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Overview

I Onsager relations

I Contacting two pieces of matter with different temperatures
and chemical potentials

I Fluctuation relations for exchanged energy and particle
numbers

I Work and heat

I Zero work: Onsager OK!

I Finite work: Onsager fails!

I Example

I Conclusions
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Onsager relations

LQ,N = LN,Q : reciprocity relation

L =

(
LQ,Q LQ,N
LQ,N LN,N

)
: positive

semi-definite, controls the flow direc-
tion

Q̇ = LQ,Q∆β + LQ,N∆(−βµ)

Ṅ = LN,Q∆β + LN,N∆(−βµ)

Conditions: near equilibrium, i.e.
|∆β| ≡ | 1

kBT1
− 1

kBT2
| � β̄ ≡ ( 1

kBT1
+ 1

kBT2
)/2

|∆βµ| ≡ | µ1
kBT1

− µ2
kBT2
| � ( µ1

kBT1
+ µ2

kBT2
)/2



The exchanged quantities (here Q and N) must undergo a
Gauss-Markov process obeying the principle of detailed balance.
For non-Markovian processes, as e.g. caused by the presence of
other slow variables, deviations from the Onsager reciprocity
relations may occur.∗

Based on a fluctuation relation, Jarzynski and Wójcik investigated
the statistics of transferred heat for classical systems.† Likewise,
Andrieux et al. derived the Onsager relations for heat and particle
transport between several quantum mechanical reservoirs.‡ Both
derivations rely on the assumption of very large but finite
reservoirs.

∗G.F. Hubmer, U.M. Titulaer, J. Stat. Phys. 49, 331 (1987).
†C. Jarzynski, D.K. Wóicik, Phys. Rev. Lett. 92, 230602 (2004).
‡D. Andrieux, P. Gaspard, T. Monnai, S. Tasaki, New J. Phys. 11, 043014

(2009).



Protocol

Ĥ(t) = ĤA + ĤB + V̂ (t)

V̂ (t) = Θ(t)Θ(τ − t)V

[Ĥα, N̂α′ ] = 0, α, α′ = A,B

[V , N̂A + N̂B ] = 0

grand canonical initial state:

ρ̂(0) =
∏

α=A,B

e−βα(Ĥα−µαN̂α)/Zα

Zα = Trαe
−βα(Ĥα−µαN̂α)



Fluctuation relation
Potential measurement results: Eigenvalues EA

j ,N
A
j ,E

B
j ,N

B
j of the

respective operators; j = i , f : complete set of quantum numbers.
From the two measurements the exchanged energies,
∆Eα = Eαf − Eαi , and particle numbers,
∆N = NA

f − NA
i = −NB

f + NB
i , follow with probability§

P∆E (∆EA,∆EB ,∆N) =
∑
f ,i

p(f , i)δ(∆N − NA
f + NA

i )

×
∏

α=A,B

δ(∆Eα − Eαf + Eαi )

p(f , i) = Tf |iPi , Tf |i = |〈f |Û|i〉|2 = Ti |f , Û = e−i(ĤA+ĤB+V )τ/~

Pi =
∏

α=A,B

e−βα(Eαi −µαN
α
i )/Zα, Pi = eMf ,iPf

Mf ,i =
∑
α

βα [(Eαf − Eαi )− µα(Nα
f − Nα

i )]

§M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011).



P∆E (∆EA,∆EB ,∆N)

P∆E (−∆EA,−∆EB ,−∆N)
= e

∑
α βα(∆Eα−µα∆Nα)

Introducing work and heat as

W = ∆EA+∆EB , Q = (∆EA−∆EB)/2−µ̄∆N, µ̄ = (µA+µB)/2

one obtains a fluctuation relation for work, heat and exchanged
particle number:

PWQ(W ,Q,∆N)

PWQ(−W ,−Q,−∆N)
= e β̄W+∆βQ−β̄∆µ∆N

PWQ(W ,Q,∆N) = P∆E (W /2+Q + µ̄∆N,W /2−Q− µ̄∆N,∆N)



Vanishing Work

Assume W = 0 is the only possible outcome:

PWQ(W ,Q,∆N) = δ(W )PQ(Q,∆N)

=⇒

PQ(Q,∆N) = eQ∆β−∆Nβ̄∆µPQ(−Q,−∆N)∫
dQd∆N
=⇒

〈eQ∆β−∆Nβ̄∆µ〉 = 1

Jensen
=⇒

∆β〈Q〉 − β̄∆µ〈∆N〉 ≥ 0

Usual directionality of average heat and particle flow not only close
to equilibrium.



