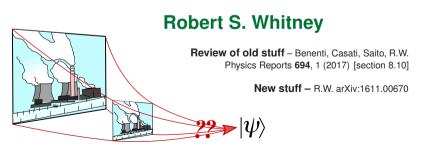


Laboratoire de Physique et Modélisation des Milieux Condensés Univ. Grenoble Alpes & CNRS, Grenoble, France

Non-Markovian Quantum Thermodynamics

1st law, 2nd law & fluctuation theorems



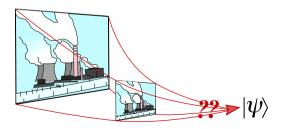
OVERVIEW

arXiv:1611.00670

QUESTION: Laws of thermodynamics same in quantum?

- Strong coupling: non-Markovian system dynamics?
 - Initial state with system and reservoir entangled?

OBJECTIVE: laws of thermodynamics + fluctuation theorems



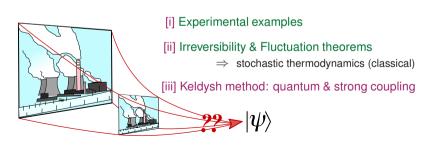
OVERVIEW

arXiv:1611.00670

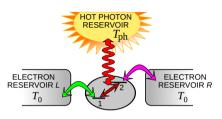
QUESTION: Laws of thermodynamics same in quantum?

- strong coupling: non-Markovian system dynamics?
 - initial state with system and reservoir entangled?

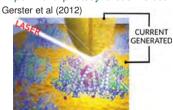
OBJECTIVE: laws of thermodynamics + fluctuation theorems



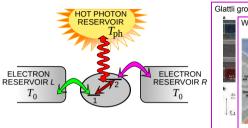
HAMILTONIAN

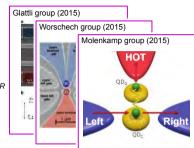


Experiment: photosynthetic molecule

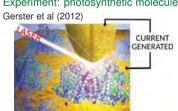


HAMILTONIAN





Experiment: photosynthetic molecule



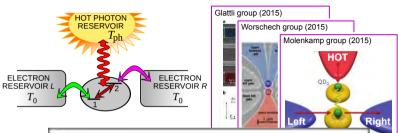
Theory (weak-coupling or linear-response)

Sánchez & Büttiker(2011)

Entin-Wohlmann et al (2011-2015)

Strasberg-Schaller-Brandes-Esposito (2013)

HAMILTONIAN



Experime Gerster et

Reservoir
$$\alpha$$
:

 $H_{\text{tot}}(t) = H_{\text{sys}}(t) + \sum_{\alpha} [H_{\alpha} + V_{\alpha}(t)]$ $\alpha \in res$

Reservoir α : $H_{\alpha} = \sum_{k} E_{\alpha k} \hat{c}_{\alpha k}^{\dagger} \hat{c}_{\alpha k} \iff \text{non-interacting}$

Coupling e reservoir α : $V_{\alpha}(t) = V_{nk} \hat{d}_{\pi}^{\dagger} \hat{c}_{\alpha k} + \text{c.c.}$

Coupling ph reservoir α : $V_{\alpha}(t) = \sum_{n} V_{nmk} \hat{d}_{n}^{\dagger} \hat{d}_{m} \hat{c}_{\alpha k} + \text{c.c.}$

HAMILTONIAN NOT ENOUGH!!

hse)

13)

NEED TO DEFINE IRREVERSIBILITY

CLASSICAL: Boltzmann postulated

loss of ALL microscopic info \Longrightarrow THERMODYNAMICS

Example: Fast relaxation to local thermal state

⇒ Boltzmann's PROOF of 2nd law

Counter-example: Maxwell's demon

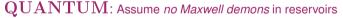
NEED TO DEFINE IRREVERSIBILITY

CLASSICAL: Boltzmann postulated

loss of ALL microscopic info \Longrightarrow THERMODYNAMICS

Example: Fast relaxation to local thermal state

Counter-example: Maxwell's demon



- Quantum system: all info available
- Reservoirs: microscopic info = LOST

⇒ system-reservoir correlations/entanglement = LOST

 \implies Entropy change $\Delta S = \Delta S_{\mathrm{sys}} + \Delta S_{\mathrm{res}}$ (drop correlations)

GOOD STATES, BAD STATES and FLUCTUATION THEOREMS

$$P_{\mathrm{good}} = rac{\mathsf{N}^{\circ} \ \mathsf{of "good" states}}{\mathsf{Total N}^{\circ} \ \mathsf{states}}$$

