Enhanced Brillouin light scattering in magneto－optical cavities．

S．Sharma
Y．Blanter
G．E．W．Bauer

A．Nunnekamp，
N．J．Lambert，
A．J．Ferguson，
J．A．Haigh，
A．J．Ramsay．

Brillouin light scattering from magnons

Fig. 8. Schematic view of the Brillouin light scattering setup in the backscattering geometry used for investigation of spin waves in laterally patterned structures. The transferred wavevector is changed by changing the angle between the sample surface and the incident laser beam.

Outline

Can Brillouin light scattering be enhanced using optical cavity modes?

Outline

Yttrium iron garnet sphere

large magnetooptical effects
polished surface
$\sim 1 \mathrm{~mm}$ diameter
transparent in near infrared

Outline

Yttrium iron garnet sphere
transparent in

polished surface
~1mm diameter near infrared
ferrimagnetic

Outline

4 H

$$
C_{0}=\frac{4 g_{0}^{2}}{\kappa \Gamma}
$$

magnetic mode

Outline

Cavity Optomagnonics with Spin-Orbit Coupled Photons, A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, and Y. Nakamura, PRL 116, 223601 (2016).

Optomagnonic Whispering Gallery Microresonators, X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, PRL 117, 123605 (2016).
Triple-Resonant Brillouin Light Scattering in Magneto-Optical Cavities, J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, PRL 117, 133602 (2016).

Outline

- Optical modes
- Magnetic modes
- Which modes should couple?

Light scattering by magnons in whispering gallery mode cavities, S. Sharma, Y. M. Blanter, and G. E. W. Bauer, PRB 96, 094412 (2017).

- Which modes we measure..

Selection rules for cavity-enhanced Brillouin light scattering from magnetostatic modes, J. A. Haigh, N. J. Lambert, S. Sharma, Y. M. Blanter, G. E. W. Bauer, and A. J. Ramsay, ArXiv:1804.00965 (2018).

Brillouin Light Scattering by Magnetic Quasivortices in Cavity Optomagnonics, A. Osada, A. Gloppe, R. Hisatomi, A. Noguchi, R. Yamazaki, M. Nomura, Y. Nakamura, and K. Usami, PRL 120, 133602 (2018).

Optical modes

Optical modes: indices

Optical modes labelled by 3 mode indices:

$\{l, m, q\}$

Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern, G. Schunk et al., Optics Express 22, 30795 (2014).

Radial structure	transverse $q=1$
structure	
$l-m=0$	
$q=2$	$l-m=2$
$l=m$	$q=1$

Optical modes: polarization

Polarization can be
$h_{\text {horizontal or }} \mathcal{V}_{\text {vertical wrt }}$ the WGM plane

Experimental setup

Optical modes: measurement

Optical modes: radial mode number

Magnetic modes

Magnetic modes

(3) (a) © a 30

A C B A B A
A B A B B

Identifying the magneto-static modes

$$
\begin{aligned}
& \nabla \times \boldsymbol{H}=0 \\
& \boldsymbol{H}=\nabla \psi \\
& \psi=A P_{l}^{m}(\xi) P_{l}^{m}(\cos \eta) e^{m \phi} \\
& \left\{l_{m}, m_{m}, q_{m}\right\}
\end{aligned}
$$

Ferrimagnetic Resonance Modes in Spheres, P. C. Fletcher and R. O. Bell, Journal of Applied Physics 30, 687 (1959).

Outline

Identifying the magneto-static modes

Identifying the magneto-static modes

Measured in electromagnet

Identifying the magneto-static modes

Measured in electromagnet

Identifying the magneto-static modes

Identifying the magneto-static modes

$\{3,1,1\}$
$\{2,0,0\}$

Identifying the magneto-static modes

Complication - in optical setup, static magnetic field applied with permanent magnet

Identifying the magneto-static modes

Measured in electromagnet

Uniform field

$\mathrm{H}_{0} / \mathrm{M}_{\mathrm{YIG}}$

Identifying the magneto-static modes

Identifying the magneto-static modes

Rutile coupling prism supports microwave resonances

Measured in optical setup

Non-uniform field

Identifying the magneto-static modes

Which modes should couple?

