# Writing, reading and dissipationlessly transferring spin via charge

Chiara Ciccarelli, University of Cambridge



K.R. Jeon, A.J. Ferguson, J.W.A. Robinson, M. Blamire UNIVERSITY OF CAMBRIDGE H. Kurebayashi Imperial College L.F. Cohen ondon X. Montiel, M. Eschrig ROYAL LOWAY Nature Materials doi:10.1038/s41563-018-0058-9

#### SPIN CAVITRONICS, Mainz 2018

# "Writing" magnetism via charge



# "Writing" magnetism via charge



#### "Reading" magnetism via charge





#### We measure FMR in two different structures



#### We measure FMR in two different structures



# We estimate the spin through Nb from the FMR linewidth



|     | Layout 1  |  |
|-----|-----------|--|
|     | Cu (5 nm) |  |
|     | Nb (t nm) |  |
|     | Py (6 nm) |  |
|     | Nb (t nm) |  |
| Qua | arz       |  |



# We estimate the spin through Nb from the FMR linewidth



# Layout 1Cu (5 nm)Nb (t nm)Py (6 nm)Nb (t nm)Quarz





# Layout 1Cu (5 nm)Nb (t nm)Py (6 nm)Nb (t nm)Quarz











#### Layout 1 Cu (5 nm) Nb (t nm) Py (6 nm) Nb (t nm) Quarz

















### An unusual behavior is observed in the presence of Pt





#### Layout 2



### An unusual behavior is observed in the presence of Pt



#### Layout 2



## Spin must be carried by Cooper pairs

#### Flokstra et al., Nature Phyysics 12, 57 (2015)





#### Cooper pairs cannot be in a singlet state



### Spin must be carried by Cooper pairs

Flokstra et al., Nature Phyysics 12, 57 (2015)



At a ferromagnet/superconductor interface

- Short range triplets and singlets  $\sim \sqrt{\frac{D}{h_{ex}}}$
- Long range triplets  $\sim \sqrt{\frac{D}{KT}}$

Jacobsent et al., PRB 92, 024510 (2015) Bergeret et al., PRB 89, 134517 (2014)

## Spin must be carried by Cooper pairs

#### Flokstra et al., Nature Phyysics 12, 57 (2015)







#### At a ferromagnet/superconductor interface

- Short range triplets and singlets  $\sim \sqrt{\frac{D}{h_{ex}}}$
- Long range triplets  $\sim \sqrt{\frac{D}{KT}}$

Jacobsent et al., PRB 92, 024510 (2015) Bergeret et al., PRB 89, 134517 (2014)



Khaire et al., PRL 104, 137002 (2010) Robinson et al., Science 329, 59 (2010) Leskin et al., PRL 109, 057005 (2012)

## Spin must be carried by Cooper pairs in a triplet state

b

#### Flokstra et al., Nature Phyysics 12, 57 (2015)







|    | Cu (5 nm) |
|----|-----------|
|    | Pt (5 nm) |
|    | Nb (t nm) |
|    | Py (6 nm) |
|    | Nb (t nm) |
|    | Pt (5 nm) |
| Qu | arz       |



- Spin transfer in a BCS superconductor can be mediated by Cooper pairs in a triplet state.
- These Cooper pairs propagate to longer distances than quasiparticles and do not dissipate energy.
  - The crucial ingredient to generate triplet Cooper pairs seems to be the Rashba SO field.

Nature Materials doi:10.1038/s41563-018-0058-9



Winton Programme for the Physics of Sustainability Department of Physics

