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radiation-pressure force
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Cavity optomechanics

• open quantum system

• coherence and dissipation

• far from equilibrium

Introduction

The field of optomechanics deals with systems in which optical and mechanical degrees
of freedom are coupled to each other. Interaction between light and mechanical ele-
ments was already considered centuries ago by Johannes Kepler, who studied the tails
of comets. Nowadays it is well known that light exerts a radiation pressure force on
objects. The momentum of the impinging light is transferred to the mechanical object
and thus influences its motion. Although the action of sunlight on comets looks spectac-
ular and impressive, the force due to a single photon is small compared to the inertia of
macroscopic objects. Nevertheless, radiation pressure has to be taken into account for
precision measurements and is a major issue e.g. for the detection of gravitational waves.
To make use of the radiation pressure force, it is convenient to use cavities to enhance
the light intensity and thereby the coupling strength. A typical optomechanical setup
consists of a cavity with one fixed and one moveable end-mirror, see Fig. 0.1 (a). The
light circulating in the cavity displaces the moveable mirror and thus changes the cavity
length. This, in turn, shifts the resonance frequency of the cavity, which influences the
intensity and thereby the force on the mirror. In general, systems where the coupling be-
tween optical and mechanical degree of freedom arises due to a displacement-dependent
cavity frequency are called dispersively coupled. The generic picture of a cavity with
one moveable mirror captures the main idea of such setups, however many different ex-
perimental realizations exist, including e.g. cantilevers, membranes or microcavaties (see
Fig. 0.2) with frequencies from Hz to GHz and masses from 10−20g to kg [1].
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Figure 0.1.: (a) Typical optomechanical system implementing dispersive coupling be-
tween optics and mechanics. (b) Schematic picture illustrating the general
setup envisioned for dispersively coupled systems, also including coupling to
the environment.
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Depending on the detuning, three different regimes can be
distinguished with respect to the interaction (29), especially in
the sideband-resolved regime (κ ≪ Ωm, which we assume in
the remainder of this section). For Δ ≈−Ωm (red-detuned
regime), we have two harmonic oscillators of (nearly) equal
frequency that can interchange quanta: the mechanical oscil-
lator and the driven cavity mode. The terms in the interaction
Hamiltonian describing this process are the following:

−ℏgðδâ†b̂þ δâb̂†Þ: ð31Þ

In contrast, we may omit those terms that create or destroy two
quanta at the same time (δâ†b̂† and δâ b̂), because they are
strongly “nonresonant,” i.e., applying those terms to a state
changes the total energy by an amount much larger than the
coupling. Keeping only the resonant terms of Eq. (31) is
known as the rotating-wave approximation (RWA). The case
Δ ≈−Ωm is the one relevant for cooling (transferring all
thermal phonons into the cold photon mode, Sec. VII.A) and
for quantum state transfer between light and mechanics
(Sec. X). In the quantum optical domain, Eq. (31) is referred
to as a “beam-splitter” interaction.
ForΔ ≈þΩm (blue-detuned regime), the dominant terms in

the RWA

−ℏgðδâ†b̂† þ δâ b̂Þ ð32Þ

represent a “two-mode squeezing” interaction that lies at the
heart of parametric amplification (Clerk et al., 2010). In the
absence of dissipation, this leads to an exponential growth of
the energies stored in both the vibrational mode and the driven
optical mode, with strong quantum correlations between the
two. Thus, it may be used for efficiently entangling both
modes (Sec. X). Focusing on the mechanical mode alone, the
growth of energy can be interpreted as “antidamping” or
amplification (Sec. V.B.2). If the intrinsic dissipation is low
enough, this behavior may trigger a dynamical instability that
leads to self-induced mechanical oscillations. The resulting
features are discussed in Sec. VIII.
Finally, when Δ ¼ 0, the interaction

−ℏgðδâ† þ δâÞðb̂þ b̂†Þ ð33Þ

means that the mechanical position x̂ ∝b̂þ b̂† leads to a
phase shift of the light field, which is the situation encountered
in optomechanical displacement detection (Sec. VI). In
addition, this interaction Hamiltonian can be viewed as
implementing QND detection of the optical amplitude quad-
rature δâþ δâ†, since that operator commutes with the full
Hamiltonian in this case.

C. Optomechanical equations of motion

The mechanical motion induces a shift of the optical
resonance frequency, which in turn results in a change of
circulating light intensity and, therefore, of the radiation-
pressure force acting on the motion. This kind of feedback
loop is known as optomechanical “backaction” (see Fig. 15).
The finite cavity decay rate κ introduces some retardation

between the motion and the resulting changes of the force,
hence the term “dynamical” backaction.
A convenient starting point for the analytical treatment of

the radiation-pressure dynamical backaction phenomena
(Secs. V.B and VII) is the input-output formalism. This
formalism (briefly introduced in Sec. II.A.2) provides us with
equations of motion for the cavity field amplitude â and,
analogously, for the mechanical amplitude b̂. These equations
have the form of quantum Langevin equations,9 since both the
light amplitude and the mechanical motion are driven by noise
terms that comprise the vacuum noise and any thermal noise
entering the system:

_̂a ¼ −
κ
2
âþ iðΔþ Gx̂ Þâþ ffiffiffiffiffiffi

κex
p

âin þ
ffiffiffiffiffi
κ0

p
f̂in; ð34Þ

_̂b ¼
"
−iΩm −

Γm

2

#
b̂þ ig0â†âþ

ffiffiffiffiffiffi
Γm

p
b̂in. ð35Þ

See Sec. II.A.2 for remarks on the input-output treatment and
the optical decay rates κ; κex; κ0. With regard to the damping
term −Γm=2 for the mechanical dissipation, we note that this
treatment is correct as long as Ωm ≫ Γm. Otherwise the
equations would have to be formulated on the level of the
displacement x̂ , with a damping force −meffΓm

_̂x .
The noise correlators associated with the input fluctuations

are given by

hâinðtÞâ†inðt0Þi ¼ δðt−t0Þ; ð36Þ

hâ†inðtÞâinðt0Þi ¼ 0; ð37Þ

hb̂inðtÞb̂†inðt0Þi ¼ ðn̄th þ 1Þδðt−t0Þ; ð38Þ

hb̂†inðtÞb̂inðt0Þi ¼ n̄thδðt−t0Þ. ð39Þ

The correlators for f̂in look like those for âin listed above.
Here we assumed that the optical field has zero thermal
occupation (kBT=ℏωcav ≈ 0), which is an approximation that
is valid for optical fields at room temperature, although it
may fail for the case of microwave fields, unless the setup is
cooled to sufficiently low temperatures. In contrast, the
mechanical degree of freedom is typically coupled to a hot
environment, with an average number of quanta given by
n̄th ≈ kBT=ℏΩm ≫ 1. Together with these correlators, the
quantum Langevin equations describe the evolution of the

FIG. 6 (color online). Optomechanical (linearized) interaction
between a driven optical mode and a mechanical resonator.

