Nanoscale Quantum Calorimetry with Electronic Temperature Fluctuations

F. Brange¹, P. Samuelsson¹, B. Karimi², J.P. Pekola²

¹Lund University, ²Aalto University

arXiv:1805.02728

Outline

Calorimetry of heat pulses

- Calorimetry and bolometry
- Fast and sensitive temperature measurements
- Estimates for sub-meV detection

Proposed nanoscale calorimeter

- Hybrid normal-superconductor calorimeter
- Energy transfer statistics

Temperature fluctuations

- Temperature fluctuations, full statistics
- Temperature noise
- Third cumulant and back-action

Outline

Calorimetry of heat pulses

- Calorimetry and bolometry
- Fast and sensitive temperature measurements
- Estimates for sub-meV detection

Proposed nanoscale calorimeter

- Hybrid normal-superconductor calorimeter
- Energy transfer statistics

Temperature fluctuations

- Temperature fluctuations, full statistics
- Temperature noise
- Third cumulant and back-action

Calorimetry

"Calorimetry is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints" - Wikipedia

Here: measurement of energy/heat transfer via temperature change

Absorbed energy

$$E = C\Delta T$$

 $C\,$ - heat capacity

Quantum Calorimetry

Single particle energy detection (particle physics Kilbourne et al, Phys. Today 99)

• Ideal operation (linear $\Delta T \ll T_{\rm b}$, noise free)

$$T(t) = T_{\rm b} + \Delta T e^{-t/\tau}, \qquad t \ge 0$$
 $\tau = C/\kappa$

 κ - thermal conductivity, absorber-bath

Particle energy

$$\varepsilon = C\Delta T$$

Nanoscale calorimeters and bolometers

Early experiments

Electron temperature in metal bolometers,

 $au_{ ext{e-e}} \ll au$

- X-ray detection Nahum, Martinis, APL 95
- RF readout Schmidt et al, PRB 04

Large sensitivity Schmidt et al, APL 05

Largely space application driven

Recent Aalto results

(also B. Karimi presentation, Friday)

Gasparinetti et al, PR App 14, Govenius et al, PRL 16, Viisanen and Pekola, PRB 2018,....

- Fast, sensitive thermometry, effectively non-invasive.
- Small absorber volume small heat capacity.
- Small background noise.

Typical parameters

$$C \sim 10^3 - 10^5 k_{\rm B}$$
 $\tau \sim 1 - 10 \mu s$

$$T_{
m b} \sim 30-100~{
m m}K$$
 (effective bath)

Can we extend to quantum calorimetry for sub meV-energies?

Energy quanta detection and fluctuations

Fluctuation-dissipation like relation

$$\langle \delta T_{\rm e}(t) \delta T_{\rm e}(t') \rangle = \frac{k_{\rm B} T_{\rm b}^2}{C} e^{-|t-t'|/\tau},$$

⇒ amplitude of fluctuations

$$\sqrt{\langle \delta T_{\rm e}^2(t) \rangle} = T_{\rm b} (k_{\rm B}/C)^{1/2}$$

Signal-to-noise ratio (SNR), $\Delta T_{
m e} = arepsilon/C$

$$\Delta T_{\rm e}/\sqrt{\langle \delta T_{\rm e}^2 \rangle} = \varepsilon/[T_{\rm b}\sqrt{k_{\rm B}C}]$$

Typical parameters for single energy quanta detection

$$\varepsilon = 200 \; \mu eV, C = 10^3 k_{\rm B} \quad \begin{cases} T_{\rm b} = 5 \; {\rm m}K & --- \\ T_{\rm b} = 30 \; {\rm m}K & --- \end{cases} \qquad {\rm SNR} \; {\rm 15} \\ {\rm SNR} \; {\rm 2.4}$$

Ex: Al gap $\Delta \approx 200 \mu eV$, 50 GHz microwave photon

Careful treatment of fluctuations needed!

Stochastic treatment of all transfer events

Probability distribution of total energy transfer (during time t_0)

$$P_{\sigma}(E, T_{\rm e}) = \frac{1}{2\pi} \int d\xi_{\sigma} e^{-iE\xi_{\sigma} + t_0 F_{\sigma}(\xi_{\sigma}, T_{\rm e})}$$
 $\sigma = i, b$

Injection of particles (i) and absorber-bath (b) transfers, $T_{
m e}$ constant.

