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QUESTION: Laws of thermodynamics same in quantum?

— strong coupling : non-Markovian system dynamics?
— initial state with system and reservoir entangled?

OBJECTIVE: laws of thermodynamics + fluctuation theorems

[i] Experimental examples

[ii] Irreversibility & Fluctuation theorems
= stochastic thermodynamics (classical)
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Experiment: photosynthetic molecule
Gerster et al (2012)
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Experiment: photosynthetic molecule
Gerster et al (2012)

Theory (weak-coupling or linear-response)
Sanchez & Biittiker(2011)
Entin-Wohlmann et al (2011-2015)
Strasberg-Schaller-Brandes-Esposito (2013)
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Htot(t) = Hsys(t) + Z [Ha + Ua tﬂ
Experiment: photosynthetic molecule 4 cres
Gerster et al (2012)
Reservoir o: H,, = Z Eakc kCak <= non-interacting

Coupling e reservoir a: V, (t) Inhqpry (ffeak-gouplipg or linear-response)
Sanchez & Bittiker(2011)

Coupling ph reservoir a:: V, ( E Mmd&%@uﬁzmﬁ C.

Strasberg -Schaller-Brandes-Esposito (2013)

HAMILTONIAN NOT ENOUGH!!




NEED TO DEFINE IRREVERSIBILITY

CLASSICAL: Boltzmann postulated
loss of ALL microscopic info = THERMODYNAMICS

& Example: Fast relaxation to local thermal state
= Boltzmann’s PROOF of 2nd law

& Counter-example: Maxwell’s demon




NEED TO DEFINE IRREVERSIBILITY

CLASSICAL: Boltzmann postulated
loss of ALL microscopic info = THERMODYNAMICS

& Example: Fast relaxation to local thermal state
= Boltzmann’s PROOF of 2nd law

& Counter-example: Maxwell’s demon

QUANTUM: Assume no Maxwell demons in reservoirs
e Quantum system: all info available
e Reservoirs: microscopic info = LOST
= system-reservoir correlations/entanglement = LOST

= Entropy change AS = ASyys + ASies  (drop correlations)




GOOD STATES, BAD STATES and FLUCTUATION THEOREMS

Ne° of “good” states
Total N° states

Pgood -

Entropy:
Sgood = In [ N° of “good” states ]

Sbad = In [ N° of “bad” states |

Getty Images

A fluctuation theorem:

Pbad—)good = Pgood—>bad X exp _ASgood—>bad
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FLUCTUATION THEOREMS & 2" LAW

electrons photons/phonons
§T &, ) Any large reservoir
M-JfLL ::heat at thermal eguilibrium
s Vo | AQ Ag— 29
kgT

Fluctuation theorems:
e Under right conditions Evans-Searles (1994), Crooks (1998)

P(=AS) = P(AS) exp[—AS]

"B
e Universal : Kawasaki (1967), Seifert (2005) 251435
(exp [~ AS]) = 1 Y

e Other relations: Jarzynski (1997), etc

= 2nd law on average (AS) > 0




STOCHASTIC THERMODYNAMICS
for classical markovian systems
Seifert (2005), Schmiedl-Seifert (2007)

QUANTUM superpositions/entanglement
& STRONG COUPLING non-Markovian
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1) EXACT for system+reservoirs review: Campisi, Hanggi, Talkner (2011)

Problem: cannot calculate power outputs ...
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Previous works: quantum thermodynamics

1) EXACT for system+reservoirs review: Campisi, Hanggi, Talkner (2011)

Problem: cannot calculate power outputs ...

2) WEAK-COUPLING = markov ~ classical rate equations

+ coherent superposition review: Kosloff (2013) & see Elouard et al (2017)

Problem: weak-coupling = small power output

3) KELDYSH for strong coupling Ludovico et al (2014)

Non-interacting (quadratic) Hamiltonian Esposito Ochoa Galperin (2015)
Bruch et al (2016)

+ interacting system with adiabatic driving Ludovico et al (2016)

Problem: not general 4 no fluctuation theorems also ambiguity (Ecoupting)




REAL-TIME TRANSPORT THEORY
quantum + non-markov + interactions + far from equilibrium
Schoeller-Schon (1994)

Keldysh in system’s many-body basis
exactly diagonalize Hyy including interactions
with NON-INTERACTING reservoirs in free-particle basis