9In the standard approximation adopted here, these equations are
Markovian, i.e., without memory and with δ-correlated noise.
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FIG. 1. Optomechanical nonreciprocal transmission via inter-
ference of two asymmetric dissipative coupling pathways. A. Two
microwave modes â1 and â2 are coupled via two mechanical modes
b̂1 and b̂2 through optomechanical frequency conversion (as given by
the coupling constants g11, g21, g12, g22). Nonreciprocity is based on
the interference between the two optomechanical (conversion) path-
ways g11, g21 and g12, g22, in the presence of a suitably chosen phase
difference � between the coupling constants as well as the deliberate
introduction of an asymmetry in the pathways. B-C. The symmetry
between the pathways can be broken by off-setting the optomechan-
ical transmission windows through each mechanical mode (dashed
lines in dark and light green) by a frequency difference 2�. Each sin-
gle pathway, in the absence of the other mode, is described by eq. (2).
In the forward direction (B), the two paths interfere constructively,
allowing transmission and a finite scattering matrix element S21. In
contrast, in the backward direction (C), the paths interfere destruc-
tively, canceling S12, and isolating the port 1 from the port 2. The
isolation bandwidth is determined by the intrinsic dissipation rate of
the mechanical modes.

scribed by their annihilation operators â1, â2) having res-
onance frequencies !c,1, !c,2 and dissipation rates 1, 2,
which are coupled to two mechanical modes (described by
the annihilation operators b̂1, b̂2) having resonance frequen-
cies ⌦1, ⌦2 and dissipation rates �m,1, �m,2 (fig. 1A). The
radiation-pressure-type optomechanical interaction has the
form [27, 28] g0,ij â

†
i âi(b̂j + b̂

†
j) (in units where h̄ = 1),

where g0,ij designates the vacuum optomechanical coupling
strength of the i

th microwave mode to the j
th mechanical

mode. Four microwave tones are applied, close to each of the
two lower sidebands of the two microwave modes, with detun-
ings of �11 = �21 = �⌦1 � � and �12 = �22 = �⌦2 + �

(fig. 2C). In a frame rotating with the cavities, assuming the
resolved-sideband regime (⌦1,⌦2 � 1,2), the linearized
Hamiltonian becomes

H = �� b̂
†
1b̂1+� b̂

†
2b̂2+g11(â1b̂

†
1+â

†
1b̂1)+g21(â2b̂

†
1+â

†
2b̂1)

+ g12(â1b̂
†
2 + â

†
1b̂2) + g22(e

i�
â2b̂

†
2 + e

�i�
â
†
2b̂2) (1)

where âi and b̂j are redefined to be the quantum fluctuations
around the linearized mean fields. Here gij = g0,ij

p
nij are

the field-enhanced optomechanical coupling strengths, where
nij is the contribution to the mean intracavity photon number
due to the drive with detuning �ij . Although each coupling
can be assigned a complex phase, corresponding to the relative
phase of the drive, without loss of generality, they are all taken
to be real except for the one between â2 and b̂2 with a complex
phase �.

We start by considering frequency conversion through a sin-
gle mechanical mode. Neglecting the noise terms, the field
exiting the cavity â2 is given by â2,out = S21â1,in+S22â2,in,
which defines the scattering matrix Sij . For a single mechan-
ical pathway, setting g12 = g22 = 0 and � = 0, the scattering
matrix between input and output mode becomes

S21(!) =

r
ex,1ex,2

12

p
C11C21�m,1
�eff,1

2 � i!

, (2)

where ex,1, ex,2 denote the external coupling rates of
the microwave modes to the feedline, and the (multipho-
ton) cooperativity for each mode pair is defined as Cij =

4g
2
ij/(i�m,j). Conversion occurs within the modified me-

chanical response over an increased bandwidth �e↵,1 =

�m,1 (1 + C11 + C21). This scenario, where a mechanical os-
cillator mediates frequency conversion between electromag-
netic modes, has recently been demonstrated [37] with a mi-
crowave optomechanical circuits [38], and moreover used to
create a bidirectional link between a microwave and an opti-
cal mode [39]. Optimal conversion, limited by internal losses
in the microwave cavities, reaches at resonance |S21|2max =
ex,1ex,2

12
in the limit of large cooperativities C11 = C21 � 1.

We next describe nonreciprocal transmission of the full sys-
tem with both mechanical modes. We consider the ratio of
transmission amplitudes given by

S12(!)

S21(!)
=

g11�1(!)g21 + g12�2(!)g22e
+i�

g11�1(!)g21 + g12�2(!)g22e
�i�

(3)

with the mechanical susceptibilities defined as �
�1
1 (!) =

�m,1/2� i (� + !) and �
�1
2 (!) = �m,2/2 + i (� � !). Con-

version is nonreciprocal if the above expression has an am-
plitude that differs from 1. If S21 and S12 differ only by a
phase, it can be eliminated by a redefinition of either â1 or
â2 [24, 32]. Upon a change in conversion direction, the phase
� of the coherent coupling (between the microwave and me-
chanical mode) is conjugated, while the complex phase asso-
ciated with the response of the dissipative mechanical modes
remains unchanged. Indeed, the mechanical dissipation is an
essential ingredient for the nonreciprocity to arise in this sys-
tem, but not sufficient on its own. In fact, if we align the
frequency conversion windows corresponding to the two me-
chanical modes by setting � = 0, the system becomes recip-
rocal on resonance (! = 0), since there is no longer any phase
difference between numerator and denominator. This situa-
tion corresponds to two symmetric pathways resulting from
purely dissipative couplings; they can interfere only in a re-
ciprocal way.

Mechanical “metamaterials”
Topological light and sound

Modeling an optomechanical array

Quantum many-body dynamics in optomechanical arrays

Max Ludwig1, � and Florian Marquardt1, 2

1Institute for Theoretical Physics, Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
2Max Planck Institute for the Science of Light, Günther-Scharowsky-Straße 1/Bau 24, 91058 Erlangen, Germany

We study the nonlinear driven dissipative quantum dynamics of an array of optomechanical sys-
tems. At each site of such an array, a localized mechanical mode interacts with a laser-driven cavity
mode via radiation pressure, and both photons and phonons can hop between neighboring sites.
The competition between coherent interaction and dissipation gives rise to a rich phase diagram
characterizing the optical and mechanical many-body states. For weak intercellular coupling, the
mechanical motion at di�erent sites is incoherent due to the influence of quantum noise. When
increasing the coupling strength, however, we observe a phase transition towards a regime of phase-
coherent mechanical oscillations. This transition and the phase diagram of the system are studied
using a Gutzwiller ansatz for the dynamics of the driven-dissipative system.