Entropy:

$$S_{
m good} = \ln \left[\, {
m N}^{\circ} \, {
m of} \, {
m "good"} \, {
m states} \,
ight] \ S_{
m bad} = \ln \left[\, {
m N}^{\circ} \, {
m of} \, {
m "bad"} \, {
m states} \,
ight]$$

A fluctuation theorem:

$$P_{\text{bad} \to \text{good}} = P_{\text{good} \to \text{bad}} \times \exp \left[-\Delta S_{\text{good} \to \text{bad}} \right]$$

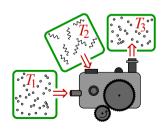
FLUCTUATION THEOREMS & 2 nd LAW

electrons

photons/phonons

Any large reservoir at thermal equilibrium

$$\Delta S = \frac{\Delta Q}{k_{\rm B}T}$$



FLUCTUATION THEOREMS & 2 nd LAW

electrons

photons/phonons

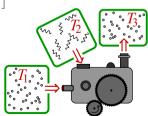
Any large reservoir at thermal equilibrium

$$\Delta S = \frac{\Delta Q}{k_{\rm B}T}$$

Fluctuation theorems:

• Under right conditions Evans-Searles (1994), Crooks (1998)

$$\overline{P}(-\Delta S) = P(\Delta S) \exp[-\Delta S]$$



FLUCTUATION THEOREMS & 2 nd LAW

electrons

photons/phonons

Any large reservoir at thermal equilibrium

$$\Delta S = \frac{\Delta Q}{k_{\rm B}T}$$

Fluctuation theorems:

• Under right conditions Evans-Searles (1994), Crooks (1998)

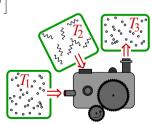
$$\overline{P}(-\Delta S) = P(\Delta S) \exp[-\Delta S]$$

• Universal : Kawasaki (1967), Seifert (2005)

$$\langle \exp \left[-\Delta S \right] \rangle = 1$$

• Other relations: Jarzynski (1997), etc

$$\Rightarrow$$
 2nd law *on average* $\langle \Delta S \rangle \geq 0$



STOCHASTIC THERMODYNAMICS

for classical markovian systems Seifert (2005), Schmiedl-Seifert (2007)

QUANTUM superpositions/entanglement

& STRONG COUPLING non-Markovian

Previous works: quantum thermodynamics

1) **EXACT** for system+reservoirs review: Campisi, Hänggi, Talkner (2011)

Problem: cannot calculate power outputs ...

Previous works: quantum thermodynamics

1) **EXACT** for system+reservoirs review: Campisi, Hänggi, Talkner (2011)

Problem: cannot calculate power outputs ...

2) **WEAK-COUPLING** = Markovian \simeq classical rate equations

+ coherent superposition review: Kosloff (2013) & see Elouard et al (2017)

Problem: weak-coupling = small power output

Previous works: quantum thermodynamics

1) **EXACT** for system+reservoirs review: Campisi, Hänggi, Talkner (2011)

Problem: cannot calculate power outputs ...

2) **WEAK-COUPLING** = markov \simeq classical rate equations

+ coherent superposition review: Kosloff (2013) & see Elouard et al (2017)

Problem: weak-coupling = small power output

3) KELDYSH for strong coupling

Ludovico et al (2014)

Non-interacting (quadratic) Hamiltonian

Esposito Ochoa Galperin (2015) Bruch et al (2016)

+ interacting system with adiabatic driving Ludovico et al (2016)

Problem: not general + no fluctuation theorems

also ambiguity $\langle E_{\text{coupling}} \rangle$

REAL-TIME TRANSPORT THEORY

quantum + non-markov + interactions + far from equilibrium Schoeller-Schön (1994)

Keldysh in system's many-body basis

exactly diagonalize $H_{
m sys}$ including interactions with NON-INTERACTING reservoirs in free-particle basis

PRICE TO PAY: system-reservoir interactions ⇒ NON-TRIVIAL

Assumption: initial state is product state

Example Hamiltonian =

$$\underbrace{\left[E_n(t)\hat{d}_n^{\dagger}\hat{d}_n + U\hat{d}_n^{\dagger}\hat{d}_n\hat{d}_m^{\dagger}\hat{d}_m\right]}_{\text{interacting system}} + \underbrace{\sum_{k} \left[V_{nk}\hat{d}_n^{\dagger}\hat{c}_k + \text{c.c.} + E_k\hat{c}_k^{\dagger}\hat{c}_k\right]}_{\text{coupling}} + \underbrace{photon}_{\text{terms}}$$

