Quantum optics and magnetism in 2D materials

Atac Imamoglu

ETH Zurich

Presented by: Martin Kroner

<u>Motivation</u>:

A new regime of cavity-QED with nonperturbative interactions between photons/polaritons and itinerant electrons or magnons?

Outline

- 1) Strong light-matter coupling in semiconducting transition metal dichalcogenide (TMD) monolayers:
 - Realization of an atomically thick mirror using monolayer MoSe₂
 - Observation of robust exciton-polaritons
- 2) Strong exciton-electron interaction in TMDs:
 - <u>exciton-polarons</u> as elementary many-body optical excitations
 - nonequilibrium dynamics of a mobile quantum impurity
- 3) Giant valley/spin susceptibility in monolayer MoSe₂

A new class of 2D materials: Transition metal dichalcogenides (TMD)

Formula: MX₂ M = Transition Metal X = Chalcogen

н		_		MX ₂													Не
Li	Be			M = Tr X = Cł	ansitionalcoge	n metal :n						В	С	N	0	F	Ne
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Ρ	s	CI	Ar
к	Ca	Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ĩ.	Xe
Cs	Ва	La - Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Ві	Po	At	Rn
Fr	Ra	Ac - Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo

Mo< Layered Sé

materials

effective monolayer

Electrical property	Material
Semiconducting	$MoS_2 MoSe_2 WS_2$ $WSe_2 MoTe_2 WTe_2$
Semimetallic	$TiS_2 TiSe_2$
Ferromagnetic	CrI_3 , $CrBr_3$
Metallic, CDW,	$NbSe_2 NbS_2 NbTe_2$
Superconducting	$TaS_2 TaSe_2 TaTe_2$

Transition metal dichalcogenides (TMD)

- Monolayer TMD has a honeycomb lattice
- Unlike graphene, inversion symmetry is broken
- Valley semiconductor: physics in ±K valleys

$$H_K = v \begin{pmatrix} \Delta/2\sqrt{p_x} & p_x - ip_y \\ p_x + ip_y & -\Delta/2\sqrt{p_x} \end{pmatrix}$$

(unlike graphene, 2-band model only provides a <u>qualitative</u> description)

• Monolayers of TMDs can be combined with other 2D materials to make van der Waals heterostructures with novel properties

2D semiconductor with optically addressable valley pseduospin degree of freedom

 \pm K valleys respond to \pm σ polarized light \rightarrow optical valley addressability

Finite Berry curvature leads to valley Hall effect & modifies optical spectrum

Spin-orbit leads to spin-valley locking

<u>For this talk</u>: a 2D charge tunable valley semiconductor with strongly bound excitons – emphasis on interactions

<u> Pioneering work</u>: Heinz, Xu

Magnetic 2D materials

(Mak & Shan)

- Magnetic material with a bandgap of 2 eV

TMD-magnetic heterostructures

(Xu)

- Exchange fields up to 13 T in WSe2

Photoluminescence (PL) from 2D materials

• Due to strong Coulomb interactions, electrons and holes form strongly bound states before they recombine: PL is dominated by decay of an exciton.

Photoluminescence (PL) from 2D materials

• Due to strong Coulomb interactions, electrons and holes form strongly bound states before they recombine: PL is dominated by decay of an exciton or a trion if QW has localized electrons

Photoluminescence (PL) from 2D materials

• Due to strong Coulomb interactions, electrons and holes form strongly bound states before they recombine: PL is dominated by decay of an exciton or a trion if QW has localized electrons

Exciton linewidth of MoSe2 in hBN is comparable to the radiative decay rate

Implications of strong exciton binding \equiv small Bohr radius a_B

- TMD excitons couple very strongly to resonant photons:
 - ultrafast /sub-ps radiative decay rate (~ $1/a_B^2$) Γ_{rad} ~ 1.5 meV
 - strong reversible coupling to cavities $(~1/a_B)$ g ~ 10-40 meV

- State-of-the art TMD monolayers have nearly radiative decay limited exciton linewidths
 - resonant coherent light scattering not incoherent absorption!

Monolayer MoSe₂: atomically thin mirror?

In-plane momentum conservation ensures that that for radiatively broadened 2D exciton resonance, incident resonant light experiences perfect 100% specular reflection

- High reflection or extinction of transmission on resonance only possible for spontaneous emission broadened excitons
- Equivalent to a single atom coupled to a 1D reservoir/waveguide

Theory: Zeytinoglu et al. arxiv 1701.08228; related work on atomic arrays: Adams & Lukin-Yelin groups

- Incident photons with in-plane momentum k generate excitons with identical momentum (translational invariance)
- Secondary field generated by excitons interferes with the external field to modify transmission and lead to reflection
- Only excitons within the light cone couple to light; disorder scatters excitons to dark states – leads to real absorption

Realization of an atomically thin mirror

90% extinction of transmission → Demonstrates predominantly
 45% peak monolayer reflection radiatively broadened excitons
 (see also Kim-Lukin-Park & Shan-Mak results - up to 80% reflection)

Realization of an atomically thin mirror

Sum of specular reflection &

transmission: R+T

→ For pure radiative decay, we should have R+T = 1, for all ω_{inc} → Also, for pure inhomogeneous broadening R+T = 1, for all ω_{inc} → R+T lineshape is non-Lorentzian – due to scattering into $k \neq 0$

A suspended atomically thin mirror (Mak & Shan)

Cavity-polaritons with 2D materials

- Tunable vacuum field strength and long cavity lifetime allowing for high-precision spectroscopy
- Versatile platform for cavity-QED with any material system