Introduction. - Recent experimental progress has
brought optomechanical systems into the quantum
regime: A single mechanical mode interacting with a
laser-driven cavity field has been cooled to the ground
state [1, 2]. Several of these setups, in particular op-
tomechanical crystals, o⇤er the potential to be scaled up
to form optomechanical arrays. Applications of such ar-
rays for quantum information processing [3, 4] have been
proposed lately. Given these developments, one is led
to explore quantum many-body e⇤ects in optomechani-
cal arrays. In this work, we analyze the nonlinear photon
and phonon dynamics in a homogeneous two-dimensional
optomechanical array. In contrast to earlier works [3–6],
here we study the array’s quantum dynamics beyond a
quadratic Hamiltonian. To tackle the non-equilibrium
many-body problem of this nonlinear dissipative system,
we employ a mean-field approach for the collective dy-
namics. First, we discuss photon statistics in the array,
in particular how the photon blockade e⇤ect [7] is al-
tered in the presence of intercellular coupling. The main
part of the article focusses on the transition of the collec-
tive mechanical motion from an incoherent state (due to
quantum noise) to an ordered state with phase-coherent
mechanical oscillations. For these dynamics, the dissipa-
tive e⇤ects induced by the optical modes play a crucial
role. On the one hand, they allow the mechanical modes
to settle into self-induced oscillations [8–15] once the op-
tomechanical amplification rate exceeds the intrinsic me-
chanical damping, see Fig. 1(b). On the other hand,
the fundamental quantum noise (e.g. cavity shot noise)
di⇤uses the mechanical phases and prevents the mechan-
ical modes from synchronizing. This interplay leads to
an elaborate phase diagram characterizing the transition.
To gain further insight, we develop a semiclassical model
describing the coupling of the mechanical phases and the
influence of quantum noise.

While true long-range order is prohibited for a
two-dimensional system with continuous symmetry,
a Beresinskii-Kosterlitz-Thouless transition towards a
state with quasi-long range order is possible. The ordered
mechanical phase thus resembles the superfluid phase in

mechanical mode

optical mode

intercellular coupling

b

driving strength

a

Figure 1. (a) Optomechanical array with localized mechani-
cal (b̂j) and laser-driven optical modes (âj) at each site. The
optical and mechanical coupling between neighboring sites is
set by J and K, respectively. (b) Onset of self-induced oscil-
lations for an isolated mechanical mode as a function of laser
driving strength (schematic). The classical dynamics (black
solid line) show a bifurcation. Quantum fluctuations blur the
transition (dashed blue line) and generate a mechanical state
whose phase is completely undetermined, see also Fig. 3(b).

two dimensional cold atomic gases [16] or Josephson junc-
tion arrays [17]. Notably, optomechanical arrays com-
bine the tunability of optical systems with the robustness
and durability of an integrated solid-state device. Other
driven dissipative systems that have been studied with
regard to phase transitions recently include cold atomic
gases [18–23], nonlinear cavity arrays [24, 25] and opti-
cal fibres [26]. In a very recent work and along the lines
of [18], the preparation of long-range order for photonic
modes was proposed using the linear dissipative e⇤ects
in an optomechanical array [6]. Our work adds the novel
aspect of a mechanical phase transition to the studies of
driven dissipative many-body systems.

Model. - We study the collective quantum dynamics of
a two-dimensional homogeneous array of optomechanical
cells (Fig. 1). Each of these cells consists of a mechanical
mode and a laser driven optical mode that interact via
the radiation pressure coupling at a rate g0 (~ = 1):

Ĥom,j = ��â†j âj +⇥b̂†j b̂j �g0(b̂
†
j + b̂j)â

†
j âj +�L(â

†
j + âj).

(1)
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The mechanical mode (b̂j) is characterized by a frequency
⇤. The cavity mode (âj) is transformed into the frame
rotating at the laser frequency (⇥ = ⇧laser � ⇧cav) and
driven at the rate �L. In the most general case, both
photons and phonons can tunnel between neighboring
sites ⌃ij⌥ at rates J/z and K/z, where z denotes the
coordination number. The full Hamiltonian of the array
is given by Ĥ =

⇤
j Ĥom,j + Ĥint, with

Ĥint = �J

z

⌅

⇥i,j⇤

�
â†i âj + âiâ

†
j

⇥
� K

z

⌅

⇥i,j⇤

�
b̂†i b̂j + b̂ib̂

†
j

⇥
.(2)

To bring this many-body problem into a treatable form,
we apply the Gutzwiller ansatz Â†

i Âj ⇥ ⌃Â†
i ⌥Âj +

Â†
i ⌃Âj⌥ � ⌃Â†

i ⌥⌃Âj⌥ to Eq. (2). The accuracy of this ap-
proximation improves if the number of neighboring sites z
increases. For identical cells, the index j can be dropped
and the Hamiltonian reduces to a sum of independent
contributions, each of which is described by

Ĥmf = Ĥom � J
�
â†⌃â⌥+ â⌃â†⌥

⇥
�K

�
b̂†⌃b̂⌥+ b̂⌃b̂†⌥

⇥
.(3)

Hence, a Lindblad master equation for the single cell den-
sity matrix ⇤̂, d⇤̂/dt = �i[Ĥmf , ⇤̂] + ⇥D[â]⇤̂+ �D[b̂]⇤̂ can
be employed. The Lindblad terms D[Â]⇤̂ = Â⇤̂Â† �
1
2 Â

†Â⇤̂ � 1
2 ⇤̂Â

†Â take into account photon decay at a
rate ⇥ and mechanical dissipation (here assumed due to
a zero temperature bath) at a rate �.

Photon statistics. - Recently, it was shown that the ef-
fect of photon blockade [7] can appear in a single optome-
chanical cell: The interaction with the mechanical mode
induces an e⌅ective nonlinearity for the photon field of
strength g20/⇤ [7, 27]. Hence, the presence of a single
photon can hinder other photons from entering the cav-
ity. To observe this e⌅ect, the nonlinearity must be com-
parable to the cavity decay rate, i.e. g20/⇤ & ⇥, and the
laser drive weak (�L ⇤ ⇥) [7, 28].

To study nonclassical e⌅ects in the photon statistics,
we analyze the steady-state photon correlation function
g(2)(⌅) = ⌃â†(t)â†(t+ ⌅)â(t+ ⌅)â(t)⌥/⌃â(t)†â(t)⌥2 [29] at
equal times (⌅ = 0), with g(2)(0) = 1 for a coherent state,
and g(2)(0) < 1 (> 1) indicating anti-bunching (bunch-
ing). Here (Fig. 2), we probe the influence of the collec-
tive dynamics by varying the optical coupling strength J ,
while keeping the mechanical coupling K zero for clarity.
We note that, when increasing J , the optical resonance
e⌅ectively shifts: ⇥ ⌅ ⇥ + J . To keep the photon
number fixed while increasing J , the detuning has to be
adapted [30]. In this setting, we observe that the inter-
action between the cells suppresses anti-bunching (inset
of Fig. 2). Photon blockade is lost if the intercellular
coupling becomes larger than the e⌅ective nonlinearity,
2J & g20/⇤. Above this value, the photon statistics shows
bunching, and ultimately reaches Poissonian statistics for
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Figure 2. Loss of photon blockade for increasing optical cou-
pling in an array of optomechanical cavities. The equal time
photon correlation function shows anti-bunching (g(2)(0) < 1)
and bunching (g(2)(0) > 1) as a function of detuning ⇥ and
optical coupling strength J . The smallest values of g(2)(0)
are found for a detuning ⇥0 = �g20/⇤. When increasing the
coupling J while keeping the intracavity photon number con-
stant, i.e. along the dashed line, photon blockade is lost (inset,
g(2)(0) as black solid line). For a smaller driving power (inset,
blue solid line, �L = 5 · 10�5⇥), anti-bunching is more pro-
nounced, and the behavior is comparable to that of a nonlin-
ear cavity (inset, dashed line). The hatched area in the main
figure outlines a region where a transition towards coherent
mechanical oscillations has set in (see main text and further
figures). ⇥ = 0.3⇤, �L = 0.65⇥, g0 = 0.5⇤, � = 0.074⇤.

large couplings. Similar physics has recently been ana-
lyzed for coupled qubit-cavity arrays, [30]. For very large
coupling strengths, though, the density plot of Fig. 2 re-
veals signs of the collective mechanical motion (hatched
area). There we observe the correlation function to os-
cillate (at the mechanical frequency) and to show strong
bunching. We will now investigate this e⌅ect.