Which modes should couple?

Selection rules for Brillouin light scattering

- Due to angular momentum conservation, BLS from magnons is forbidden between modes with equal polarization.
=> as the WGMs modes are linearly polarized, scattering is always between orthogonal polarizations $h \leftrightarrow v$.

$$
M . E_{i} \times E_{o}^{*}
$$

Selection rules for Brillouin light scattering

Because we are only looking at low l_{m} magnons, transverse structure of optical modes is conserved =>

$$
\begin{gathered}
l_{i}-m_{i}=l_{o}-m_{o} \\
\Delta q=0
\end{gathered}
$$

$\{5,1,1\}$

Radial structure	transverse structure
$q=1$	$l-m=0$
$q=2$	$l-m=2$
$l=m$	$q=1$

Selection rules for Brillouin light scattering

Magnons with $l_{m}-m_{m}$ odd have a node at the equator.
$\Rightarrow l_{m}-m_{m}$ must be even

$$
l_{m}-m_{m} \text { even } \quad l_{m}-m_{m} \text { odd }
$$

Selection rules for Brillouin light scattering

The wave-matching
conditions in the azimuthal direction =>

$$
m_{o}=m_{m}+m_{i}
$$

Selection rules for Brillouin light scattering

Due to the magnon frequency, and geometrical birefringence, the relevant two optical modes have

$$
m_{i}-m_{o}= \pm 1 \xrightarrow{\lambda}
$$

Selection rules for Brillouin light scattering

What do $m_{m}= \pm 1$ magnetic modes look like?

Selection rules for Brillouin light scattering

What do $m_{m}= \pm 1$ magnetic modes look like?
$\{1,1,0\}$

Selection rules for Brillouin light scattering

What do $m_{m}= \pm 1$ magnetic modes look like?

$$
M_{k} \cdot E_{i} \times E_{o}^{*}
$$

$\{1,1,0\}$

Selection rules for Brillouin light scattering

(4)

What do $m_{m}= \pm 1$ magnetic modes look like?

$\{3,-1,1\}$

$\{3,1,1\}$

Selection rules for Brillouin light scattering

(4)

What do $m_{m}= \pm 1$ magnetic modes look like?

Selection rules for Brillouin light scattering

Energy conservation:

$$
\omega_{i}-\omega_{o}= \pm \omega_{m}
$$

Due to mode structure:

$$
\omega_{v}-\omega_{h}=+\omega_{m}
$$

\Rightarrow For $\omega_{i}=\omega_{v}$, only Stokes
 scattering
\Rightarrow For $\omega_{i}=\omega_{h}$, only anti-Stokes scattering

Selection rules for Brillouin light scattering

(1) $+2+3+4$

$$
\begin{array}{ll}
l_{i}-m_{i}=l_{o}-m_{o} & \\
l_{m}-m_{m} \text { must be even } & l_{m}=1,2,3, \ldots \\
m_{o}=m_{m}+m_{i} & \\
m_{i}-m_{o}= \pm 1 & m_{m}= \pm 1
\end{array}
$$

Depends on magnetic field sign and wgm circulation direction

Which modes we measure?

Which modes we measure?

Which modes we measure?

Observed modes for BLS

Observed modes for BLS

- Pair of modes $\{3, \pm 1,1\}$ for opposite magnetic fields
- Higher order odd $l_{m}, m_{m}=1$
- Unexpected $\{2,0,0\}$ mode

Unexpected $\{200\}$ mode

We know the applied field from the permanent magnet is slightly nonuniform

The solutions of (17) in terms of $\left(\cos ^{2} \theta_{0}\right)_{n 0 r}$ are independent of Ω_{H}. Therefore, the dispersion of the $n 0 r$-modes is identical with that of spinwaves having $\theta_{0}=\theta_{n 0 r}$ and $F_{n 0 r}$ can be derived from (11). This interesting property seems to play a role for the coupling process between the UPR mode and $n 0 r$-modes caused by inhomogeneities of the ferrite sphere. This coupling is very often observed between the UPR mode and the 200 -mode and occasionally with other $m=0$ modes (e.g. 401, 501, 602, 702) in single-crystal YIG spheres and partly also in polycrystalline low linewidth spheres.