Strong coupling regime

- Large normal mode splitting: $\Omega_R = 17 \text{ meV} - \text{new elementary}$ excitations: exciton-polaritons
- Maximum reported splitting > 50 meV

<u>Earlier results</u>: Menon, Tartakovskii

Rydberg blockade analog

- Short exciton lifetime is irrelevant: the decay rate of polaritons is determined exclusively by their cavity nature – the more exciton like the polariton is, the longer the decay time

Optical excitations out of a 2DES

> Contrary to common wisdom, it is not possible to observe a (sharp) trion peak in absorption or emission from an ideal degenerate 2DES

- Direct formation of a trion in absorption is ∞ to the probability of finding a k~O exciton in a strongly bound trion $\infty (k_{photon}a_B)^2$ - The radiative decay of a k=O (lowest energy) trion has to produce a k=O electron - <u>Pauli-blocking</u> when E_F > O (not the case for localized electrons)

Optical excitations out of a 2DES

Contrary to common wisdom, it is not possible to observe a (sharp) trion peak in absorption or emission from an ideal degenerate 2DES

- Direct formation of a trion in absorption is ∞ to the probability of finding a k~O exciton in a strongly bound trion $\infty (k_{photon}a_B)^2$ - The radiative decay of a k=O (lowest energy) trion has to produce a k=O electron - <u>Pauli-blocking</u> when E_F > O (not the case for localized electrons)

This talk: proper description of the optical excitation spectrum is provided by many-body excitations termed exciton-polarons

 \rightarrow exciton as a finite-mass impurity in 2DES

Electrical control of optical properties

- A van der Waals heterostructure incorporating a graphene layer on top of hBN/MoSe2/hBN layers allow for controlling charge density
- Ideal for investigating exciton-electron interactions

Carrier density dependent reflection

- Sharp increase in conductance indicates free carriers
- Reflection is strongly modified as electrons or holes injected

Carrier density dependent reflection & emission (PL)

Electron doped regime

- Sharp increase in conductance indicates free carriers
- Absorption & emission are different for high electron density

Fermi energy dependence of absorption spectrum

Fermi energy dependence of absorption spectrum

Fermi energy dependence of the spectrum

Chevy Ansatz vs experiments

- simple Chevy Ansatz captures the repulsion of the two (polaron) resonances remarkably well (no fit parameters for splitting)
- The overall blue shift of the excitonic resonances due to phase space filling, screening and bandgap renormalization is a fit parameter.

(Sidler et al., Nat. Phys. 2017, Efimkin-MacDonald PRB 2017)

Strong cavity coupling

Monolayer is depleted of free electrons: only exciton resonance is visible: $\Omega_R = 18 \text{ meV}$ exciton-polaritons

Fermi energy $E_F < E_T$, Ω_R : both attractive & repulsive polarons are observable

exciton-polaron-polaritons

Strong cavity coupling

Monolayer is depleted of free electrons: only exciton resonance is visible: $\Omega_R = 18 \text{ meV}$

Fermi energy $E_F < E_T$, Ω_R : both attractive & repulsive polarons are observable Observation of polaron physics with an ultra-light mass (polariton) impurity

 $E_F \sim E_T$, Ω_R : only attractive-polaron polariton is observable: $\Omega_R = 7$ meV

(Sidler et al. Nat. Phys. 2017)

New physics and applications

- Transport of polaritons (dressed with electrons) using external electric & magnetic fields (with F. Pientka, R. Schmidt & E. Demler)
- Polaritons mediating attractive interactions between electrons:
 light induced superconductivity (V. Ginzburg, W. Little, A. Kavokin)
- Polaritons dressed with anyons in FQHE regime
- Electrons mediating interactions between polaritons: a new method to enhance photon-photon interactions?

Giant spin susceptibility of TMD monolayers

- In comparison to GaAs, TMD monolayers exhibit:
 - large effective mass (small kinetic energy)
 - reduced screening (large exchange energy gain from spin/valley polarization)
- Itinerant ferromagnetism?

Resonant optical detection of electron valley polarization

- Trion and attractive polaron formation is only possible if the exciton and the electron occupy different valleys \leftrightarrow inter-valley trion.
- If electrons are valley polarized, trion formation and polaron absorption/emission is observed only for a single polarization

Intra-valley trion in $MoSe_2$ is triplet – and is not bound

Gate voltage dependent reflection at B=7T

- For 100V > Vgate > 70V, σ + reflection is dominated by attractive polaron whereas that of σ by exciton
- The electron density needed to observe $\sigma-$ attractive polaron line is $1.6 x 10^{12} \ cm^{-2}$
- In the absence of interactions, this would have required $g_{elec} = 38!$

PL: electron and hole doping

 σ + polarized PL

σ - polarized PL

- For B= 7T, electrons are valley polarized in –K valley and holes are valley polarized in +K valley
- Hole-polaron PL is a factor of 2.5 stronger than electron-polaron!

How do we understand the B=7 Tesla Photoluminescence spectrum?

Super-paramagnetic response of MoSe2

- In contrast to GaAs, MoSe₂ has a high electron mass and reduced screening: exchange energy gain from valley/spin polarization could exceed kinetic energy cost - towards <u>Stoner instability</u>?
- No magnetization for B= OT
 - but saturation for B > 5T

Acknowledgements

Meinrad Sidler

Ovidiu Cotlet

Patrick Back

Sina Zeytinoglu (ETH) Eugene Demler, Falko Pietka, Richard Schmidt (Harvard)