Collective mechanical quantum e�ects. - To describe
the collective mechanical motion of the array, we focus
on the case of purely mechanical intercellular coupling
(K > 0, J = 0) for simplicity. Note, though, that the
e⌅ect is also observable for optically coupled arrays, as
discussed above.

As our main result, Figs. 3(a)and 4(a) show the
sharp transition between incoherent self-oscillations and
a phase-coherent collective mechanical state as a function
of both laser detuning ⇥ and coupling strength K: In the
regime of self-induced oscillations, the phonon number
⌃b̂†b̂⌥ reaches a finite value. Yet, the expectation value
⌃b̂⌥ remains small and constant in time. When increas-
ing the intercellular coupling, though, ⌃b̂⌥ suddenly starts
oscillating:

⌃b̂⌥(t) = b̄+ re�i�eff t. (4)

Our more detailed analysis (see below) indicates that

optical coupling
(photon tunneling)

mechanical coupling
(phonon tunneling)

J K

Max Ludwig, FM, Phys. Rev. Lett. 111, 073602 (2013)

laser detuning
� = !L � !opt
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dipole moment of this artificial atom is very 
large, often more than four orders of magni-
tude greater than the typical value for an elec-
tronic transition of a real atom. Because the 
qubit’s size and shape are adjustable, the dipole 
coupling can also be engineered by having the 
atom essentially fill the transverse dimension 
of the cavity, which means that the vacuum 
Rabi frequency (expressed as a fraction of the 
photon frequency) approaches a maximum 
value53 of a few per cent, set by the fine-struc-
ture constant (see Box 2). In comparison, the 
best values obtained so far using real atoms in 
either optical or microwave cavities are much 
smaller, of the order of one part in 106. The 
very large interactions achievable in circuit 
QED make it easier to attain the strong cou-
pling limit of cavity QED. Another advantage 
of circuit QED is that it avoids the difficulties of 
cooling and trapping the atom, as the qubit can 
be fabricated at precisely the desired location 
inside the cavity.

Several experiments with superconduct-
ing qubits in the past few years have accessed 
the regime of strong coupling, and have reca-
pitulated many classic results from quantum 
optics. Strong coupling with circuit QED was 
first achieved in 2004 (refs 23, 24), and a device 
like that shown in Figure 2b has been used23 to 
observe vacuum Rabi splitting in a solid-state, 
artificial system. When transmission through 
the cavity was measured when the qubit was 
tuned into resonance, two separate peaks (the 
vacuum Rabi splitting) could be resolved (see 
Fig. 3a, overleaf), corresponding to coherent 
superpositions of a single photon in the trans-
mission line and a single excitation of the qubit. 
A more recent experiment54 with an optimized 
qubit now approaches the fine-structure limit, 
with a dimensionless coupling strength of 
about 2.5%, yielding the large splitting shown 
in Figure 3b. Other experiments have observed 
vacuum Rabi oscillations in the time domain25 

and demonstrated a maser based on a single 
artificial atom30.

Circuit QED has also been used for quan-
tum communication and coupling between 
qubits. A source of non-classical microwaves 
has been demonstrated, for example, in which 
single photons are produced on demand27. 
This experiment also showed that the quantum 
information contained in a superposition state 
of a qubit could be mapped onto the photon 
state, demonstrating the conversion between 
a standing and a flying qubit, a milestone for 
quantum computation. Finally, a cavity has 
been used to realize a solid-state quantum 
bus, with a quantum state being transferred 
from one qubit to another using a microwave 
photon as the intermediary. This last achieve-
ment was made simultaneously in experiments 
with phase qubits29 and charge qubits28. Taken 
together, these experiments indicate that com-
munication between small prototype systems 
of several qubits, wired together with photons 
and cavities, is possible. The combination of 
techniques and concepts from quantum optics, 
in conjunction with the technology for super-
conducting quantum circuits, is likely to lead 
to continued rapid progress.

The combination of circuit QED and experi-
mental advances with superconducting circuits 
raises many interesting questions, and next we 
shall discuss some possible themes and areas 
for future work.

New regimes of quantum optics
As mentioned above, the relative coupling 
strength in circuit QED is many orders of 
magnitude greater than in the better-known 
versions of cavity QED with real atoms. This 
means that less-familiar, higher-order effects 
can have a noticeable influence. One exam-
ple is the dispersive, or off-resonant, case, in 
which the qubit and the photon interact with-
out the photon being absorbed. In the ‘strong 

dispersive regime’ in circuit QED26, this inter-
action, although roughly ten times smaller 
than the resonant case, is still larger than all 
sources of decoherence, a situation that has 
been accessed in only a few experiments with 
Rydberg atoms44,45. Circuit QED couplings can 
approach the limit where multiphoton effects, 
which are usually rare, play an important role. 
Other new phenomena include optical bist-
ability of the cavity, in which the presence of 
a single atom makes the cavity oscillations 
strongly anharmonic, and causes the entangle-
ment of multi-photon states. It is also possible 
to engineer strong photon–photon nonlineari-
ties, based for example on the simultaneous 
interaction of two cavities with a single qubit. 

What is the real limit on the strength of cou-
pling? It should be possible to push coupling 
strengths beyond the fine-structure limit dis-
cussed above for electric fields. For instance, 
if the current in a transmission line is passed 
directly through a Josephson junction53, the 
relative coupling can be larger than unity (g > ω, 
where ω is the transmission frequency of the 
atom/cavity), so the photon and the qubit cease 
to be separate entities and the coupling can-
not be considered as a perturbation. All these 
investigations could add significantly to the 
body of knowledge on the light–matter inter-
action already gleaned from cavity QED. 

