Role of work in matter exchange between finite quantum systems

Peter Talkner

Institut für Physik, Universität Augsburg, Augsburg, Germany

Mainz, May 2018

Acknowledgments

Juyeon Yi, Euijin Jeon, Yong Woon Kim

Michele Campisi

Peter Hänggi

Overview

- Onsager relations
- Contacting two pieces of matter with different temperatures and chemical potentials
- Fluctuation relations for exchanged energy and particle numbers
- Work and heat
- Zero work: Onsager OK!
- Finite work: Onsager fails!
- Example
- Conclusions
- E. Jeon, P. Talkner, J. Yi, Y.W. Kim, New J. Phys. 19, 093006 (2017).

Onsager relations

$$\begin{split} L_{Q,N} &= L_{N,Q}: \text{ reciprocity relation} \\ L &= \begin{pmatrix} L_{Q,Q} & L_{Q,N} \\ L_{Q,N} & L_{N,N} \end{pmatrix}: \text{ positive} \\ \text{semi-definite, controls the flow direc-} \end{split}$$

semi-definite, controls the flow direction

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$$\dot{Q} = L_{Q,Q} \Delta \beta + L_{Q,N} \Delta (-\beta \mu)$$
$$\dot{N} = L_{N,Q} \Delta \beta + L_{N,N} \Delta (-\beta \mu)$$

Conditions: near equilibrium, i.e.
$$\begin{split} |\Delta\beta| &\equiv |\frac{1}{k_BT_1} - \frac{1}{k_BT_2}| \ll \bar{\beta} \equiv (\frac{1}{k_BT_1} + \frac{1}{k_BT_2})/2 \\ |\Delta\beta\mu| &\equiv |\frac{\mu_1}{k_BT_1} - \frac{\mu_2}{k_BT_2}| \ll (\frac{\mu_1}{k_BT_1} + \frac{\mu_2}{k_BT_2})/2 \end{split}$$
 The exchanged quantities (here Q and N) must undergo a Gauss-Markov process obeying the principle of detailed balance. For non-Markovian processes, as e.g. caused by the presence of other slow variables, deviations from the Onsager reciprocity relations may occur.*

Based on a fluctuation relation, Jarzynski and Wójcik investigated the statistics of transferred heat for classical systems.[†] Likewise, Andrieux et al. derived the Onsager relations for heat and particle transport between several quantum mechanical reservoirs.[‡] Both derivations rely on the assumption of very large but finite reservoirs.

*G.F. Hubmer, U.M. Titulaer, J. Stat. Phys. 49, 331 (1987).

[†]C. Jarzynski, D.K. Wóicik, Phys. Rev. Lett. **92**, 230602 (2004).

[‡]D. Andrieux, P. Gaspard, T. Monnai, S. Tasaki, New J. Phys. **11**, 043014 (2009).

Protocol

$$\begin{split} \hat{H}(t) &= \hat{H}_A + \hat{H}_B + \hat{V}(t) \\ \hat{V}(t) &= \Theta(t)\Theta(\tau - t)V \\ [\hat{H}_\alpha, \hat{N}_{\alpha'}] &= 0, \ \alpha, \alpha' = A, B \\ [V, \hat{N}_A + \hat{N}_B] &= 0 \end{split}$$

grand canonical initial state:

$$\hat{\rho}(0) = \prod_{\alpha = A,B} e^{-\beta_{\alpha}(\hat{H}_{\alpha} - \mu_{\alpha}\hat{N}_{\alpha})} / \mathcal{Z}_{\alpha}$$
$$\mathcal{Z}_{\alpha} = \mathsf{Tr}_{\alpha} e^{-\beta_{\alpha}(\hat{H}_{\alpha} - \mu_{\alpha}\hat{N}_{\alpha})}$$

Fluctuation relation

Potential measurement results: Eigenvalues E_j^A , N_j^A , E_j^B , N_j^B of the respective operators; j = i, f: complete set of quantum numbers. From the two measurements the exchanged energies,

 $\Delta E_{\alpha} = E_{f}^{\alpha} - E_{i}^{\alpha}$, and particle numbers, $\Delta N = N_{f}^{A} - N_{i}^{A} = -N_{f}^{B} + N_{i}^{B}$, follow with probability[§]

$$P_{\Delta E}(\Delta E_A, \Delta E_B, \Delta N) = \sum_{\substack{f,i \\ \times}} p(f,i)\delta(\Delta N - N_f^A + N_i^A) \\ \times \prod_{\alpha = A, B} \delta(\Delta E_\alpha - E_f^\alpha + E_i^\alpha)$$

$$p(f,i) = T_{f|i}P_i, \quad T_{f|i} = |\langle f|\hat{U}|i\rangle|^2 = T_{i|f}, \quad \hat{U} = e^{-i(\hat{H}_A + \hat{H}_B + V)\tau/\hbar}$$
$$P_i = \prod_{\alpha = A,B} e^{-\beta_\alpha (E_i^\alpha - \mu_\alpha N_i^\alpha)} / \mathcal{Z}_\alpha, \quad P_i = e^{M_{f,i}}P_f$$
$$M_{f,i} = \sum_{\alpha} \beta_\alpha \left[(E_f^\alpha - E_i^\alpha) - \mu_\alpha (N_f^\alpha - N_i^\alpha) \right]$$