REAL-TIME TRANSPORT THEORY

quantum + non-markov + interactions + far from equilibrium Schoeller-Schön (1994)

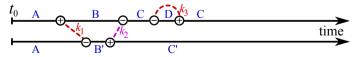
Keldysh in system's many-body basis

exactly diagonalize $H_{
m sys}$ including interactions with NON-INTERACTING reservoirs in free-particle basis

PRICE TO PAY: system-reservoir interactions ⇒ NON-TRIVIAL

Assumption: initial state is product state

Evolution as function of time:



REAL-TIME TRANSPORT THEORY

quantum + non-markov + interactions + far from equilibrium Schoeller-Schön (1994)

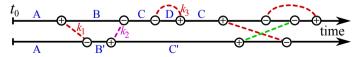
Keldysh in system's many-body basis

exactly diagonalize $H_{
m sys}$ including interactions with NON-INTERACTING reservoirs in free-particle basis

PRICE TO PAY: system-reservoir interactions ⇒ NON-TRIVIAL

Assumption: initial state is product state

Evolution as function of time:



ENERGY CONSERVATION

1st law
$$0 = \langle \Delta W_{\mathrm{drive}} \rangle + \langle \Delta W_{\mathrm{res}} \rangle + \langle \Delta Q_{\mathrm{res}} \rangle + \langle \Delta E_{\mathrm{sys+coupling}} \rangle$$

Having defined:

- $\begin{array}{ll} \bullet \ \mbox{Reservoir} \ \alpha \ \mbox{energy:} \ \Delta E_{\alpha} = \mbox{WORK} + \mbox{HEAT} \\ & = \Delta W_{\alpha} + \Delta Q_{\alpha} \qquad \mbox{with} \ \Delta Q_{\alpha} = T_{\alpha} \Delta S_{\alpha} \end{array}$
- ullet System non-equilib \Leftrightarrow CAN'T separate $\langle \Delta E_{
 m sys+coupling}
 angle$ into work & heat

ENERGY CONSERVATION

1st law
$$0 = \langle \Delta W_{\rm drive} \rangle + \langle \Delta W_{\rm res} \rangle + \langle \Delta Q_{\rm res} \rangle + \langle \Delta E_{\rm sys+coupling} \rangle$$

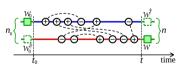
Having defined:

- $\begin{array}{l} \bullet \ \ {\rm Reservoir} \ \alpha \ {\rm energy:} \ \Delta E_\alpha = {\rm WORK} + {\rm HEAT} \\ = \Delta W_\alpha + \Delta Q_\alpha \qquad \qquad {\rm with} \ \Delta Q_\alpha = T_\alpha \Delta S_\alpha \end{array}$
- System non-equilib \Leftrightarrow CAN'T separate $\langle \Delta E_{\rm sys+coupling} \rangle$ into work & heat

TECHNICAL DETAILS:

Energy change in reservoir, $\Delta E_{\rm res}$ Energy change in system, $\Delta E_{\rm sys}$

Energy change in coupling $\Delta E_{
m coupling}$ (diagrams same as for currents)



ENTROPY \Longrightarrow **FLUCTUATION THEOREMS**

Assume no Maxwell demon

(no microscopic knowledge of reservoirs)

Entropy change $=\Delta S_{\mathrm{sys}} + \sum_{lpha} \Delta S_{lpha}$ (drop correlations)

 \Diamond Reservoir α ; $\Delta S_{\alpha} = \Delta Q_{\alpha}/T_{\alpha}$ (Claussius)

ENTROPY \Longrightarrow **FLUCTUATION THEOREMS**

Assume no Maxwell demon

(no microscopic knowledge of reservoirs)

Entropy change $=\Delta S_{\mathrm{sys}} + \sum_{lpha} \Delta S_{lpha}$ (drop correlations)

- \diamondsuit Reservoir α ; $\Delta S_{\alpha} = \Delta Q_{\alpha}/T_{\alpha}$ (Claussius)
- ♦ System = non-equilib ⇒ von Neumann

Initial system state ⇒ its diagonal basis

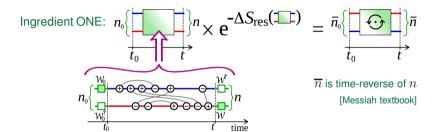
$$\hat{
ho}_{\mathrm{sys}}(t_0) = \hat{\mathcal{W}}_0 \, \hat{\mathbf{p}}^{(\mathrm{initial})} \, \hat{\mathcal{W}}_0^\dagger \ \ \Leftarrow \mathrm{diagonal} \, \hat{\mathbf{p}}^{(\mathrm{initial})}$$