What are the limits of coherence?
Perhaps the greatest outstanding problem with 
all solid-state implementations of quantum 
systems is how to minimize decoherence, the 
inevitable loss of quantum information owing 
to coupling to undesired degrees of freedom, 
and secure enough time to allow complex 
manipulations. In their roughly 10 years of 
existence, the coherence time of supercon-
ducting qubits has increased by a factor of 
almost 1,000 (from just nanoseconds to a few 
microseconds), but further improvements will 

Figure 2 | Circuit QED devices. a, Schematic representation (adapted 
from ref. 22) of the circuit analogue of cavity quantum electrodynamics 
(QED), where a superconducting qubit (green) interacts with the electric 
fields (pink) in a transmission line (blue), consisting of a central conductor 
and two ground planes on either side. The cavity is defined by two gaps 
(the mirrors) separated by about a wavelength. The cavity and qubit are 
measured by sending microwave signals down the cable on one side of 
the cavity and collecting the transmitted microwaves on the output side. 

b, Micrograph of an actual circuit QED device that achieves the strong-
coupling limit. It consists of a superconducting niobium transmission line 
on a sapphire substrate with two qubits (green boxes) on either side. The 
inset shows one of the superconducting Cooper-pair box charge qubits 
located at the ends of the cavity where the electric fields are maximal. The 
qubit has two aluminium ‘islands’ connected by a small Josephson junction. 
Changing the state of the qubit corresponds to moving a pair of electrons 
from the bottom to top (shown schematically).
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In the past two decades, 
scientists and engineers 
in a variety of disciplines 
have been excited by the 
idea of quantum informa-
tion processing1, in which 
a computation is carried 
out by controlling a com-
plex collection of quantum 

objects. This idea seeks to combine two of the 
greatest advances in science and technology of 
the twentieth century. 

The first breakthrough is the development 
of quantum mechanics, with its sometimes 
strange and counterintuitive rules that hold 
sway in the domain of atoms and single parti-
cles. The second is the technological revolution 
that followed the invention of the integrated 
circuit and the advent of powerful digital 
computers, which gave rise to the current 
information age. Surprisingly, the seemingly 
bizarre quantum-mechanical ideas of super-
position and entanglement are expected to 
lead to a kind of natural parallel processing 
during computations. The unlikely marriage 
of these two revolutions could lead to incred-
ible advances in computational power, at least 
for certain special problems.

Unfortunately, the practical challenges to 
making a quantum information device are 
daunting. To build a quantum computer, the 
classical bits that store information in an ordi-
nary computer must first be replaced with 
quantum bits (qubits). These qubits can be 
composed of any quantum system with two dis-
tinct states (0 and 1), but they have the special 
property that they can be placed into quantum 
superpositions, existing in both states at once. 
A computation then proceeds by combining 
manipulations of the superpositions in single 
qubits (one-bit operations) and controlled 
interactions of multiple qubits (the quantum 
equivalent of logic gates). But to truly exceed 
the capabilities of conventional computers, the 
quantum engineer must acquire extremely pre-
cise control over the quantum domain, prevent 
any unknown evolution that affects the quan-
tum states (decoherence), and amass many 
thousands of qubits. Moreover, these qubits 
must then be ‘wired up’ in complex and pre-
scribed arrangements, so that they can interact 
and communicate their quantum information 

back and forth during the computation. 
Many different physical implementations 

of quantum information processors are being 
pursued today. Some systems comprise ‘natu-
ral’ candidates, such as single atoms, ions or 
spins, for which the manipulation of quantum 
states has a long history and is routine in many 
laboratories. Others are based on artificial 
systems in the solid state, such as quantum 
dots or superconducting circuits. These latter 
candidates have a certain appeal as they can 
be designed and fabricated using techniques 
borrowed from conventional electronics.

Before making a quantum information proc-
essor from solid-state systems such as super-
conducting circuits, two basic questions must 
be addressed. First, can the qubits be made 
from sufficiently ‘atom-like’ circuit elements, 
in which the macroscopic variables such as 
current and voltage can exist in controllable 
superpositions of distinct quantum states? And 
second, can we connect these qubits together 
in the required manner, perhaps using familiar 
electrical means such as actual wires, but keep-
ing in mind that any information transported 
must remain in its intrinsically quantum form 
and exchanged as individual quanta?

The answer to the first question, originally 
posed2 to test the applicability of quantum 

mechanics for macroscopic objects, is now at 
least a qualified ‘yes’. Pioneering work in the 
1980s on simple superconducting circuits 
incorporating a Josephson junction3 (see 
Box 1) showed that macroscopic variables 
such as voltages could indeed exhibit quan-
tum behaviour. Further work established that 
junctions could be considered as ‘atoms with 
wires’, which display energy-level quantization4 
and interact strongly with the electromagnetic 
environment5,6. It was not until the end of the 
1990s, however, that the first evidence for 
coherent superpositions7 and time-domain 
control of the quantum state8 in a supercon-
ducting qubit was demonstrated. 

The past decade has seen rapid progress in 
this field. Several different ‘flavours’ of super-
conducting qubit9 (see Box 1) have now been 
demonstrated, and two qubits have been cou-
pled to demonstrate the entanglement between 
them10 and to perform simple quantum logic 
operations11. The current state-of-the-art 
allows for superposition states that survive for 
several microseconds, long enough for hun-
dreds of operations on a single qubit. With 
improvements in superconducting qubit 
design, as well as in the materials and methods 
used for fabricating circuits, the lifetime of the 
stored quantum information may be further 
increased and the precision of qubit control 
and measurement enhanced.

But how can we address the second question 
and realize the quantum connections between 
qubits? For communicating quantum informa-
tion between real atoms, optical photons are 
natural candidates12. They have many advan-
tages, including rapid propagation and the 
ability to be guided on optical fibres for many 
kilometres without being lost. Superconduct-
ing qubits also interact electromagnetically, 
but because of their much smaller energy-level 
separations, the ‘photons’ they best couple with 
lie in the microwave range of the spectrum 
(frequencies of 3–30 GHz, or wavelengths of 
1–10 cm). Several authors13–22 have speculated 
that such microwave photons could be a route to 
connecting qubits, and recent experiments23–30

have demonstrated qubit–photon couplings 
in superconducting circuits. This approach is 
similar to the branch of atomic physics known 
as cavity quantum electrodynamics (cavity 
QED), which studies the interaction of photons 

Wiring up quantum systems
R. J. Schoelkopf and S. M. Girvin

The emerging field of circuit quantum electrodynamics could pave the way for the design 
of practical quantum computers.

Figure 1 | Cavity quantum electrodynamics. 
Schematic representation of a cavity quantum 
electrodynamics (QED) system, consisting of an 
atom with two energy levels interacting with a 
single photon mode (pink) trapped by mirrors 
(blue) to form a cavity. The blue dot is an electron 
occupying one of the energy levels. The strong 
coupling regime is reached when the interaction 
rate of the atom and a single photon (g) is larger 
than the dissipation arising from the loss of 
photons (at rate κ) or from emission from the 
atom into other modes at rate γ; in other words, 
when g >> κ,γ. 
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Magneto-optical effect (YIG)
breaks Lorentz reciprocity.