PRICE TO PAY: system-reservoir interactions = NON-TRIVIAL

& Assumption: initial state is product state

Example Hamiltonian =

B, (t)dl d,+ UJLJHCZInch} +y {Vnkdlék +c.c. + Egélé |+ photon

- terms
interacting coupling electron
system reservoirs




REAL-TIME TRANSPORT THEORY
quantum + non-markov + interactions + far from equilibrium

Schoeller-Schon (1994)
Keldysh in system’s many-body basis

exactly diagonalize Hyy including interactions
with NON-INTERACTING reservoirs in free-particle basis

PRICE TO PAY: system-reservoir interactions = NON-TRIVIAL

& Assumption: initial state is product state

Evolution as function of time :

oA o B o cdDdc >
F A\ T Pt o "
~ ko time
A \JB|U Cv




REAL-TIME TRANSPORT THEORY
quantum + non-markov + interactions + far from equilibrium
Schoeller-Schon (1994)

Keldysh in system’s many-body basis
exactly diagonalize Hyy including interactions
with NON-INTERACTING reservoirs in free-particle basis

PRICE TO PAY: system-reservoir interactions = NON-TRIVIAL

& Assumption: initial state is product state

Evolution as function of time :

ly A B c 4D ¢ P
O O—O0—=® O——O—O0—0-
N ’k Sl time
[t D D= =0) >

A A4 B.W C' A4 A4




ENERGY CONSERVATION

0= <AWdrive> + <AWres> + <AQres> + <AESyS+COupling>

Having defined:
e Reservoir v energy: AFE, = WORK + HEAT
=AW, + AQ, with AQ, = TR AS,

e System non-equilib < CAN'T separate <AEsys+coupling> into work & heat




ENERGY CONSERVATION

0= <AWdrive> + <AWres> + <AQres> + <AEsys+coupling>

Having defined:
e Reservoir v energy: AFE, = WORK + HEAT
=AW, + AQ, with AQ, = TR AS,

e System non-equilib < CAN'T separate <AEsys+Coupling> into work & heat

TECHNICAL DETAILS:

Wy
Energy change in reservoir, A E' e nﬂ{
: W
Energy change in system, A Eqyg i)
to
Wy, emmos N
Energy change in coupling AECouphng nﬂ{ ~~::;§ja_ig‘{:::_ti_____:k
. 473 = T n'
(diagrams same as for currents) Wi
to time




ENTROPY — FLUCTUATION THEOREMS

Assume no Maxwell demon
(no microscopic knowledge of reservoirs)

Entropy change = ASgys + >, AS,  (drop correlations)

{ Reservoir a; AS, = AQa/Ta (Claussius)




ENTROPY — FLUCTUATION THEOREMS

Assume no Maxwell demon
(no microscopic knowledge of reservoirs)

Entropy change = ASgys + >, AS,  (drop correlations)
{ Reservoir a; AS, = AQa/Ta (Claussius)

{ System = non-equilib = von Neumann

Initial system state = its diagonal basis
ﬁsys (t()) =W, p(lnmal) Wg <= diagonal IA)(lnltllal)
& final (reduced) system state = its diagonal basis <= diagonal p(firal)
(final)

HENCE Assgg—m = —1Inpy + lnpggxitial)




TIME REVERSING TRAJECTORIES

Diagonalize system state at beginning at end; with rotations YWy & W

}nx e—ASres(j:E) — ﬁo{*_ &> —*}ﬁ

Ingredient ONE: no{

tO tO t
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= O-G ; w T is time-reverse of n
n"{ }n [Messiah textbook]
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TIME REVERSING TRAJECTORIES

Diagonalize system state at beginning at end; with rotations YWy & W

}nx e—ASres(j:E) — ﬁo{*_ &> —*}ﬁ

Ingredient ONE: no{

to t
/\A—/_\
= DG ; w T is time-reverse of n
n‘){ }n [Messiah textbook]
q A A AR VA A VA VS
Wy
to t time

Ingredient TWO: ASmo=m = — Inp{fi™™) 4 In plinitial

sys 70

algebra FLUCTUATION THEOREMS
similar —> <exp[—AS]> =1 =
stochastic

thermodyn also Crooks & Jarzynski under certain conditions




Fluctuation theorems in APPROXIMATE theories

Any approximation which:
(1) contains a time-reverse for every trajectory

(2) conserves probability

— Fluctuation theorems = no violation of 2nd LAW




Fluctuation theorems in APPROXIMATE theories

Any approximation which:
(1) contains a time-reverse for every trajectory
(2) conserves probability