Properties of Magnetostatic Modes in Ferrimagnetic Spheroids, P. Röschmann and H. Dötsch, Phys. Stat. Sol. (B) 82, 11 (1977).

Unexpected $\{200\}$ mode

We know the applied field from the permanent magnet is slightly nonuniform

The solutions of (17) in terms of $\left(\cos ^{2} \theta_{0}\right)_{n 0 r}$ are independent of Ω_{H}. Therefore, the dispersion of the $n 0 r$-modes is identical with that of spinwaves having $\theta_{0}=\theta_{n 0 r}$ and $F_{n 0 r}$ can be derived from (11). This interesting property seems to play a role for the coupling process between the UPR mode and $n 0 r$-modes caused by inhomogeneities of the ferrite sphere. This coupling is very often observed between the UPR mode and the 200 -mode and occasionally with other $m=0$ modes (e.g. 401, 501, 602, 702) in single-crystal YIG spheres and partly also in polycrystalline low linewidth spheres.

Properties of Magnetostatic Modes in Ferrimagnetic Spheroids, P. Röschmann and H. Dötsch, Phys. Stat. Sol. (B) 82, 11 (1977).

Unexpected $\{200\}$ mode

Properties of Magnetostatic Modes in Ferrimagnetic Spheroids, P. Röschmann and H. Dötsch, Phys. Stat. Sol. (B) 82, 11 (1977).

Comparison with opto-mechanics

Single photon cooperativity

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, "Cavity optomechanics,"

Rev. Mod. Phys. 861391 (2014)

Summary

Brillouin light scattering can be enhanced via optical cavity modes

We can understand and observe the selection rules for BLS from different magnetic modes.

Some (small) enhancement of the coupling constant by going to higher order magnetic modes.

Selection rules for Brillouin light scattering

The wave-matching conditions in the azimuthal direction =>

$$
m_{o}=m_{m}+m_{i}
$$

Interaction energy $\propto \epsilon(M) E_{i} E_{o}^{*}$
$M_{k} . E_{i} \times E_{o}^{*}$

Can we improve the coupling rate?

Can we improve the coupling rate?

$$
C_{0}=\frac{4 g_{0}^{2}}{\kappa \Gamma}
$$

coupling rate

$$
g_{0}=1 \mathrm{~Hz}
$$

$$
\mathrm{g}_{0}=\frac{\mathcal{V} c^{\prime}}{4} \sqrt{\frac{1}{N_{\mathrm{spins}}}}
$$

V is Verdet constant: material parameter c' is speed of light in YIG: material parameter
"This provides a strong incentive for designing small magnetic structures"

Is it possible to get to an interesting regime?

$$
C_{0}=\frac{4 g_{0}^{2}}{\kappa \Gamma}
$$

- Volume decrease gives factor 10^{5} in coupling constant $\mathrm{g}_{0}=0.1 \mathrm{MHz}$ (currently 1 Hz).
- Decrease in magnetic linewidth gives factor 10
- Decrease in internal optical dissipation doesn't seem to matter as the maximum Q is about the same.
\Rightarrow At most 10^{11} increase in cooperativity.

$$
C_{0}=\frac{g_{0}^{2}}{\kappa \Gamma}
$$

=> With optical pumping, in principle ≈ 1

Triple resonant condition

Negative angular momentum modes

Negative angular momentum modes

Negative angular momentum modes

Identifying the magneto-static modes

Ferrimagnetic Resonance Modes in Spheres, P. C. Fletcher and R. O. Bell, Journal of Applied Physics 30, 687 (1959).