But: bulky, lossy, large magnetic fields
→ searching for on-chip, reconfigurable,
magnetic-field-free, nonreciprocal device

Jalas et al., Nature Photonics 7, 579 (2013)
Verhagen and Alu, Nature Physics 13, 922 (2017)
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System is nonreciprocal if:

Ranzani & Aumentado, NJP 17, 
023024 (2015)
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5, 021025 (2015)

K. Fang et al., Nat. Phys. (2017)

Is non-reciprocity also achieveable
without direct cavity-cavity coupling?
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dissFang, …, Painter
Nat. Phys. 13, 465 (2017)

Metelmann and Clerk,
PRX 5, 021025 (2015)

Some of the recent work on non-reciprocity using reservoir engineering

black-box isolator
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FIG. 1. Optomechanical nonreciprocal transmission

via interference of two asymmetric dissipative cou-

pling pathways. A. Two microwave modes â1 and â2 are
coupled via two mechanical modes b̂1 and b̂2 through optome-
chanical frequency conversion (as given by the coupling con-
stants g11, g21, g12, g22). Nonreciprocity is based on the inter-
ference between the two optomechanical (conversion) path-
ways g11, g21 and g12, g22, in the presence of a suitably chosen
phase di↵erence � between the coupling constants as well as
the deliberate introduction of an asymmetry in the pathways.
B-C. The symmetry between the pathways can be broken by
o↵-setting the optomechanical transmission windows through
each mechanical mode (dashed lines in dark and light green)
by a frequency di↵erence 2�. Each single pathway, in the
absence of the other mode, is described by eq. (2). In the
forward direction (B), the two paths interfere constructively,
allowing transmission and a finite scattering matrix element
S21 on resonance with the first microwave cavity. In contrast,
in the backward direction (C), the paths interfere destruc-
tively, such that S12 ⇡ 0, thereby isolating port 1 from port 2
on resonance with the second microwave cavity. The isolation
bandwidth is determined by the intrinsic dissipation rate of
the mechanical modes.

ciprocal process. In fact, due to the finite quality factor
of the intermediary mechanical modes, both conversion
paths between the electromagnetic modes are partly dis-
sipative in nature. Nonreciprocity is in this case only
possible by breaking the symmetry between the two dis-
sipative coupling pathways. We describe the mechanism
in detail below, shedding some light on the essential in-
gredients for nonreciprocity using this approach.
We first theoretically model our system to reveal how

nonreciprocity arises. We consider two microwave modes
(described by their annihilation operators â1, â2) hav-
ing resonance frequencies !c,1, !c,2 and dissipation rates
1, 2, which are coupled to two mechanical modes (de-
scribed by the annihilation operators b̂1, b̂2) having res-
onance frequencies ⌦1, ⌦2 and dissipation rates �m,1,
�m,2 (fig. 1A). The radiation-pressure-type optomechan-

ical interaction has the form [28, 29] g0,ij â
†
i âi(b̂j + b̂

†
j)

(in units where h̄ = 1), where g0,ij designates the vac-
uum optomechanical coupling strength of the i

th mi-
crowave mode to the j

th mechanical mode. Four mi-
crowave tones are applied, close to each of the two lower
sidebands of the two microwave modes, with detunings
of �11 = �21 = �⌦1 � � and �12 = �22 = �⌦2 + �

(fig. 2C). We linearise the Hamiltonian, neglect counter-
rotating terms, and write it in a rotating frame with re-
spect to the mode frequencies

H = �� b̂
†
1b̂1+� b̂

†
2b̂2+g11(â1b̂

†
1+â

†
1b̂1)+g21(â2b̂

†
1+â

†
2b̂1)

+ g12(â1b̂
†
2 + â

†
1b̂2) + g22(e

i�
â2b̂

†
2 + e

�i�
â
†
2b̂2) (1)

where âi and b̂j are redefined to be the quantum fluc-
tuations around the linearised mean fields. Here gij =
g0,ij

p
nij are the field-enhanced optomechanical coupling

strengths, where nij is the contribution to the mean in-
tracavity photon number due to the drive with detun-
ing �ij . Although in principle each coupling is complex,
without loss of generality we can take all to be real except
the one between â2 and b̂2 with a complex phase �.
We start by considering frequency conversion through

a single mechanical mode. Neglecting the noise terms,
the field exiting the cavity â2 is given by â2,out =
S21â1,in + S22â2,in, which defines the scattering matrix
Sij . For a single mechanical pathway, setting g12 = g22 =
0 and � = 0, the scattering matrix between input and
output mode becomes

S21(!) =

r
ex,1ex,2

12

p
C11C21�m,1
�eff,1

2 � i!

, (2)

where ex,1, ex,2 denote the external coupling rates
of the microwave modes to the feedline, and the (mul-
tiphoton) cooperativity for each mode pair is defined
as Cij = 4g2ij/(i�m,j). Conversion occurs within the
modified mechanical response over an increased band-
width �e↵,1 = �m,1 (1 + C11 + C21). This scenario,
where a mechanical oscillator mediates frequency conver-
sion between electromagnetic modes, has recently been
demonstrated [38] with a microwave optomechanical cir-
cuits [39], and moreover used to create a bidirectional link
between a microwave and an optical mode [40]. Optimal
conversion, limited by internal losses in the microwave
cavities, reaches at resonance |S21|2max = ex,1ex,2

12
in the

limit of large cooperativities C11 = C21 � 1.
We next describe nonreciprocal transmission of the full

system with both mechanical modes. We consider the
ratio of transmission amplitudes given by

S12(!)

S21(!)
=

g11�1(!)g21 + g12�2(!)g22e+i�

g11�1(!)g21 + g12�2(!)g22e�i�
(3)

with the mechanical susceptibilities defined as �
�1
1 (!) =

�m,1/2�i (� + !) and �
�1
2 (!) = �m,2/2+i (� � !). Con-

version is nonreciprocal if the above expression has an
magnitude that di↵ers from 1. If S21 and S12 di↵er only
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FIG. 1. Optomechanical nonreciprocal transmission
via interference of two asymmetric dissipative cou-
pling pathways. A. Two microwave modes â1 and â2 are
coupled via two mechanical modes b̂1 and b̂2 through optome-
chanical frequency conversion (as given by the coupling con-
stants g11, g21, g12, g22). Nonreciprocity is based on the inter-
ference between the two optomechanical (conversion) path-
ways g11, g21 and g12, g22, in the presence of a suitably chosen
phase di↵erence � between the coupling constants as well as
the deliberate introduction of an asymmetry in the pathways.
B-C. The symmetry between the pathways can be broken by
o↵-setting the optomechanical transmission windows through
each mechanical mode (dashed lines in dark and light green)
by a frequency di↵erence 2�. Each single pathway, in the
absence of the other mode, is described by eq. (2). In the
forward direction (B), the two paths interfere constructively,
allowing transmission and a finite scattering matrix element
S21 on resonance with the first microwave cavity. In contrast,
in the backward direction (C), the paths interfere destruc-
tively, such that S12 ⇡ 0, thereby isolating port 1 from port 2
on resonance with the second microwave cavity. The isolation
bandwidth is determined by the intrinsic dissipation rate of
the mechanical modes.

ciprocal process. In fact, due to the finite quality factor
of the intermediary mechanical modes, both conversion
paths between the electromagnetic modes are partly dis-
sipative in nature. Nonreciprocity is in this case only
possible by breaking the symmetry between the two dis-
sipative coupling pathways. We describe the mechanism
in detail below, shedding some light on the essential in-
gredients for nonreciprocity using this approach.