Poisson particle transfer statistics: cumulant generating function van den Berg et al NJP 15

$$F_{\sigma}(\xi_{\sigma},T_{\rm e}) = \Gamma_{\sigma}(T_{\rm e}) \left[\int d\varepsilon e^{i\varepsilon\xi_{\sigma}} P_{\sigma}(\varepsilon,T_{\rm e}) - 1 \right],$$
 Particle transfer rate Particle energy distribution

Outline

Calorimetry of heat pulses

- Calorimetry and bolometry
- Fast and sensitive temperature measurements
- Estimates for sub-meV detection

Proposed nanoscale calorimeter

- Hybrid normal-superconductor calorimeter
- Energy transfer statistics

Temperature fluctuations

- Temperature fluctuations, full statistics
- Temperature noise
- Third cumulant and back-action

Normal-superconductor set-up

Parameters

- Tunneling conductance $G_{
 m T}$
- Phonon coupling constant Σ
- Temperatures $T_{\rm s}, T_{\rm b}, T_{\rm e}(t)$
- Applied bias V

Right superconductor

- Transparent, ohmic contact
- Suppresses potential fluctuations
- Perfect heat mirror

Time scales and assumptions

Hot-electron regime

Absorber relaxation times

Additional assumptions

- No standard and inverse proximity effect
- No unwanted heating, V does not affect $T_{
 m s}$

Quasi-equilibrium

$$au_{\mathrm{e-e}} \ll au$$
, $1/\Gamma_{\mathrm{i}}$

Electronic distribution

$$f_e(E) = \left[1 + e^{E/k_B T_e(t)}\right]^{-1}$$

• Well defined $T_{\rm e}(t)$

Well separated pulses

Injector – absorber, electron tunnelling

Quasiparticle picture

Spectral tunneling rates

Standard expressions

$$\Gamma_{\pm}^{i}(\varepsilon) = (G_{\rm T}/e^2)\nu_{\rm S}(\varepsilon - eV)f_{\pm}(\varepsilon - eV, T_{\rm s})f_{\mp}(\varepsilon, T_{\rm e})$$

with

$$\nu_{\rm S}(\varepsilon) = |\varepsilon|/\sqrt{\varepsilon^2 - \Delta^2}\theta(|\varepsilon| - \Delta)$$

Energy counting factors

$$f_{+}(\varepsilon,T) = (e^{\varepsilon/[k_{\rm B}T]} + 1)^{-1}, f_{-}(\varepsilon,T) = 1 - f_{+}(\varepsilon,T)$$

superconductor Normal absorber

Cumulant generating function

$$F_{
m i}(\xi_{
m i},T_{
m e})=\int darepsilon \left[\Gamma^{
m i}_{+}\left(e^{i\xi_{
m i}arepsilon}-1
ight)+\Gamma^{
m i}_{-}\left(e^{-i\xi_{
m i}arepsilon}-1
ight)
ight]$$

Rate into absorber

Rate out of absorber

Cumulants from $(-i)^n \partial_{\xi_i}^n F(\xi_i, T_e)|_{\xi_i=0}$, giving current and noise

$$I_{\mathrm{i}}^{E} = \int darepsilon arepsilon \left[\Gamma_{+}^{\mathrm{i}} - \Gamma_{-}^{\mathrm{i}}
ight] \qquad \qquad S_{\mathrm{i}}^{E} = \int darepsilon arepsilon^{2} \left[\Gamma_{+}^{\mathrm{i}} + \Gamma_{-}^{\mathrm{i}}
ight]$$

Tunneling rate and energy distribution

$$\Gamma_{\rm i}(T_{\rm e}) = \int d\varepsilon \left[\Gamma_{+}^{\rm i}(\varepsilon) + \Gamma_{-}^{\rm i}(\varepsilon) \right]$$
$$P_{\rm i}(\varepsilon, T_{\rm e}) = \left[\Gamma_{+}^{\rm i}(\varepsilon) + \Gamma_{-}^{\rm i}(-\varepsilon) \right] / \Gamma_{\rm i}$$

Single energy injection

Relevant regime $k_{
m B}T_{
m s}, k_{
m B}T_{
m e} \ll \Delta$, three cases with well defined energies

$$\varepsilon_{\rm I} = \Delta, \ \varepsilon_{\rm II} = -\Delta, \ \varepsilon_{\rm III} = eV - \Delta$$

for

$$V=0,T_{
m s}\gg T_{
m e}$$
 (I) $V=0,T_{
m s}\ll T_{
m e}$ (II)

