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Chaos and random matrix theory

[Casati, Guarneri and Val-Gris 1980, Berry 1981, Bohigas, Giannoni and
Schmit 1984, ...]
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Figure 1. Examples of trajectories of a particle bouncing in a cavity: (a) non-chaotic circular and (b) chaotic
Bunimovich stadium. The images were taken from scholarpedia [60].
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From Liouville’s integrability theorem [59], it follows that there is a canonical trans-
formation (p, q) ! (I,⇥) (where I,⇥ are called action-angle variables) such that
H(p, q) = H(I) [58]. As a result, the solutions of the equations of motion for the action-
angle variables are trivial: Ij(t) = I0

j = constant, and ⇥j(t) = ⌦jt + ⇥j(0). For obvious
reasons, the motion is referred to as taking place on an N -dimensional torus, and it is
not chaotic.

To get a feeling for the di↵erences between integrable and chaotic systems, in Fig. 1,
we illustrate the motion of a particle in both an integrable and a chaotic two-dimensional
cavity [60]. Figure 1(a) illustrates the trajectory of a particle in an integrable circular
cavity. It is visually apparent that the trajectory is a superposition of two periodic mo-
tions along the radial and angular directions. This is a result of the system having two
conserved quantities, energy and angular momentum [61]. Clearly, the long-time aver-
age of the particle density does not correspond to a uniform probability which covers
phase space. Figure 1(b), on the other hand, shows a trajectory of a particle in a chaotic
Bunimovich stadium [10], which looks completely random. If one compares two trajec-
tories that are initially very close to each other in phase space one finds that, after a
few bounces against the walls, they become uncorrelated both in terms of positions and
directions of motion. This is a consequence of chaotic dynamics.

There are many examples of dynamical systems that exhibit chaotic behavior. A nec-
essary, and often su�cient, condition for chaotic motion to occur is that the number of
functionally independent conserved quantities (integrals of motion), which are in involu-
tion, is smaller than the number of degrees of freedom. Otherwise, as mentioned before,
the system is integrable and the dynamics is “simple”. This criterion immediately tells us
that the motion of one particle, without internal degrees of freedom, in a one-dimensional
system, described by a static Hamiltonian, is integrable. The energy provides a unique
(up to a sign) relation between the coordinate and the momentum of the particle. In two
dimensions, energy conservation is not su�cient to constrain the two components of the
momentum at a given position in space, and chaos is possible. However, if an additional
conservation law is present, e.g., angular momentum in the example of Fig. 1(a), then
the motion is regular. As a generalization of the above, a many-particle system is usu-
ally considered chaotic if it does not have an extensive number of conserved quantities.
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3. Quantum Chaos in Physical Systems

3.1. Examples of Wigner-Dyson and Poisson Statistics

Random matrix statistics has found many applications since its introduction by Wigner.
They extend far beyond the framework of the original motivation, and have been inten-
sively explored in many fields (for a recent comprehensive review, see Ref. [93]). Examples
of quantum systems whose spectra exhibit Wigner-Dyson statistics are: (i) heavy nuclei
[94], (ii) Sinai billiards (square or rectangular cavities with circular potential barriers in
the center) [85], which are classically chaotic as the Bunimovich stadium in Fig. 1, (iii)
highly excited levels5 of the hydrogen atom in a strong magnetic field [95], (iv) Spin-1/2
systems and spin-polarized fermions in one-dimensional lattices [69, 70]. Interestingly, the
Wigner-Dyson statistics is also the distribution of spacings between zeros of the Riemann
zeta function, which is directly related to prime numbers. In turn, these zeros can be
interpreted as Fisher zeros of the partition function of a particular system of free bosons
(see Appendix B). In this section, we discuss in more detail some examples originating
from over 30 years of research.
Heavy nuclei - Perhaps the most famous example demonstrating the Wigner-Dyson
statistics is shown in Fig. 2. That figure depicts the cumulative data of the level spacing
distribution obtained from slow neutron resonance data and proton resonance data of
around 30 di↵erent heavy nuclei [71, 96]. All spacings are normalized by the mean level
spacing. The data are shown as a histogram and the two solid lines depict the (GOE)
Wigner-Dyson distribution and the Poisson distribution. One can see that the Wigner-
Dyson distribution works very well, confirming Wigner’s original idea.