We first theoretically model our system to reveal how
nonreciprocity arises. We consider two microwave modes
(described by their annihilation operators â1, â2) hav-
ing resonance frequencies !c,1, !c,2 and dissipation rates
1, 2, which are coupled to two mechanical modes (de-
scribed by the annihilation operators b̂1, b̂2) having res-
onance frequencies ⌦1, ⌦2 and dissipation rates �m,1,
�m,2 (fig. 1A). The radiation-pressure-type optomechan-

ical interaction has the form [28, 29] g0,ij â
†
i âi(b̂j + b̂

†
j)

(in units where h̄ = 1), where g0,ij designates the vac-
uum optomechanical coupling strength of the i

th mi-
crowave mode to the j

th mechanical mode. Four mi-
crowave tones are applied, close to each of the two lower
sidebands of the two microwave modes, with detunings
of �11 = �21 = �⌦1 � � and �12 = �22 = �⌦2 + �

(fig. 2C). We linearise the Hamiltonian, neglect counter-
rotating terms, and write it in a rotating frame with re-
spect to the mode frequencies

H = �� b̂
†
1b̂1+� b̂

†
2b̂2+g11(â1b̂

†
1+â

†
1b̂1)+g21(â2b̂

†
1+â

†
2b̂1)

+ g12(â1b̂
†
2 + â

†
1b̂2) + g22(e

i�
â2b̂

†
2 + e

�i�
â
†
2b̂2) (1)

where âi and b̂j are redefined to be the quantum fluc-
tuations around the linearised mean fields. Here gij =
g0,ij

p
nij are the field-enhanced optomechanical coupling

strengths, where nij is the contribution to the mean in-
tracavity photon number due to the drive with detun-
ing �ij . Although in principle each coupling is complex,
without loss of generality we can take all to be real except
the one between â2 and b̂2 with a complex phase �.
We start by considering frequency conversion through

a single mechanical mode. Neglecting the noise terms,
the field exiting the cavity â2 is given by â2,out =
S21â1,in + S22â2,in, which defines the scattering matrix
Sij . For a single mechanical pathway, setting g12 = g22 =
0 and � = 0, the scattering matrix between input and
output mode becomes

S21(!) =

r
ex,1ex,2

12

p
C11C21�m,1
�eff,1

2 � i!

, (2)

where ex,1, ex,2 denote the external coupling rates
of the microwave modes to the feedline, and the (mul-
tiphoton) cooperativity for each mode pair is defined
as Cij = 4g2ij/(i�m,j). Conversion occurs within the
modified mechanical response over an increased band-
width �e↵,1 = �m,1 (1 + C11 + C21). This scenario,
where a mechanical oscillator mediates frequency conver-
sion between electromagnetic modes, has recently been
demonstrated [38] with a microwave optomechanical cir-
cuits [39], and moreover used to create a bidirectional link
between a microwave and an optical mode [40]. Optimal
conversion, limited by internal losses in the microwave
cavities, reaches at resonance |S21|2max = ex,1ex,2

12
in the

limit of large cooperativities C11 = C21 � 1.
We next describe nonreciprocal transmission of the full

system with both mechanical modes. We consider the
ratio of transmission amplitudes given by

S12(!)

S21(!)
=

g11�1(!)g21 + g12�2(!)g22e+i�

g11�1(!)g21 + g12�2(!)g22e�i�
(3)

with the mechanical susceptibilities defined as �
�1
1 (!) =

�m,1/2�i (� + !) and �
�1
2 (!) = �m,2/2+i (� � !). Con-

version is nonreciprocal if the above expression has an
magnitude that di↵ers from 1. If S21 and S12 di↵er only

Interference of two coupling amplitudes 
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two asymmetric paths: non-reciprocal frequency conversion

2

FIG. 1. Optomechanical nonreciprocal transmission
via interference of two asymmetric dissipative cou-
pling pathways. A. Two microwave modes â1 and â2 are
coupled via two mechanical modes b̂1 and b̂2 through optome-
chanical frequency conversion (as given by the coupling con-
stants g11, g21, g12, g22). Nonreciprocity is based on the inter-
ference between the two optomechanical (conversion) path-
ways g11, g21 and g12, g22, in the presence of a suitably chosen
phase di↵erence � between the coupling constants as well as
the deliberate introduction of an asymmetry in the pathways.
B-C. The symmetry between the pathways can be broken by
o↵-setting the optomechanical transmission windows through
each mechanical mode (dashed lines in dark and light green)
by a frequency di↵erence 2�. Each single pathway, in the
absence of the other mode, is described by eq. (2). In the
forward direction (B), the two paths interfere constructively,
allowing transmission and a finite scattering matrix element
S21 on resonance with the first microwave cavity. In contrast,
in the backward direction (C), the paths interfere destruc-
tively, such that S12 ⇡ 0, thereby isolating port 1 from port 2
on resonance with the second microwave cavity. The isolation
bandwidth is determined by the intrinsic dissipation rate of
the mechanical modes.

ciprocal process. In fact, due to the finite quality factor
of the intermediary mechanical modes, both conversion
paths between the electromagnetic modes are partly dis-
sipative in nature. Nonreciprocity is in this case only
possible by breaking the symmetry between the two dis-
sipative coupling pathways. We describe the mechanism
in detail below, shedding some light on the essential in-
gredients for nonreciprocity using this approach.

We first theoretically model our system to reveal how
nonreciprocity arises. We consider two microwave modes
(described by their annihilation operators â1, â2) hav-
ing resonance frequencies !c,1, !c,2 and dissipation rates
1, 2, which are coupled to two mechanical modes (de-
scribed by the annihilation operators b̂1, b̂2) having res-
onance frequencies ⌦1, ⌦2 and dissipation rates �m,1,
�m,2 (fig. 1A). The radiation-pressure-type optomechan-

ical interaction has the form [28, 29] g0,ij â
†
i âi(b̂j + b̂

†
j)

(in units where h̄ = 1), where g0,ij designates the vac-
uum optomechanical coupling strength of the i

th mi-
crowave mode to the j

th mechanical mode. Four mi-
crowave tones are applied, close to each of the two lower
sidebands of the two microwave modes, with detunings
of �11 = �21 = �⌦1 � � and �12 = �22 = �⌦2 + �

(fig. 2C). We linearise the Hamiltonian, neglect counter-
rotating terms, and write it in a rotating frame with re-
spect to the mode frequencies

H = �� b̂
†
1b̂1+� b̂

†
2b̂2+g11(â1b̂

†
1+â

†
1b̂1)+g21(â2b̂

†
1+â

†
2b̂1)

+ g12(â1b̂
†
2 + â

†
1b̂2) + g22(e

i�
â2b̂

†
2 + e

�i�
â
†
2b̂2) (1)

where âi and b̂j are redefined to be the quantum fluc-
tuations around the linearised mean fields. Here gij =
g0,ij

p
nij are the field-enhanced optomechanical coupling

strengths, where nij is the contribution to the mean in-
tracavity photon number due to the drive with detun-
ing �ij . Although in principle each coupling is complex,
without loss of generality we can take all to be real except
the one between â2 and b̂2 with a complex phase �.
We start by considering frequency conversion through

a single mechanical mode. Neglecting the noise terms,
the field exiting the cavity â2 is given by â2,out =
S21â1,in + S22â2,in, which defines the scattering matrix
Sij . For a single mechanical pathway, setting g12 = g22 =
0 and � = 0, the scattering matrix between input and
output mode becomes

S21(!) =

r
ex,1ex,2

12

p
C11C21�m,1
�eff,1

2 � i!

