Circuit-QED-enhanced magnetic resonance

P. Bertet, Quantronics Group, CEA Saclay

CEA Saclay

UCL London

Aarhus University

S. Probst D. Vion A. Bienfait D. Esteve V. Ranjan R. Heeres B. Albanese PB J.F. DaSilva-Barbosa

J.J. Pla C.-C. Lo J.J.L. Morton A. Holm-KiilerichB. JulsgaardK. Moelmer

Chinese University Hong-Kong

> G. Zhang R. Liu

Nanoscale magnetic resonance

Fantastically useful but Low sensitivity Macroscopic samples

Optical detection Nature **363**, 244 (1993) Nat. Com. **5**, 4870 (2014) Nat. Nano. **9**, 279 (2014)

Scanning probe Science **350**, 417 (2015) Nature **430**, 329 (2004) Phys. Rev. Lett. **62**, 2531 (1989)

Electrical detection Rev. Sci. Instr. **83**, 043907 (2012) Nature **467**, 687 (2010)

Circuit QED for electron spin resonance detection

- 1) Principle
- 2) Applications :
 - Few-nuclear spin detection
 - Novel e spin hyperpolarization scheme

Conventional Pulsed Inductive Detection Electron Spin Resonance (ESR)

Circuit QED-enhanced ESR

- 1. Low Temperature
 - Maximum spin Polarization
 - No thermal noise

- 2. Superconducting Micro-Resonators
 - Large spin-MWphoton coupling g
 - Large quality factor Q

- 3. Quantum limited detection chain
 - "Noiseless" amplification by superconducting Josephson Parametric Amplifier (JPA)

Circuit QED-enhanced ESR : setup

Circuit QED-enhanced ESR : setup

$$\frac{H}{\hbar} = AI \cdot S + B_0 \cdot (-\gamma_e S - \gamma_n I)$$
HYPERFINE ZEEMAN EFFECT
• Nuclear spin I=9/2

- Electronic spin S=1/2
- Large hyperfine coupling $\frac{A}{2\pi} = 1.48 \text{ GHz}$

RE George et al., Phys Rev Lett **105** 067601 (2010); GW Morley et al. Nature Materials **9** 725 (2010)

10 allowed ESR-like transitions @ low B_0

• $m_F = 4 \rightarrow m_F = 5$, @~5 mT

Spin relaxation by spontaneous emission through the cavity

A. Bienfait et al., Nature (2016)

$$\frac{g}{2\pi} = 60 \pm 10$$
Hz

Reducing the magnetic mode volume to enhance the coupling

Reducing the magnetic mode volume to enhance the coupling

Effect on the spin linewidth and coherence time

Broadening mechanisms

$$\frac{H}{\hbar} = \mathbf{A}\mathbf{I} \cdot \mathbf{S} + \mathbf{B}_{\mathbf{0}} \cdot (-\gamma_e \mathbf{S} - \gamma_n \mathbf{I})$$

A(E, e) : spin line broadening if inhomogeneous electric or strain fields

Strain induced by the aluminum wire on the underlying silicon substrate due to differential thermal contraction during cooldown

At low strain, $A = K/3 (e_{xx} + e_{yy} + e_{zz})$ with K = 19GHz J. Mansir et al., arxiv (2017)

Understanding lineshapes

- Strain broadening : quantitative understanding for 5µm-wide wires
 but only qualitative for narrower wires. Extra shifts due to stray electric fields ?
- Observed reduction in T₂ for increased spin-resonator coupling ??

Temperature dependence of T2

- Unexplained temperature dependence of T2. Similar data obtained by H. Huebl's group (TUMunchen)
- Non-trivial resonator-induced decoherence mechanism ?

Accessing the electron spin magnetic environment

EPR spectroscopy gives acess to electron spin environment using pulse sequences such as ENDOR, ELDOR, DEER, ESEEM, ...

Can we do this with quantum-limited spectrometer ?

Davies ENDOR with superc. μresonator Sigillito et al., Nature Nano (2017)

Electron spin S=1/2 Nuclear spin I=1/2

Dipolar Hyperfine Constant $T = \frac{\mu_0}{4\pi} \frac{g_e g_n \beta_e \beta_n}{hr^3}$

$$A = T(3\cos^2 \theta - 1)$$
$$B = 3T\sin \theta \cos \theta$$

Dipolar hyperfine Hamiltonian $H = \omega_e S_z + \omega_n I_z + A S_z I_z + B S_z I_x$

> Rowan, Hahn, Mims, Phys. Rev. A (1965) W.B. Mims, Phys. Rev. B (1972)

Electron spin S=1/2 Nuclear spin I=1/2

Dipolar Hyperfine Constant $T = \frac{\mu_0}{4\pi} \frac{g_e g_n \beta_e \beta_n}{hr^3}$

$$A = T(3\cos^2 \theta - 1)$$
$$B = 3T\sin \theta \cos \theta$$

Dipolar hyperfine Hamiltonian $H = \omega_e S_z + \omega_n I_z + A S_z I_z + B S_z I_x$

> Rowan, Hahn, Mims, Phys. Rev. A (1965) W.B. Mims, Phys. Rev. B (1972)

