

K(T)NZZA e/ M AY e P 2)Z|Ap| =)t

p P

To second order, the RMT term is reproduced by considering so-called
Sieber-Richter (2001) pairs of orbits
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For chaotic (hyperbolic) systems, K(7), to all orders in 7", agrees with RMT!
(based on small i asymptotics!)

To first order, this is captured by the diagonal approximation (Berry 1985)

K(7) ~ ZZAe‘S/hA ~iSp /M 2)Z|A| = (2)t

p P

To second order, the RMT term is reproduced by considering so-called
Sieber-Richter (2001) pairs of orbits

To all orders, RMT terms is reproduced by considering full combinatorics of
self-encountering orbits (Miiller et al, 2004)
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The many-body quantum chaos problem at “A = 1"

A lot of numerics accumulated to day, showing that integrable many body
systems, such as an interacting chain of spinless fermions:

L-1
/ !
H= Z(—JCJ-TCJ-H —J CJTCHZ +h.c. + Vijnjyr + Vinjnie), nj= chcj.
j=0
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[from: Rigol and Santos, 2010]
More data: Montamboux et al.1993, Prosen 1999, 2002, 2005, 2007, 2014,

Kollath et al. 2010,
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Analytically solvable model of many-body quantum chaos...

. or:

Derivation of random matrix spectral form factors for non-integrable spin
chains [P. Kos, M. Ljubotina and TP, arXiv:1712.02665].

Setup: Periodically kicked Ising models
H(t) = Ho+ Hi > _ (t — m)

meZ

where

ZJUX3)+Z XXO'X 4+ H1:hZa)(<1)

x<x'
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Analytically solvable model of many-body quantum chaos...

... or:
Derivation of random matrix spectral form factors for non-integrable spin
chains [P. Kos, M. Ljubotina and TP, arXiv:1712.02665].

Setup: Periodically kicked Ising models

H(t) = Ho+ Hi > _ (t — m)

meZ

where

ZJUX3)+Z XXO'X 4+ H1:hZaf<1)

x<x'

Floquet propagator:

u = TeXp( /OdtH(t)> VW,

i i cosh isinh
W = e oyt @ = .
isinh cosh
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Analytically solvable model of many-body quantum chaos...

. or:

Derivation of random matrix spectral form factors for non-integrable spin
chains [P. Kos, M. Ljubotina and TP, arXiv:1712.02665].

Setup: Periodically kicked Ising models
H(t) = Ho+ Hi > _ (t — m)

meZ

ZJO’X3)+ZJXUX +o, Hi=h) ol

x<x'

where

Floquet propagator:

U = T-exp (—i/oldt H(t)) =

i i cosh isinh
W = e oyt @ = .
isinh cosh

N.N. variants of KI model introduced and discussed in:

TP, JPA 31, L397 (1998); Prog.Theor.Phys.Suppl. 139, 191 (2000);
PRE 65, 036208, (2002); JPA 40, 7881 (2007)...
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o Consider computational basis of classical spin configurations
s=(s1,...,50), sx € {0,1}, where interacting propagator acts as a pure
multiplicative phase

Wls) = e'ls), 0s =~ ZJ(l NI C) L

x<x'

while the matrix elements of V factorize

(s|Vls') HVSX,S
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o Consider computational basis of classical spin configurations
s=(s1,...,50), sx € {0,1}, where interacting propagator acts as a pure
multiplicative phase

Wis) = es), 0= ZJ( )% = > Zo(-1)>" +

x<x'

while the matrix elements of V factorize

(s|VIs') H Vs -
o The spectral form factor then reads (A = 2°):
K(t) = {((tr U")(tr U")*) — N?6e0

— Z Z 127 1(0s *0/)>

S15--55¢ 51 ,,,,, St

*
x H H Veorsoria Vsl sl

x=17=1
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o Consider computational basis of classical spin configurations
s=(s1,...,50), sx € {0,1}, where interacting propagator acts as a pure
multiplicative phase

Wls) = e™ls), 0= =3 K1) = 3 Lo (1 +

x<x'

while the matrix elements of V factorize

(s|Vls') HVSX,S

o The spectral form factor then reads (A = 2°):
K(t) ((tr U (tr U")*) = N%6:0
_ Z Z 127 1(0s, —0y )>

S15+++35t 83 5--+»5}

4 t
*
X | | | | Vo, rosria Vsl sl g

x=17=1

@ Assume pseudo-randomness of phases:

it 1(0s_ —6 .
<GIZT:1( o £;)> = 5(517-4-75[),<§§7~-7§§> + fluctuations.
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@ Assume further that (i) fluctuations can be neglected (at least in the limit
£ — 00), and (ii) the terms (‘orbits') where some configuration s_ is
repeated can be neglected as they are exponentially (in £) rare for fixed t

ImeS T —7(r), suchthat s, =s ).
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@ Assume further that (i) fluctuations can be neglected (at least in the limit
£ — 00), and (ii) the terms (‘orbits') where some configuration s_ is
repeated can be neglected as they are exponentially (in £) rare for fixed t

ImeS T —7(r), suchthat s, =s ).

@ This implies the following twisted 1D Ising model representation:

t
£
K(t) = Z Z where Zr = Z H Vsr,sri1 V:W(T),s,r(,+1)-

TESt S1,...,5t T=1
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@ Assume further that (i) fluctuations can be neglected (at least in the limit
£ — 00), and (ii) the terms (‘orbits') where some configuration s_ is
repeated can be neglected as they are exponentially (in £) rare for fixed t

ImeS T —7(r), suchthat s, =s ).