 \Rightarrow

$$T_{
m s}(1-e|V|/\Delta) \ll T_{
m e} \ll e|V|/k_{
m B}$$
 (III)

generating function $g=\sqrt{2\pi}G_{\mathrm{T}}\Delta/e^2$, $\,c_{lpha}$ constant

$$F_{\rm i}^{(\alpha)}(\xi_{\rm i}, T_{\rm e}) = gc_{\alpha} \left(e^{i\varepsilon_{\alpha}\xi_{\rm i}} - 1 \right), \quad \alpha = {\rm I, II, III}$$

Uncorrelated/Poisson injection of particles with energy ε_{α}

Bath – absorber, phonons

Bath phonon picture

Absorber Bath

Spectral rates

Standard expressions, 3D-phonons in metals

$$\Gamma_{\pm}^{\rm b}(\varepsilon) = -\Sigma \mathcal{V}/[24k_{\rm B}^5\zeta(5)]\varepsilon^3 n(\pm \varepsilon, T_{\rm b})n(\mp \varepsilon, T_{\rm e})$$

with Riemann $\zeta(x)$,

$$n(\varepsilon, T) = (e^{\varepsilon/[k_{\rm B}T]} - 1)^{-1}$$

and the absorber volume \mathcal{V} .

Cumulant generating function

$$F_{\mathrm{b}}(\xi_{\mathrm{b}}, T_{\mathrm{e}}) = \int darepsilon \left[\Gamma^{\mathrm{b}}_{+} \left(e^{i \xi_{\mathrm{b}} arepsilon} - 1 \right) + \Gamma^{\mathrm{b}}_{-} \left(e^{-i \xi_{\mathrm{b}} arepsilon} - 1 \right) \right]$$

Cumulants $S_{\rm b}^{(n)} = \partial_{\xi_{\rm b}}^n F_{\rm b}(\xi_{\rm b}, T_{\rm e})|_{\xi_{\rm b}=0}$ are $(n_{\pm} = n + (7 \pm 1)/2, n = 1, 2...)$

$$S_{
m b}^{(n)} = \Sigma \mathcal{V} k_{
m B}^{n-1} rac{\zeta(n_\pm)(n+3)!}{24\zeta(5)} \left(T_{
m e}^{n+4} \pm T_{
m b}^{n+4}\right),$$
 - Odd n exact Even n within

- Even n within 2%

Bath – absorber, phonons

Energy current and noise

$$S_{
m b}^{(1)} = \Sigma \mathcal{V}(T_{
m e}^5 - T_{
m b}^5)$$
 Wellstood et al, PRB 94

$$S_{
m b}^{(2)} \propto \Sigma \mathcal{V}(T_{
m e}^6 + T_{
m b}^6)$$
 Karimi, Pekola, JLTP 18

Tunneling rate and energy distribution

$$\Gamma_{\rm b}(T_{\rm e}) = \int d\varepsilon \left[\Gamma_{+}^{\rm b}(\varepsilon) + \Gamma_{-}^{\rm b}(\varepsilon) \right]$$

$$P_{\rm b}(\varepsilon, T_{\rm e}) = [\Gamma_{+}^{\rm b}(\varepsilon) + \Gamma_{-}^{\rm b}(-\varepsilon)]/\Gamma_{\rm b}$$

Emission and absorption of phonons

Outline

Calorimetry of heat pulses

- Calorimetry and bolometry
- Fast and sensitive temperature measurements
- Estimates for sub-meV detection

Proposed nanoscale calorimeter

- Hybrid normal-superconductor calorimeter
- Energy transfer statistics

Temperature fluctuations

- Temperature fluctuations, full statistics
- Temperature noise
- Third cumulant and back-action

Full temperature statistics

Rates $\Gamma_{\rm i}(T_{\rm e})$ and $\Gamma_{\rm b}(T_{\rm e})$ depend on electron temperature \Rightarrow Back-action of heat transfer induced $T_{\rm e}$ -fluctuations on rates.

Resulting, full, temperature fluctuations investigated via

$$P(heta)$$
 , $heta = \int [T_{
m e}(t) - \overline{T}_{
m e}] dt$

Stochastic path integral approach Jordan et al, J. Mat. Phys 04, Battista et al, PRL 13.