Figure 2. Nearest neighbor spacing distribution for the “Nuclear Data Ensemble” comprising 1726 spacings

(histogram) versus normalized (to the mean) level spacing. The two lines represent predictions of the random

matrix GOE ensemble and the Poisson distribution. Taken from Ref. [96]. See also Ref. [71].

Single particle in a cavity - Next, let us consider a much simpler setup, namely, the
energy spectrum of a single particle in a cavity. Here, we can contrast the Berry-Tabor
and BGS conjectures. To this end, in Fig. 3, we show the distribution of level spacings
for two cavities: (left panel) an integrable rectangular cavity with sides a and b such
that a/b = 4

p
5 and ab = 4⇡ and (right panel) a chaotic cavity constructed from two

circular arcs and two line segments (see inset) [80]. These two plots beautifully confirm
the two conjectures. The distribution on the left panel, as expected from the Berry-Tabor
conjecture, is very well described by the Poisson distribution. This occurs despite the fact

5The low-energy spectra of this system exhibits Poissonian level statistics. This is understandable as, at low

energies, the motion of the equivalent classical system is regular [95]. See also Fig. 4.
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Figure 1. One of the regions proven by Sinai to
be classically chaotic is this region Ω
constructed from line segments and circular
arcs.

Traditionally, analysis of the spectrum recovers
information such as the total area of the billiard,
from the asymptotics of the counting function
N(λ) = #{λn ≤ λ}: As λ → ∞, N(λ) ∼ area

4π
λ

(Weyl’s law). Quantum chaos provides completely
different information: The claim is that we should
be able to recover the coarse nature of the dynam-
ics of the classical system, such as whether they
are very regular (“integrable”) or “chaotic”. The
term integrable can mean a variety of things, the
least of which is that, in two degrees of freedom,
there is another conserved quantity besides ener-
gy, and ideally that the equations of motion can be
explicitly solved by quadratures. Examples are the
rectangular billiard, where the magnitudes of the
momenta along the rectangle’s axes are conserved,
or billiards in an ellipse, where the product of an-
gular momenta about the two foci is conserved,
and each billiard trajectory repeatedly touches a
conic confocal with the ellipse. The term chaotic
indicates an exponential sensitivity to changes
of initial condition, as well as ergodicity of the
motion. One example is Sinai’s billiard, a square
billiard with a central disk removed; another class
of shapes investigated by Sinai, and proved by him
to be classically chaotic, includes the odd region
shown in Figure 1. Figure 2 gives some idea of how
ergodicity arises. There are many mixed systems
where chaos and integrability coexist, such as the
mushroom billiard—a semicircle atop a rectangu-
lar foot (featured on the cover of the March 2006
issue of the Notices to accompany an article by
Mason Porter and Steven Lansel).

Figure 2. This figure gives some idea of how
classical ergodicity arises in Ω.

s = 0 1 2 3 4

y = e�s

Figure 3. It is conjectured that the distribution
of eigenvalues π2(m2/a2 + n2/b2) of a
rectangle with sufficiently incommensurable
sides a, b is that of a Poisson process. The
mean is 4π/ab by simple geometric reasoning,
in conformity with Weyl’s asymptotic formula.
Here are plotted the statistics of the gaps
λi+1 − λi found for the first 250,000
eigenvalues of a rectangle with side/bottom
ratio 4

√
5 and area 4π , binned into intervals of

0.1, compared to the expected probability
density e−s .
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GOE distribution

Figure 4. Plotted here are the normalized gaps
between roughly 50,000 sorted eigenvalues

for the domain Ω, computed by Alex Barnett,
compared to the distribution of the

normalized gaps between successive
eigenvalues of a large random real symmetric
matrix picked from the “Gaussian Orthogonal

Ensemble”, where the matrix entries are
independent (save for the symmetry

requirement) and the probability distribution
is invariant under orthogonal transformations.