— Fluctuation theorems —

WORKS FOR STANDARD APPROXIMATION:

Seq. tunnelling approx ~
Irreducible blocks

no violation of 2nd LAW

@
—0

Co-tunnelling approx ~ @7 4 &P
—0

& sum to all orders jo 2| |2| |Z|:|Z| |Z

0;

()




Non-factorizable initial state

Factorized state in the distant past (time tg — —o0)

Define QQ(AS1_,2) as entropy distribution from ¢1 to ¢

P(AS,) = / d(AS1) Q(ASy — AS;) P(AS))

I

< exp [ — ASl_)z)] > =1 with average being over Q(Aslﬁg)

= (AS122) >0

J[ should not measure state at time ¢, otherwise collapse to product state
=> protocol with multiple identical set-ups
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CONCLUSIONS

NON-MARKOVIAN TRAJECTORIES
from all-orders PERTURBATION THEORY

perturbation = sys-reservoir coupling

& get FLUCTUATION THEOREMS for arbitrary quantum machine
1 1

stochastic thermodyn, 2ND LAW, etc strong-coupling, interacting, t-dependent, etc

& for FAMILIES OF sequential tunnelling = Born-Markov

- lling = 1 -Marki i
APPROXIMATIONS co-tunnelling S.t non ar. ov correction
your favourite truncation ???

EXACT TREATMENT

Review of old stuff — Benenti, Casati, Saito, R.W. New stuff — R.W. arXiv:1611.00670
Physics Reports 694, 1 (2017) [section 8.10]




— EXTRAS —




PERTURBATION THEORY as TRAJECTORIES

PERTURBATION
sys-reservoir coupling

Ult;to) = T exp {—i/ dT(ﬁsys(T) + Hypos + V(T))

¢
=T exp [—i/ dr D(T):| for interaction picture
o V(r) = Urito) V() U (75t0)

with U(T;to) =7 exp [7i‘]:d7'(f[5ys+f1,es):|
0

= 1 —iffdnV(n) — [, dn [ dn V() V(n) +--

t, t , T t b 1 Tt
—t F——O—t F——O—=0O—1+>
A time A B time A B C “time




STOCHASTIC THERMODYNAMICS

Seifert (2005), Schmiedl-Seifert (2007) < HOT PHOTON %
: RESERVOIR ™
. . - Toh
derived fluctuation theorems “»»

& laws of thermodynamics
ELECTRON

from classical RATE EQUATION RESER}’“RL
0

ELECTRON
RESERVOIR R

Ty

ASSUMPTIONS (i) probabilities but no superpositions
(i) weak-coupling — Markovian
(iii) No Maxwell demons in reservoirs

= Entropy change AS = ASsys + AS;es
[drop correlations]

WANT same thing with QUANTUM (superpositions/entanglement)
and STRONG COUPLING (non-Markovian)




Change of system entropy

Standard thermodynamics : with Shannon entropy
ASgys = Ssys(t) - Ssys(tO) Ssys = — Zipi In p;

Classical “Stochastic thermodynamics”:
assign entropy to initial and final state for each trajectory

Seifert (2005)
ASS?S_M = _[ 1npi(t) - 1npi0(t0>]
. o pi(t
which means exp[-AS7"] = it) <— 2nd ingredient
Pio (t())

for fluct. theorem




ENTROPY CHANGE IN QUANTUM SYSTEM

ith von Neumann
ASes = Seps(t) = Saalto) A A
Y v v Ssys (T) =-Tr |:psys(7-) In (psys (T)>:|

ASgys for initial/final QUANTUM state
Assign entropy to each state in initial and final diagonal bases
e /nitial system density-matrix
Poys(to) = W plinitial) Wg & diagonal piritial)

e Final (reduced) system density-matrix
Peys(t) = W plinah) i < diagonal p(firaD)

Take double trajectories as going ASio—=i — 1 (initial) 1 (final)
from one diag. basis to the other sys = P P




WHY assume we can NEGLECT:
& Entropy of entanglement between system & reservoirs

& Non-zero off-diagonaltrajectories for entropy fluctuations

8 5
. DG T 1
lo{_q : > has no time-reverse for j # i
W w
T m  --theysumto zero

Assume we cannot use knowledge
of a reservoir's microscopic state to get EXTRA work