 $\tau \ll 2\pi/\omega_n$

π

τ

τ

 $\pi/2$

Electron spin S=1/2 Nuclear spin I=1/2

Dipolar Hyperfine Constant $T = \frac{\mu_0}{4\pi} \frac{g_e g_n \beta_e \beta_n}{hr^3}$

$$A = T(3\cos^2 \theta - 1)$$
$$B = 3T\sin\theta\cos\theta$$

Dipolar hyperfine Hamiltonian $H = \omega_e S_z + \omega_n I_z + A S_z I_z + B S_z I_x$

 $\tau = \pi/\omega_n$ Suppressed echo $\pi/2$ π τ τ τ τ τ Electron spin S=1/2 Nuclear spin I=1/2

Dipolar Hyperfine Constant $T = \frac{\mu_0}{4\pi} \frac{g_e g_n \beta_e \beta_n}{hr^3}$

$$A = T(3\cos^2 \theta - 1)$$
$$B = 3T\sin\theta\cos\theta$$

Dipolar hyperfine Hamiltonian $H = \omega_e S_z + \omega_n I_z + A S_z I_z + B S_z I_x$

Rowan, Hahn, Mims, Phys. Rev. A (1965) W.B. Mims, Phys. Rev. B (1972)

 $\tau = 2\pi/\omega_n$ Echo recovery $\pi/2$ π τ τ τ τ τ τ τ Electron spin S=1/2 Nuclear spin I=1/2

Dipolar Hyperfine Constant $T = \frac{\mu_0}{4\pi} \frac{g_e g_n \beta_e \beta_n}{hr^3}$

 $A = T(3\cos^2 \theta - 1)$ $B = 3T\sin\theta\cos\theta$

Dipolar hyperfine Hamiltonian $H = \omega_e S_z + \omega_n I_z + A S_z I_z + B S_z I_x$

• Modulation of spin-echo envelope at $\approx \omega_n$

• Modulation amplitude
$$\sim \left(\frac{B(\theta)}{\omega_n}\right)^2$$

Rowan, Hahn, Mims, Phys. Rev. A (1965) W.B. Mims, Phys. Rev. B (1972)

Detecting residual ²⁹Si nuclear spins through ESEEM

Sensing ²⁹Si nuclear spins through ESEEM

Oscillation 8.5MHz/T corresponds to ²⁹Si gyromagnetic ratio

Independent confirmation of ²⁹Si concentration

Signal comes from ≈100 Bi donor spins each coupled to ≈10 nuclear spins

S. Probst, G. Zhang et al., in preparation

Beyond T2 limitation : 5-pulse ESEEM

S. Probst, G. Zhang et al., in preparation

Circuit-QED-enhanced electron spin hyperpolarization

How to polarize spins beyond the Boltzmann distribution at the sample temperature T ?

Hyperpolarization techniques

For electron spins

• Optical pumping

Ex: NV centers in diamond

• Spin-dependent tunneling

Elzerman et al. Nature (2004) Pla et al., Nature (2010)

Hyperpolarization techniques

For electron spins

• Optical pumping

Ex: NV centers in diamond

• Spin-dependent tunneling

Elzerman et al. Nature (2004) Pla et al., Nature (2010)

For nuclear spins

• Dynamical Nuclear Polarization

Interest for a more general hyperpolarization scheme for electron spins

Hyperpolarization via radiative cooling

Hyperpolarization via radiative cooling

Hyperpolarization by radiative cooling : implementation

Hyperpolarization by radiative cooling : results

- Strong ESEEM (natural abundance ²⁹Si)
- Polarization increase by factor 1.9 2.1 when cold load connected.
 Less than expected due to unwanted losses

Hyperpolarization by radiative cooling : results

• Spin relaxation time reduced by the same factor as polarization as expected

Conclusion

- Circuit-QED-based EPR spectroscopy enables unprecedented sensitivity for inductive detection Demonstrated spin sensitivity of 10spin/VHz, entering the few-spin regime Bienfait et al., Nature Nano (2016) Probst et al., APL (2017)
- Response to strain and electric field, resonator-induced decoherence, ...need to be better understood Mansir et al., to appear in PRL (2018)
 Pla et al., PRAppl (2018)
- Spectrometer can be used to probe electron spin environment using standard pulse EPR techniques Probst et al., in preparation (2018)
- The Purcell regime offers novel schemes for electron spin hyperpolarization

Acknowledgements

Quantronics group, CEA Saclay

Former members Y. Kubo C. Grezes A. Bienfait P. Campagne-Ibarcq P. Jamonneau M. Stern X. Zhou S. Probst R. Heeres

Collaborations

J. Morton (UCL London) J. Pla (UNSW) K. Moelmer (Aarhus) R. Liu (HongKong) Y.-M. Niquet (CEA Grenoble) A. Blais (U. Sherbrooke) M. Pioro-Ladrière (U. Sherbrooke) D. Sugny (Univ Bourgogne) V. Jacques (Univ Montpellier) J. Isoya (Tsukuba) T. Teraji (NIMS) Y. Kubo (OIST) P. Goldner (ESPCI)