& *final* (reduced) system state \Rightarrow its diagonal basis $\qquad \Leftarrow$ diagonal $\hat{\mathbf{p}}^{(\mathrm{final})}$

HENCE
$$\Delta S_{\mathrm{sys}}^{n_0 \to n} = -\ln p_n^{\mathrm{(final)}} + \ln p_{n_0}^{\mathrm{(initial)}}$$

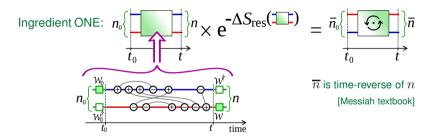
TIME REVERSING TRAJECTORIES

Diagonalize system state at beginning at end; with rotations \mathcal{W}_0 & \mathcal{W}



TIME REVERSING TRAJECTORIES

Diagonalize system state at beginning at end; with rotations \mathcal{W}_0 & \mathcal{W}



Ingredient TWO:
$$\Delta S_{\mathrm{sys}}^{n_0 \to n} = -\ln p_n^{\mathrm{(final)}} + \ln p_{n_0}^{\mathrm{(initial)}}$$

algebra similar ⇒ stochastic thermodyn

FLUCTUATION THEOREMS

$$\langle \exp[-\Delta S] \rangle = 1 \Rightarrow 2 \text{nd LAW}$$

2nd LAW

also Crooks & Jarzynski under certain conditions

Fluctuation theorems in APPROXIMATE theories

Any approximation which:

- (1) contains a time-reverse for every trajectory
- (2) conserves probability

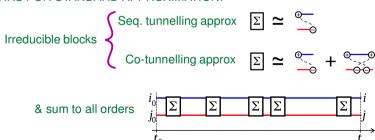
⇒ Fluctuation theorems ⇒ no violation of 2nd LAW

Fluctuation theorems in APPROXIMATE theories

Any approximation which:

- (1) contains a time-reverse for every trajectory
- (2) conserves probability
- ⇒ Fluctuation theorems ⇒ no violation of 2nd LAW

WORKS FOR STANDARD APPROXIMATION:



Non-factorizable initial state

Factorized state in the distant past (time $t_0 \to -\infty$)

Define $Q(\Delta S_{1\rightarrow 2})$ as entropy distribution[†] from t_1 to t_2

$$P(\Delta S_2) \equiv \int d(\Delta S_1) \ Q(\Delta S_2 - \Delta S_1) \ P(\Delta S_1)$$



$$\Big\langle \exp\big[-\Delta S_{1\to 2})\big] \Big\rangle = 1$$
 — with average being over $Q(\Delta S_{1\to 2})$

$$\Rightarrow$$
 2nd LAW $\left\langle \Delta S_{1 \rightarrow 2} \right\rangle \geq 0$

† should not measure state at time t_1 , otherwise collapse to product state \Rightarrow protocol with multiple identical set-ups

CONCLUSIONS

Review of old stuff – Benenti, Casati, Saito, R.W. Physics Reports **694**, 1 (2017) [section 8.10] New stuff - R.W. arXiv:1611.00670

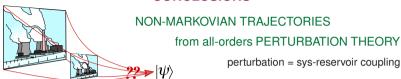
CONCLUSIONS

get FLUCTUATION THEOREMS for arbitrary quantum machine

stochastic thermodyn, 2ND LAW, etc strong-coupling, interacting, t-dependent, etc

Review of old stuff - Benenti, Casati, Saito, R.W. Physics Reports 694. 1 (2017) [section 8.10] New stuff - R.W. arXiv:1611.00670

CONCLUSIONS



for FAMILIES OF
APPROXIMATIONS

sequential tunnelling = Born-Markov
co-tunnelling = 1st non-Markov correction
your favourite truncation ???
EXACT TREATMENT

Review of old stuff – Benenti, Casati, Saito, R.W. Physics Reports 694, 1 (2017) [section 8.10] New stuff - R.W. arXiv:1611.00670