One way to see the effect of the classical dy-
namics is to study local statistics of the energy
spectrum, such as the level spacing distribution
P(s), which is the distribution function of nearest-
neighbor spacings λn+1 − λn as we run over all
levels. In other words, the asymptotic propor-
tion of such spacings below a given bound x is∫ x
−∞ P(s)ds. A dramatic insight of quantum chaos

is given by the universality conjectures for P(s):
• If the classical dynamics is integrable, then

P(s) coincides with the corresponding quantity for
a sequence of uncorrelated levels (the Poisson en-
semble) with the same mean spacing: P(s) = ce−cs ,
c = area/4π (Berry and Tabor, 1977).
• If the classical dynamics is chaotic, then P(s)

coincides with the corresponding quantity for the
eigenvalues of a suitable ensemble of random
matrices (Bohigas, Giannoni, and Schmit, 1984).
Remarkably, a related distribution is observed for
the zeros of Riemann’s zeta function.

Not a single instance of these conjectures is
known, in fact there are counterexamples, but
the conjectures are expected to hold “generically”,
that is unless we have a good reason to think oth-
erwise. A counterexample in the integrable case
is the square billiard, where due to multiplici-

ties in the spectrum, P(s) collapses to a point
mass at the origin. Deviations are also seen in the
chaotic case in arithmetic examples. Nonetheless,
empirical studies offer tantalizing evidence for
the “generic” truth of the conjectures, as Figures
3 and 4 show.

Some progress on the Berry-Tabor conjecture in
the case of the rectangle billiard has been achieved
by Sarnak, by Eskin, Margulis, and Mozes, and by
Marklof. However, we are still far from the goal
even there. For instance, an implication of the
conjecture is that there should be arbitrarily large
gaps in the spectrum. Can you prove this for
rectangles with aspect ratio 4

√
5?

The behavior of P(s) is governed by the statis-
tics of the number N(λ, L) of levels in windows
whose location λ is chosen at random, and whose
length L is of the order of the mean spacing
between levels. Statistics for larger windows also
offer information about the classical dynamics and
are often easier to study. An important example
is the variance of N(λ, L), whose growth rate is
believed to distinguish integrability from chaos [1]
(in “generic” cases; there are arithmetic counterex-
amples). Another example is the value distribution
ofN(λ, L), normalized to have mean zero and vari-
ance unity. It is believed that in the chaotic case
the distribution is Gaussian. In the integrable case
it has radically different behavior: For large L, it
is a system-dependent, non-Gaussian distribution
[2]. For smaller L, less is understood: In the case
of the rectangle billiard, the distribution becomes
Gaussian, as was proved recently by Hughes and
Rudnick, and by Wigman.

Further Reading
[1] M. V. Berry, Quantum chaology (The Bakerian
Lecture), Proc. R. Soc. A 413 (1987), 183-198.

[2] P. Bleher, Trace formula for quantum integrable
systems, lattice-point problem, and small divisors, in
Emerging applications of number theory (Minneapolis,
MN, 1996), 1–38, IMA Vol. Math. Appl., 109, Springer,
New York, 1999.

[3] J. Marklof, Arithmetic Quantum Chaos, and
S. Zelditch, Quantum ergodicity and mixing of eigen-
functions, in Encyclopedia of mathematical physics,
Vol. 1, edited by J.-P. Françoise, G. L. Naber, and T. S.
Tsun, Academic Press/Elsevier Science, Oxford, 2006.
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Figure 3. (Left panel) Distribution of 250,000 single-particle energy level spacings in a rectangular two-
dimensional box with sides a and b such that a/b = 4

p
5 and ab = 4⇡. (Right panel) Distribution of 50,000

single-particle energy level spacings in a chaotic cavity consisting of two arcs and two line segments (see inset).
The solid lines show the Poisson (left panel) and the GOE (right panel) distributions. From Ref. [80].

that the corresponding classical system has only two degrees of freedoms [recall that in
the argument used to justify the Berry-Tabor conjecture, Eqs. (21)–(23), we relied on
having many degrees of freedom]. The right panel depicts a level distribution that is in
perfect agreement with the GOE, in accordance with the BGS conjecture.
Hydrogen atom in a magnetic field - A demonstration of a crossover between Pois-
son statistics and Wigner-Dyson statistics can be seen in another single-particle system
– a hydrogen atom in a magnetic field. The latter breaks the rotational symmetry of the
Coulomb potential and hence there is no conservation of the total angular momentum. As
a result, the classical system has coexistence of regions with both regular (occurring at
lower energies) and chaotic (occurring at higher energies) motion [98]. Results of numeri-
cal simulations (see Fig. 4) show a clear interpolation between Poisson and Wigner-Dyson

level statistics as the dimensionless energy (denoted by Ê) increases [95]. Note that at
intermediate energies the statistics is neither Poissonian nor Wigner-Dyson, suggesting