@ This implies the following twisted 1D Ising model representation:

t
£
K(t) = Z Z where Zr = Z H Vsr,sri1 Vstr(,.),s,,(TH)-

TESt S1,...,5t T=1

@ The leading order (in the limit £ — oo) contributions come from t cyclic
permutations and t anti-cyclic permutations, i.e. all 2t permutations 7
which do not change any neigbour the sequence s:

K(t) =~ 2t(trT)" =2t(1 + (cos2h)")"
In¢
~ 2t for t>t'=——"+
or > Incos2h
cos’h sin®h

where T = (sin2 h cos®h

) is 1D Ising model transfer matrix.

Tomaz Prosen Quantum chaos in many-body systems



@ Assume further that (i) fluctuations can be neglected (at least in the limit
£ — 00), and (ii) the terms (‘orbits') where some configuration s_ is
repeated can be neglected as they are exponentially (in £) rare for fixed t

Ir € S : 7 — w(r), suchthat s = Sr(r)-

@ This implies the following twisted 1D Ising model representation:

= Z zt, where Z H Vsr,sria Vs, T), Sr(ri1)”

TES: 5t T=1

@ The leading order (in the limit £ — oo) contributions come from t cyclic
permutations and t anti-cyclic permutations, i.e. all 2t permutations 7
which do not change any neigbour the sequence s:

K(t) =~ 2t(trT)" =2t(1 + (cos2h)")"
In¢
~ 2t for t>t'=——"+
or > Incos2h
cos’h sin®h

where T = (sinz h o cos? h) is 1D Ising model transfer matrix.
@ This is exactly the leading term of the Random-Matrix-Theory result!

Kog(t) =2t — tin(1 +2t/N) = 2t =22 /N +-- -,
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@ Most important subleading contributions yield exponentially small (in £)
corrections and can be computed using a diagrammatic technique.
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@ Most important subleading contributions yield exponentially small (in £)
corrections and can be computed using a diagrammatic technique.
@ The leading corrections are given by single-cross diagrams (A = cos2h):
Zu(r) = D oTo e Tarins
ST,ST4+1,5t—1,5t

* *
Vsr,sr41 Vs, 3St—1 Vsi_1,5t vs7-+1 ,St

5 (1+)\T+>\t—7—2 _)\t—Z +>\t)
St St—1
st Vsl

] (w1 =
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@ Most important subleading contributions yield exponentially small (in £)

corrections and can be computed using a diagrammatic technique.
@ The leading corrections are given by single-cross diagrams (A = cos2h):

1 (1+)\T+>\t—’r—2_>\t—2+>\t)

_ 2 : T t—7—2 * * =
ZX(T) - TS;,ST T57+1,st,1 Vsrisria Vs, sp_q Vsi—1.5t Vs, 11,50 —

ST,ST4+1,5t—1,5t
St St—1
Sr Sr41

e Similarly one can derive 2nd order correction in time —2t*/\ by
considering sequences — ‘orbits’ — s,,...s, with exactly one repetition
(analogues of self-encountering Sieber-Richter periodic orbit doublets).
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How does this work in practice?

o Consider two-body clean Ising model with power-law decaying interactions

M7 Jf x! = NZJ Jk>2
X< ’

1
JX =a-+ (X’ _X)a, xox! ...

=0,

with normalization constants defined as

1 1 1 1 1
M=l M1 o

X x<x'

and interaction effectively being short range Ni> = O(£°) for o > 1.
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How does this work in practice?

o Consider two-body clean Ising model with power-law decaying interactions

Nab Nad e
xa (X’ — X)a7 x,x" ...

Jxlza—i— Jf,x’zi

=0,
with normalization constants defined as

1 1 1 1 1
M=l M1 o

X x<x'

and interaction effectively being short range Ni> = O(£°) for o > 1.

e Compute integrated spectral form factor

Kini(t) = > K(7)

which is expected to be self-averaging.
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K(t)
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What next?

@ Build rigorous control over the (pseudo)random-phase argument.

@ Consider the case of local interactions oz = 0o which needs to be studied
separately as the phases ;s are clearly insufficiently pseudo-random then.

© Introduce quenched disorder and study the ergodicty — MBL transition
from the ergodic side.

@ Study spectral correlations beyond 2-point.

@ Adapt the method to study other RMT-like objects in many-body physics,
e.g. the entanglement spectrum, dynamical correlation functions, ETH...

This work has been supported by the Slovenian Research Agency (ARRS) and
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Next step: Rigorous proof of RMT spectral form factor in NN (a = o0) case

B. Bertini, P. Kos, TP, arXiv:1805.00931

L
Ukt = e Me ™<  Hy[h] EZ {JUE(3)U>(21 + hx<7>(<3)} , Hx = bZU(1)7
x=1

x=1
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Next step: Rigorous proof of RMT spectral form factor in NN (a = o0) case

B. Bertini, P. Kos, TP, arXiv:1805.00931

L L
Ui = e Me M Hi[h] EZ {JO>(<3)‘7)(<1)1 + th>(<3)} , Hk = bZUjl)y
x=1

Dual transfer matrix formulation of spectral form factor

K(t) = E{ny [(tr Ugr)(tr Ugr)"]
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Next step: Rigorous proof of RMT spectral form factor in NN (a = o0) case

B. Bertini, P. Kos, TP, arXiv:1805.00931

Uk = e_"HIe_”-IK7 Hi[h] = {Jax x+1 hxoy, )} Hk = bZU @ ,

Dual transfer matrix formulatlon of spectral form factor
K(t) = Eqny [(tr Uir)(tr Uir)*]

We proved (irrespective of distribution of i.i.d. {h}):
2t—1, t<5

lim K(t) = ,
L—oo 2t, t>7
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