— EXTRAS —

PERTURBATION THEORY as TRAJECTORIES

$$U(t;t_0) = \hat{\mathcal{T}} \exp\left[-\mathrm{i} \int_{t_0}^t \! \mathrm{d}\tau \left(\hat{H}_{\mathrm{sys}}(\tau) + \hat{H}_{\mathrm{res}} + \hat{V}(\tau)\right)\right]$$
$$= \hat{\mathcal{T}} \exp\left[-\mathrm{i} \int_{-1}^t \! \mathrm{d}\tau \left(\hat{\mathcal{V}}(\tau)\right)\right] \quad \text{for interaction picture}$$

$$= \mathcal{T} \exp \left[-\mathrm{i} \int_{t_0} \mathrm{d}\tau \; \mathcal{V}(\tau) \right] \quad \text{for interaction picture} \\ \hat{\mathcal{V}}(\tau) = \hat{\mathcal{U}}(\tau; t_0) \, \hat{\mathcal{V}}(\tau) \, \hat{\mathcal{U}}^\dagger(\tau; t_0)$$

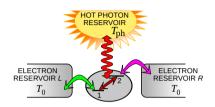
with
$$\hat{U}(\tau;t_0) = \hat{\mathcal{T}} \exp\left[-\mathrm{i} \int_{t_0}^t \! \mathrm{d} \tau (\hat{H}_{\mathrm{sys}} + \hat{H}_{\mathrm{res}})\right]$$

$$= 1 - i \int_{t_0}^t d\tau_1 \, \hat{\mathcal{V}}(\tau_1) - \int_{t_0}^t d\tau_2 \int_{t_0}^{\tau_2} d\tau_1 \, \hat{\mathcal{V}}(\tau_2) \, \hat{\mathcal{V}}(\tau_1) + \cdots$$

STOCHASTIC THERMODYNAMICS

Seifert (2005), Schmiedl-Seifert (2007)

derived fluctuation theorems & laws of thermodynamics from classical BATE FOLIATION



ASSUMPTIONS (i) probabilities but no superpositions

- (ii) weak-coupling Markovian
- (iii) No Maxwell demons in reservoirs

$$\Longrightarrow$$
 Entropy change $\Delta S = \Delta S_{\rm sys} + \Delta S_{\rm res}$ [drop correlations]

WANT same thing with QUANTUM (superpositions/entanglement) and STRONG COUPLING (non-Markovian)

Change of system entropy

$$\Delta S_{\rm sys} = S_{\rm sys}(t) - S_{\rm sys}(t_0)$$

with Shannon entropy

$$S_{\rm sys} = -\sum_i p_i \ln p_i$$

Classical "Stochastic thermodynamics":

assign entropy to initial and final state for *each trajectory*Seifert (2005)

$$\Delta S_{\text{sys}}^{i_0 \to i} = -\left[\ln p_i(t) - \ln p_{i_0}(t_0)\right]$$

which means
$$\exp[-\Delta S_{\mathrm{sys}}^{i_0 \to i}] = \frac{p_i(t)}{p_{i_0}(t_0)}$$

2nd ingredient for fluct, theorem

ENTROPY CHANGE IN QUANTUM SYSTEM

$$\Delta S_{\rm sys} \ = \ S_{\rm sys}(t) \ - \ S_{\rm sys}(t_0) \qquad \begin{array}{c} \text{with von Neumann} \\ S_{\rm sys}(\tau) = - \mathrm{Tr} \Big[\hat{\rho}_{\rm sys}(\tau) \ln \Big(\hat{\rho}_{\rm sys}(\tau) \Big) \Big] \end{array}$$

ΔS_{sys} for initial/final $\mathit{QUANTUM}$ state

Assign entropy to each state in initial and final diagonal bases

• Initial system density-matrix

$$\hat{
ho}_{\mathrm{sys}}(t_0) = \hat{\mathcal{W}}_0 \, \hat{\mathbf{p}}^{(\mathrm{initial})} \, \hat{\mathcal{W}}_0^\dagger \qquad \Leftarrow \mathsf{diagonal} \, \hat{\mathbf{p}}^{(\mathrm{initial})}$$

• Final (reduced) system density-matrix

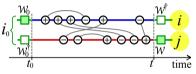
$$\hat{
ho}_{
m sys}(t) = \hat{\mathcal{W}}\,\hat{\mathbf{p}}^{(
m final)}\,\hat{\mathcal{W}}^{\dagger} \qquad \qquad \Leftarrow {
m diagonal}\,\hat{\mathbf{p}}^{(
m final)}$$

Take double trajectories as going from one diag. basis to the other

$$\Delta S_{\rm sys}^{i_0 \to i} = \ln p_{i_0}^{(\rm initial)} - \ln p_i^{(\rm final)}$$

WHY assume we can NEGLECT:

- Entropy of entanglement between system & reservoirs
- Non-zero off-diagonal trajectories for entropy fluctuations



has \emph{no} time-reverse for $j \neq i$

...they sum to zero

Assume we cannot use knowledge of a reservoir's *microscopic* state to get *EXTRA work*