Figure 4. The level spacing distribution of a hydrogen atom in a magnetic field. Di↵erent plots correspond to
di↵erent mean dimensionless energies Ê, measured in natural energy units proportional to B2/3, where B is the
magnetic field. As the energy increases one observes a crossover between Poisson and Wigner-Dyson statistics.
The numerical results are fitted to a Brody distribution (solid lines) [87], and to a semi-classical formula due to
Berry and Robnik (dashed lines) [97]. From Ref. [95].
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Heuristic proof of Quantum chaos conjecture: Semiclassics

[Berry 1985, Sieber and Richter 2001, Müller, ...and Haake 2004,2005]
A simple key object: Spectral pair correlation function

R(ε) =
1
ρ̄2

〈
ρ(E +

ε

2πρ̄
)ρ(E − ε

2πρ̄
)

〉
− 1

or the spectral form factor

K(τ) =
1
π

∫ ∞
−∞

dεR(ε)e2iετ ∼
〈∣∣∣∑

n

eiεnτ
∣∣∣2〉 ∼ 〈|tr e−iHτ |2〉
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In non-integrable systems with a chaotic classical lomit, form factor has two
regimes:

universal described by RMT,

non-universal described by short classical periodic orbits.
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For chaotic (hyperbolic) systems, K(τ), to all orders in τ n, agrees with RMT!
(based on small ~ asymptotics!)
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(based on small ~ asymptotics!)

To first order, this is captured by the diagonal approximation (Berry 1985)

K(τ) ∼
τ∑
p

τ∑
p′

Ape
iSp/~A∗p′e

−iSp′/~ ' (2)
τ∑
p

|Ap|2 = (2)t
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|Ap|2 = (2)t

To second order, the RMT term is reproduced by considering so-called
Sieber-Richter (2001) pairs of orbits

4

Figure 1. Bunch of 72 (pseudo-)orbits differing in two three-encounters and one
two-encounter (a pseudo-orbit is a set of several disjoined orbits; see below).
Different orbits not resolved except in blowups of encounters.

Figure 2. Sieber–Richter pair.

where two stretches of an orbit are close (see figure 2). Full agreement with all coefficients cn

from RMT was established by the present authors in [13, 14].
In none of these works, oscillatory contributions could be obtained (note however

courageous forays by Keating [16] and Bogomolny and Keating [17]), due to the fact that
Gutzwiller’s formula for the level density is divergent. To enforce convergence, one needs to
allow for complex energies with imaginary parts large compared to the mean level spacing,
Im ✏ � 1. Oscillatory terms proportional to e2i✏ then become exponentially small and cannot be
resolved within the conventional semiclassical approach.

In [18], we proposed a way around this difficulty that we here want to elaborate in detail.
The key idea is to represent the correlation function through derivatives of a generating function
involving spectral determinants. Two such representations are available and entail different
semiclassical periodic-orbit expansions. One of them recovers the non-oscillatory part of the
asymptotic expansion (3), essentially in equivalence to [12]–[14]; the other representation
breaks new ground by giving the oscillatory part of (3).

The full random-matrix result also, and in fact most naturally, arises within an alternative
semiclassical approximation scheme proposed by Berry and Keating in [19]. That scheme
constrains the semiclassical periodic-orbit expansion of the spectral determinants det(E � H)
to be real and to converge for real energy argument. Inserted into the generating function
the resulting ‘Riemann–Siegel lookalike formula’ for det(E � H) was shown in [20] to

New Journal of Physics 11 (2009) 103025 (http://www.njp.org/)
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To all orders, RMT terms is reproduced by considering full combinatorics of
self-encountering orbits (Müller et al, 2004)
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The many-body quantum chaos problem at “~ = 1”

A lot of numerics accumulated to day, showing that integrable many body
systems, such as an interacting chain of spinless fermions:

H =
L−1∑
j=0

(−Jc†j cj+1 − J ′c†j cj+2 + h.c.+ Vnjnj+1 + V ′njnj+2), nj = c†j cj .
August 2, 2016 Advances in Physics Review
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Figure 5. (a)–(g) Level spacing distribution of spinless fermions in a one-dimensional lattice with Hamiltonian
(40). They are the average over the level spacing distributions of all k-sectors (see text) with no additional
symmetries (see Ref. [69] for details). Results are reported for L = 24, N = L/3, J = V = 1 (unit of energy), and
J 0 = V 0 (shown in the panels) vs the normalized level spacing !. The smooth continuous lines are the Poisson
and Wigner-Dyson (GOE) distributions. (h) Position of the maximum of P (!), denoted as !max, vs J 0 = V 0, for
three lattice sizes. The horizontal dashed line is the GOE prediction. Adapted from Ref. [69].

spacing statistics becomes indistinguishable of the RMT prediction at smaller values of
the integrability breaking parameters. This suggests that, at least for this class of mod-
els, an infinitesimal integrability breaking perturbation is su�cient to generate quantum
chaos in the thermodynamic limit. Recent numerical studies have attempted to quantify
how the strength of the integrability breaking terms should scale with the system size
for the GOE predictions to hold in one dimension [105, 106]. These works suggest that
the strength needs to be / L�3 for this to happen, but the origin of such a scaling
is not understood. Moreover, it is unclear how generic these results are. In particular,
in disordered systems that exhibit many-body localization, it has been argued that the
transition from the Poisson to the Wigner-Dyson statistics occurs at a finite value of the
interaction strength. This corresponds to a finite threshold of the integrability breaking
perturbation even in the thermodynamic limit (see Ref. [51] and references therein).

3.2. The Structure of Many-Body Eigenstates

As we discussed in Sec. 2, RMT makes important predictions about the random nature of
eigenstates in chaotic systems. According to Eq. (12), any eigenvector of a matrix belong-
ing to random matrix ensembles is a random unit vector, meaning that each eigenvectors
is evenly distributed over all basis states. However, as we show here, in real systems the
eigenstates have more structure. As a measure of delocalization of the eigenstates over a
given fixed basis one can use the information entropy:

Sm ⌘ �
X

i

|ci
m|2 ln |ci

m|2, (41)

where

|mi =
X

i

ci
m|ii (42)

is the expansion of the eigenstate |mi over some fixed basis |ii. For the GOE, this entropy,
irrespective of the choice of basis, should be SGOE = ln(0.48D) + O(1/D) [93], where
D is the dimensionality of the Hilbert space. However, numerical analyses of various

21

[from: Rigol and Santos, 2010]
More data: Montamboux et al.1993, Prosen 1999, 2002, 2005, 2007, 2014,
Kollath et al. 2010, ...
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Analytically solvable model of many-body quantum chaos...

... or:
Derivation of random matrix spectral form factors for non-integrable spin
chains [P. Kos, M. Ljubotina and TP, arXiv:1712.02665].

Setup: Periodically kicked Ising models

H(t) = H0 + H1
∑
m∈Z

δ(t −m)

where

H0 =
∑
x

J1
x σ

(3)
x +

∑
x<x′

J2
x,x′σ

(3)
x σ

(3)
x′ + · · · , H1 = h

∑
x

σ(1)
x .
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(3)
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∑
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σ(1)
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Floquet propagator:

U = T-exp

(
−i
∫ 1

0
dt H(t)

)
= VW ,

W = e−iH0 , V = e−iH1 = v⊗`, v =

(
cos h i sin h
i sin h cos h

)
.
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N.N. variants of KI model introduced and discussed in:
TP, JPA 31, L397 (1998); Prog.Theor.Phys.Suppl. 139, 191 (2000);
PRE 65, 036208, (2002); JPA 40, 7881 (2007)...
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Consider computational basis of classical spin configurations
s = (s1, . . . , s`), sx ∈ {0, 1}, where interacting propagator acts as a pure
multiplicative phase

W |s〉 = eiθs |s〉, θs = −
∑
x

J1
x (−1)sx −

∑
x<x′

J2
x,x′(−1)sx+sx′ + · · ·

while the matrix elements of V factorize

〈s|V |s ′〉 =
∏̀
x=1

vsx ,s′x .

The spectral form factor then reads (N = 2`):

K(t) = 〈(trU t)(trU t)∗〉 − N 2δt,0

=
∑

s1,...,st

∑
s′1,...,s

′
t

〈ei
∑t
τ=1(θsτ−θs′τ )〉

×
∏̀
x=1

t∏
τ=1

vsx,τ ,sx,τ+1v
∗
s′x,τ ,s

′
x,τ+1

.