W = 0, close to equilibrium

|∆βQ|, |β̄∆µ∆N| � 1:

PQ(Q,∆N) = eQ∆β−∆Nβ̄∆µ︸ ︷︷ ︸
≈1+∆βQ−β̄∆µ∆N

PQ(−Q,−∆N)

∫
dQd∆NQ×...,

∫
dQd∆N∆N×...:

〈Q〉= 1

2

[
〈Q2〉00∆β − 〈Q∆N〉00β̄∆µ

]
〈∆N〉= 1

2

[
〈Q∆N〉00∆β − 〈∆N2〉00β̄∆µ

]
〈·〉00 =

∫
dQd∆N · P∆β=∆µ=0

Q (Q,∆N)

If one can assume that after a short time t � τ a quasi-stationary
state establishes extending up to τ , Q ≈ q̇τ and ∆N ≈ ṅτ with
constant heat and particle fluxes q̇ and ṅ. These fluxes are related
by a symmetric and non-negative matrix to the affinity differences
∆β and −β̄∆µ and hence comply with the Onsager relations.



Finite work, close to equilibrium

∆β � b̄, ∆µ� µ̄, W 6= 0:

〈Q〉= 〈X β(τ)− X β(0)〉0 + Cβ,β∆β + Cβ,µ(−β̄∆µ)

〈∆N〉 = 〈Xµ(τ)− Xµ(0)〉0 + Cµ,β∆β + Cµ,µ(−β̄∆µ)

Xβj = 1
2 [δEA

j −δE
B
j −µ̄(δNA

j −δN
B
j )], Cχ,η=−〈[Xχ(τ)−Xχ(0)]Xη(0)〉0

Xµj = 1
2 (δNA

j −δN
B
j ), δYαj =Yαj −

∑
j Y

α
j P0

j , Yαj =Eαj ,N
α
j

〈·〉0=
∑

i,f ·Tf |iP
0
i , P0

i =
∏
α=A,B e−β̄(Eαi −µ̄N

α
i )/Z0

α

Deviations from Onsager:
(i) Offset 〈Xχ(τ)− Xχ(0)〉0 independent of affinity differences ∆β
and ∆µ, leading to spontaneous transport and possibly to
transport opposite to the “normal” direction.
(ii) Reciprocity relations are violated: Cχ,η 6= Cη,χ.

Both deviations are a consequence of contacting and separating
the two parts, an operation that performs work on the total system
and breaks the time translational symmetry.



Modified heat and particle number

〈Q(e−β̄W + 1)〉 = 2
(
Lβ,β∆β + Lβ,µ(−β̄∆µ)

)
〈∆N(e−β̄W + 1)〉 = 2

(
Lµ,β∆β + Lµ,µ(−β̄∆µ)

)
2Lχ,η = 〈(Xχ(τ)− Xχ(0)) (X η(τ)− X η(0))〉0

L: symmetric and non-negative definite.
D = L− C : deviation from the transport matrix governing Q and
∆n.

2Dχ,η = 〈(Xχ(τ)− Xχ(0)) (X η(τ) + X η(0))〉0



Example

Ĥα = −γ
Mα−2∑
xα=1

[
ĉ†xα ĉxα+1 + ĉ†xα+1ĉxα

]
, α = A,B

V = −γC
(
ĉ†1A ĉ1B + ĉ†1B ĉ1A

)
N̂α =

Mα−1∑
xα=1

ĉ†xα ĉxα

ĉ†xα (ĉxα): Fermion creation (annihilation) operator of a particle at
site xα.



Spontaneous transport
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Inversion of transport direction
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Transport asymmetry
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Conclusions

I Contacting and separating two systems changes the total
energy and breaks the time-translation symmetry.

I This may lead to spontaneous transport in the absence of any
affinity bias and to deviations of the transport matrix from the
Onsager symmetry.

I While the deviation D of the actual transport-matrix C from
the symmetric and positive matrix L initially changes
jump-like, it stays almost constant, and C itself changes
piece-wise linearly with breaks at multiples of the signal
propagation time in the smaller system.

I In the limit of two large systems, the work done by contacting
and separating them can be neglected and the Onsager
symmetries are recovered. Spontaneous transport may be seen
only after a large time.

For more details see:
E. Jeon, P. Talkner, J.Yi, Y.W. Kim, New J. Phys. 19, 093006, (2017).