[§]M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011).

$$\frac{P_{\Delta E}(\Delta E_A, \Delta E_B, \Delta N)}{P_{\Delta E}(-\Delta E_A, -\Delta E_B, -\Delta N)} = e^{\sum_{\alpha} \beta_{\alpha}(\Delta E_{\alpha} - \mu_{\alpha} \Delta N_{\alpha})}$$

Introducing work and heat as

$$W = \Delta E_A + \Delta E_B$$
, $Q = (\Delta E_A - \Delta E_B)/2 - \bar{\mu} \Delta N$, $\bar{\mu} = (\mu_A + \mu_B)/2$

one obtains a fluctuation relation for work, heat and exchanged particle number:

$$rac{P_{WQ}(W,Q,\Delta N)}{P_{WQ}(-W,-Q,-\Delta N)}=e^{ar{eta}W+\Deltaeta Q-ar{eta}\Delta\mu\Delta N}$$

 $P_{WQ}(W, Q, \Delta N) = P_{\Delta E}(W/2 + Q + \bar{\mu}\Delta N, W/2 - Q - \bar{\mu}\Delta N, \Delta N)$

Vanishing Work

Assume W = 0 is the only possible outcome:

$$P_{WQ}(W, Q, \Delta N) = \delta(W) P_Q(Q, \Delta N)$$

$$\implies$$

$$P_Q(Q, \Delta N) = e^{Q\Delta\beta - \Delta N\bar{\beta}\Delta\mu} P_Q(-Q, -\Delta N)$$

$$\int \frac{dQd\Delta N}{\Rightarrow}$$

$$\langle e^{Q\Delta\beta - \Delta N\bar{\beta}\Delta\mu} \rangle = 1$$
Jensen
$$\Delta\beta\langle Q \rangle - \bar{\beta}\Delta\mu\langle\Delta N \rangle \ge 0$$

Usual directionality of average heat and particle flow not only close to equilibrium.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

W = 0, close to equilibrium $|\Delta\beta Q|, |\bar{\beta}\Delta\mu\Delta N| \ll 1$: $P_Q(Q,\Delta N) = \underbrace{e^{Q\Delta\beta - \Delta N\bar{\beta}\Delta\mu}}_{P_Q(-Q,-\Delta N)} P_Q(-Q,-\Delta N)$ $\approx 1 + \Delta \beta Q - \bar{\beta} \Delta u \Delta N$ $\int dQ d\Delta NQ \times ..., \int dQ d\Delta N\Delta N \times ...:$ $\langle Q \rangle = \frac{1}{2} \left[\langle Q^2 \rangle_0^0 \Delta \beta - \langle Q \Delta N \rangle_0^0 \bar{\beta} \Delta \mu \right]$ $\langle \Delta N \rangle = \frac{1}{2} \left[\langle Q \Delta N \rangle_0^0 \Delta \beta - \langle \Delta N^2 \rangle_0^0 \bar{\beta} \Delta \mu \right]$ $\langle \cdot \rangle_0^0 = \int dQ d\Delta N \cdot P_Q^{\Delta \beta = \Delta \mu = 0}(Q, \Delta N)$ If one can assume that after a short time $t \ll \tau$ a quasi-stationary

state establishes extending up to τ , $Q \approx \dot{q}\tau$ and $\Delta N \approx \dot{n}\tau$ with constant heat and particle fluxes \dot{q} and \dot{n} . These fluxes are related by a symmetric and non-negative matrix to the affinity differences $\Delta\beta$ and $-\bar{\beta}\Delta\mu$ and hence comply with the Onsager relations. Finite work, close to equilibrium $\Delta\beta \ll \bar{b}, \ \Delta\mu \ll \bar{\mu}, \ W \neq 0:$ $\langle Q \rangle = \langle X^{\beta}(\tau) - X^{\beta}(0) \rangle_{0} + C_{\beta,\beta} \Delta\beta + C_{\beta,\mu}(-\bar{\beta}\Delta\mu)$ $\langle \Delta N \rangle = \langle X^{\mu}(\tau) - X^{\mu}(0) \rangle_{0} + C_{\mu,\beta} \Delta\beta + C_{\mu,\mu}(-\bar{\beta}\Delta\mu)$ $x_{j}^{\beta} = \frac{1}{2} [\delta E_{j}^{A} - \delta E_{j}^{B} - \bar{\mu}(\delta N_{j}^{A} - \delta N_{j}^{B})], \ C_{\chi,\eta} = -\langle [X^{\chi}(\tau) - X^{\chi}(0)] X^{\eta}(0) \rangle_{0}$ $x_{j}^{\mu} = \frac{1}{2} (\delta N_{j}^{A} - \delta N_{j}^{B}), \ \delta Y_{j}^{\alpha} = Y_{j}^{\alpha} - \sum_{j} Y_{j}^{\alpha} P_{j}^{0}, \ Y_{j}^{\alpha} = E_{j}^{\alpha}, N_{j}^{\alpha}$ $\langle \cdot \rangle_{0} = \sum_{i \in \cdot} T_{f|i} P_{i}^{0}, \ P_{i}^{0} = \prod_{\alpha = A, B} e^{-\bar{\beta}(E_{i}^{\alpha} - \bar{\mu}N_{i}^{\alpha})} / Z_{0}^{\alpha}$