Assume pseudo-randomness of phases:

〈ei
∑t
τ=1(θsτ−θs′τ )〉 = δ〈s1,...,st〉,〈s′1,...,s′t〉 + fluctuations.
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Assume further that (i) fluctuations can be neglected (at least in the limit
`→∞), and (ii) the terms (’orbits’) where some configuration sτ is
repeated can be neglected as they are exponentially (in `) rare for fixed t

∃π ∈ St : τ → π(τ), such that s ′τ = sπ(τ).

This implies the following twisted 1D Ising model representation:

K(t) =
∑
π∈St

Z `π, where Zπ =
∑

s1,...,st

t∏
τ=1

vsτ ,sτ+1v
∗
sπ(τ),sπ(τ+1) .

The leading order (in the limit `→∞) contributions come from t cyclic
permutations and t anti-cyclic permutations, i.e. all 2t permutations π
which do not change any neigbour the sequence s:

K(t) ' 2t(trT t)` = 2t(1 + (cos 2h)t)`

' 2t for t � t∗ = − ln `

ln cos 2h

where T =

(
cos2 h sin2 h
sin2 h cos2 h

)
is 1D Ising model transfer matrix.

This is exactly the leading term of the Random-Matrix-Theory result!

KOE(t) = 2t − t ln(1 + 2t/N ) = 2t − 2t2/N + · · · ,
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a b

Most important subleading contributions yield exponentially small (in `)
corrections and can be computed using a diagrammatic technique.
The leading corrections are given by single-cross diagrams (λ = cos 2h):

ZX(τ) =
∑

sτ ,sτ+1,st−1,st

T τst ,sτT
t−τ−2
sτ+1,st−1vsτ ,sτ+1v

∗
sτ ,st−1vst−1,st v

∗
sτ+1,st =

1
2

(
1+λτ+λt−τ−2−λt−2+λt

)
.

Similarly one can derive 2nd order correction in time −2t2/N by
considering sequences – ‘orbits’ – s1, . . . s t with exactly one repetition
(analogues of self-encountering Sieber-Richter periodic orbit doublets).
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How does this work in practice?

Consider two-body clean Ising model with power-law decaying interactions

J1
x = a +

N1b

xα
, J2

x,x′ =
N2J

(x ′ − x)α
, Jk>2

x,x′... ≡ 0,

with normalization constants defined as

1
N1

=
∑
x

1
xα
,

1
N2

=
1

`− 1

∑
x<x′

1
(x ′ − x)α

and interaction effectively being short range N1,2 = O(`0) for α > 1.

Compute integrated spectral form factor

Kint(t) =
t∑

τ=1

K(τ)

which is expected to be self-averaging.
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What next?

1 Build rigorous control over the (pseudo)random-phase argument.
2 Consider the case of local interactions α =∞ which needs to be studied

separately as the phases θs are clearly insufficiently pseudo-random then.
3 Introduce quenched disorder and study the ergodicty – MBL transition

from the ergodic side.
4 Study spectral correlations beyond 2-point.
5 Adapt the method to study other RMT-like objects in many-body physics,

e.g. the entanglement spectrum, dynamical correlation functions, ETH...

This work has been supported by the Slovenian Research Agency (ARRS) and
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Next step: Rigorous proof of RMT spectral form factor in NN (α =∞) case

B. Bertini, P. Kos, TP, arXiv:1805.00931

UKI = e−iHIe−iHK , HI[h] ≡
L∑

x=1

{
Jσ(3)

x σ
(3)
x+1 + hxσ

(3)
x

}
, HK ≡ b

L∑
x=1

σ
(1)
j ,
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Dual transfer matrix formulation of spectral form factor

K̄(t) = E{hx}
[
(trU t

KI)(trU t
KI)
∗]
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Dual transfer matrix formulation of spectral form factor

K̄(t) = E{hx}
[
(trU t

KI)(trU t
KI)
∗]

We proved (irrespective of distribution of i.i.d. {hx}):

lim
L→∞

K̄(t) =

{
2t − 1 , t ≤ 5
2t , t ≥ 7

, t odd .
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