- Shifted away from 0.
- Non-Gaussian fluctuations.

Cumulant expansion

Cumulant expansion, in terms of energy current cumulants

$$\langle \langle \mathcal{E}^n(T_e) \rangle \rangle = (-i)^n \partial_{\xi}^n F(\xi, T_e)|_{\xi=0} \qquad F(\xi, T_e) = F_i(\xi, T_e) + F_b(\xi, T_e)$$

gives average temperature $\,\overline{T}_{
m e}$ from

$$\langle \mathcal{E}(\overline{T}_{\rm e})\rangle = 0.$$

The temperature noise is, with $\kappa(T_{
m e})=i\partial_{T_{
m e}}\partial_{\xi}F(\xi,T_{
m e})|_{\xi=0}$,

$$S_{\mathrm{Te}}^{(2)} = \frac{1}{\kappa^2} \langle\!\langle \mathcal{E}^2(T_{\mathrm{e}}) \rangle\!\rangle$$
 ______ never measured!

and the third cumulant

$$S_{\rm Te}^{(3)} = \frac{1}{\kappa^3} \left[\langle\!\langle \mathcal{E}^3(T_{\rm e}) \rangle\!\rangle + 3 \langle\!\langle \mathcal{E}^2(T_{\rm e}) \rangle\!\rangle \frac{d}{dT_{\rm e}} \frac{\langle\!\langle \mathcal{E}^2(T_{\rm e}) \rangle\!\rangle}{\kappa(T_{\rm e})} \right]$$
 all evaluated at $\overline{T}_{\rm e}$.

back action term

Average temperature

The average temperature equation is

$$h(T_{\rm s}) + h(\overline{T}_{\rm e}) \left[-\cosh\left(\frac{eV}{k_{\rm B}\overline{T}_{\rm e}}\right) + \frac{eV}{\Delta}\sinh\left(\frac{eV}{k_{\rm B}\overline{T}_{\rm e}}\right) \right] = \frac{1}{5r} \left(\overline{T}_{\rm b}^5 - 1\right)$$

where

$$h(T) = \sqrt{\frac{k_{\rm B}T}{\Delta}} e^{-\frac{\Delta}{k_{\rm B}T}}$$
 $r = \frac{\sqrt{2\pi}G_{\rm T}\Delta^2}{T_{\rm b}e^2\kappa}$

Injection tunnel rates

$$\Gamma_{\rm i} = g \left[h(T_{\rm s}) + h(T_{\rm b}) \cosh \left(eV/k_{\rm B}T_{\rm b} \right) \right]$$

Well separated injection events $\Gamma_{
m i} au \ll 1$ gives bias limits $T_{
m s}^*$, $V_{
m s}^*$.

Temperature noise

Thermal bias

$$V = 0$$

The second cumulant, for $~eta\gg \ln(r)\gg 1$, $~eta=\Delta/(k_{
m B}T_{
m b})$, $~q=\overline{T}_{
m e}/T_{
m b}$

$$S_{\rm T_e}^{(2)}/S_0^{(2)} = \frac{1+q^6}{2q^8} + \frac{\beta(q^5-1)}{10q^8} \qquad S_0^{(2)} = 2k_{\rm B}T_{\rm b}^2/\kappa$$
 bath noise injector noise

peak around $T_{
m s}^*$ $S_{
m T_e,max}^{(2)}/S_0^{(2)} \approx 0.035 \beta$ injector component bath component bath component $T_{
m b} = 0.01 \Delta/k_{
m B}, C = 20 \Delta/T_{
m b}$ suppression from

increasing $\kappa(T_{\rm e})$

$$T_{\rm s} = T_{\rm b}$$

The second cumulant, with $\tilde{\beta} = \beta(1 - eV/\Delta)$

Third cumulant

Three terms: bath, injector and back-action

$$S_0^{(3)} = 6k_{\rm B}^2 T_{\rm b}^3 / \kappa^2$$

injector component

----- bath component

— · — · – back-action component

- lacktriangle Features around $T_{
 m s}^*$, V^*
- Decays due to inreasing $\kappa(\overline{T}_{\mathrm{e}})$

Conclusions

- Towards single energy quantum calorimetry
- Hybrid normal-superconductor system
- Full temperature statistics
- Parameter estimates and limits

arXiv:1805.02728