Deviations from Onsager:

(i) Offset $\langle X^{\chi}(\tau) - X^{\chi}(0) \rangle_0$ independent of affinity differences $\Delta \beta$ and $\Delta \mu$, leading to spontaneous transport and possibly to transport opposite to the "normal" direction.

(ii) Reciprocity relations are violated: $C_{\chi,\eta} \neq C_{\eta,\chi}$.

Both deviations are a consequence of contacting and separating the two parts, an operation that performs work on the total system and breaks the time translational symmetry.

Modified heat and particle number

$$\langle Q(e^{-ar{eta}W}+1)
angle = 2\left(L_{eta,eta}\Deltaeta+L_{eta,\mu}(-ar{eta}\Delta\mu)
ight) \ \langle \Delta N(e^{-ar{eta}W}+1)
angle = 2\left(L_{\mu,eta}\Deltaeta+L_{\mu,\mu}(-ar{eta}\Delta\mu)
ight)$$

$$2L_{\chi,\eta} = \langle (X^{\chi}(\tau) - X^{\chi}(0)) (X^{\eta}(\tau) - X^{\eta}(0)) \rangle_0$$

L: symmetric and non-negative definite.

D = L - C: deviation from the transport matrix governing Q and Δn .

$$2D_{\chi,\eta}=\langle \left(X^{\chi}(au)-X^{\chi}(0)
ight)\left(X^{\eta}(au)+X^{\eta}(0)
ight)
angle_{0}$$

Example

$$\begin{split} \hat{H}_{\alpha} &= -\gamma \sum_{x_{\alpha}=1}^{M_{\alpha}-2} \left[\hat{c}_{x_{\alpha}}^{\dagger} \hat{c}_{x_{\alpha}+1} + \hat{c}_{x_{\alpha}+1}^{\dagger} \hat{c}_{x_{\alpha}} \right], \quad \alpha = A, B \\ V &= -\gamma_{C} \left(\hat{c}_{1_{A}}^{\dagger} \hat{c}_{1_{B}} + \hat{c}_{1_{B}}^{\dagger} \hat{c}_{1_{A}} \right) \\ \hat{N}_{\alpha} &= \sum_{x_{\alpha}=1}^{M_{\alpha}-1} \hat{c}_{x_{\alpha}}^{\dagger} \hat{c}_{x_{\alpha}} \end{split}$$

 $\hat{c}_{x_{\alpha}}^{\dagger}$ ($\hat{c}_{x_{\alpha}}$): Fermion creation (annihilation) operator of a particle at site x_{α} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Spontaneous transport

 $\Delta M = M_A - M_B$, $\beta_A = \beta_B = 10/\gamma$, $\mu_A = \mu_B = 0.2\gamma$, $\gamma_C = 0.1\gamma$. $\tau_B = M_B \hbar/\gamma$: round trip time in B.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Inversion of transport direction

Amount of heat (left) and particles (right) transported at $1.5\tau_B$. At small affinity biases the transport goes into the "wrong" direction. $\delta_e = 2\gamma/M_B$ denotes the level splitting near the band center. $\Delta M = 2$.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへの

Transport asymmetry

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Conclusions

- Contacting and separating two systems changes the total energy and breaks the time-translation symmetry.
- This may lead to spontaneous transport in the absence of any affinity bias and to deviations of the transport matrix from the Onsager symmetry.
- While the deviation D of the actual transport-matrix C from the symmetric and positive matrix L initially changes jump-like, it stays almost constant, and C itself changes piece-wise linearly with breaks at multiples of the signal propagation time in the smaller system.
- In the limit of two large systems, the work done by contacting and separating them can be neglected and the Onsager symmetries are recovered. Spontaneous transport may be seen only after a large time.

For more details see:

E. Jeon, P. Talkner, J.Yi, Y.W. Kim, New J. Phys. 19, 093006, (2017).