, (2)

where ex,1, ex,2 denote the external coupling rates
of the microwave modes to the feedline, and the (mul-
tiphoton) cooperativity for each mode pair is defined
as Cij = 4g2ij/(i�m,j). Conversion occurs within the
modified mechanical response over an increased band-
width �e↵,1 = �m,1 (1 + C11 + C21). This scenario,
where a mechanical oscillator mediates frequency conver-
sion between electromagnetic modes, has recently been
demonstrated [38] with a microwave optomechanical cir-
cuits [39], and moreover used to create a bidirectional link
between a microwave and an optical mode [40]. Optimal
conversion, limited by internal losses in the microwave
cavities, reaches at resonance |S21|2max = ex,1ex,2

12
in the

limit of large cooperativities C11 = C21 � 1.
We next describe nonreciprocal transmission of the full

system with both mechanical modes. We consider the
ratio of transmission amplitudes given by

S12(!)

S21(!)
=

g11�1(!)g21 + g12�2(!)g22e+i�

g11�1(!)g21 + g12�2(!)g22e�i�
(3)

with the mechanical susceptibilities defined as �
�1
1 (!) =

�m,1/2�i (� + !) and �
�1
2 (!) = �m,2/2+i (� � !). Con-

version is nonreciprocal if the above expression has an
magnitude that di↵ers from 1. If S21 and S12 di↵er only

Interference of two coupling amplitudes 
(broken time reversal, dissipation, asymmetry)
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I. INTRODUCTION

Light carries momentum which gives rise to radiation
pressure forces. These forces were already postulated in
the 17th century by Kepler, who noted that the dust tails
of comets point away from the sun during a comet tran-
sit (Kepler, 1619). The first unambiguous experimental
demonstrations of the radiation pressure force predicted
by Maxwell were performed using a light mill configura-
tion (Lebedew, 1901; Nichols and Hull, 1901). A careful
analysis of these experiments was required to distinguish
the phenomenon from thermal e✏ects that had domi-
nated earlier observations. As early as 1909, Einstein
derived the statistics of the radiation pressure force fluc-
tuations acting on a moveable mirror (Einstein, 1909),
including the frictional e✏ects of the radiation force, and
this analysis allowed him to reveal the dual wave-particle
nature of blackbody radiation. In pioneering experi-
ments, both the linear and angular momentum transfer of
photons to atoms and macroscopic objects were demon-
strated by Frisch (Frisch, 1933) and by Beth (Beth, 1936),
respectively.

In the 1970s Arthur Ashkin demonstrated that focused
lasers beams can be used to trap and control dielectric
particles, which also included feedback cooling (Ashkin,
1978, 2006). The non-conservative nature of the radia-
tion pressure force and the resulting possibility to use it
for cooling atomic motion was first pointed out by Hän-
sch and Schawlow and by Dehmelt and Wineland (Hän-
sch and Schawlow, 1975; Wineland and Dehmelt, 1975).
Laser cooling was subsequently realized experimentally
in the 1980s and has become since then an extraordi-
narily important technique (Stenholm, 1986). It has, for
example, allowed cooling of ions to their motional ground
state and it is the underlying resource for ultracold atom
experiments. Many applications have been enabled by
laser cooling (Metcalf and van der Straten, 1999), includ-
ing optical atomic clocks, precision measurements of the
gravitational field, and systematic studies of quantum
many-body physics in trapped clouds of atoms (Bloch
and Zwerger, 2008).

The role of radiation pressure and its ability to pro-
vide cooling for larger objects was already investigated
earlier by Braginsky in the context of interferometers.
Braginsky considered the dynamical influence of radia-
tion pressure on a harmonically suspended end-mirror
of a cavity. His analysis revealed that the retarded
nature of the force, due to the finite cavity lifetime,
provides either damping or anti-damping of mechani-
cal motion, two e✏ects that he was able to demon-
strate in pioneering experiments using a microwave cav-
ity (Braginsky and Manukin, 1967; Braginsky et al.,
1970). In later experiments, these phenomena were also

optical
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mechanical
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microwave drive

LC circuit

vibrating
capacitor

Figure 1 Schematic of a generic optomechanical system, both
in the optical domain (top), with a laser-driven optical cav-
ity and a vibrating end mirror, as well as in the microwave
domain (bottom), with a vibrating capacitor. Here we have
depicted a microwave drive entering along a transmission line
that is inductively coupled to the LC circuit representing the
microwave resonator.

observed in microwave-coupled kg-scale mechanical res-
onators (Cuthbertson et al., 1996). Independently, sim-
ilar physics was explored theoretically for solid-state vi-
brations (Dykman, 1978). In the optical domain, the first
cavity optomechanical experiment (Dorsel et al., 1983)
demonstrated bistability of the radiation pressure force
acting on a macroscopic end-mirror.

Braginsky also addressed the fundamental conse-
quences of the quantum fluctuations of radiation pres-
sure and demonstrated that they impose a limit on how
accurately the position of a free test mass (e.g. a mirror)
can be measured (Braginsky and Khalili, 1995; Bragin-
sky and Manukin, 1977). A detailed analysis by Caves
clarified the role of this ponderomotive quantum noise in
interferometers (Caves, 1980). These works established
the standard quantum limit for continuous position de-
tection, which is essential for gravitational wave detectors
such as LIGO or VIRGO.

During the 1990s, several aspects of quantum cavity
optomechanical systems started to be explored theoret-
ically. These include squeezing of light (Fabre et al.,
1994; Mancini and Tombesi, 1994) and quantum non-
demolition (QND) detection of the light intensity (Jacobs
et al., 1994; Pinard et al., 1995), which exploit the e✏ec-
tive Kerr nonlinearity generated by the optomechanical
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A dissipative quantum reservoir for microwave
light using a mechanical oscillator
L. D. Tóth1†, N. R. Bernier1†, A. Nunnenkamp2, A. K. Feofanov1* and T. J. Kippenberg1*

Engineered dissipation can be used for quantum state preparation. This is achieved with a suitably engineered coupling to a
dissipative cold reservoir usually formed by an electromagnetic mode. In the field of cavity electro- and optomechanics, the
electromagnetic cavity naturally serves as a cold reservoir for themechanical mode. Here, we realize the opposite scenario and
engineer a mechanical oscillator cooled close to its ground state into a cold dissipative reservoir for microwave photons in a
superconducting circuit. By tuning the coupling to this dissipative mechanical reservoir, we demonstrate dynamical backaction
control of the microwave field, leading to stimulated emission and maser action. Moreover, the reservoir can function as
a useful quantum resource, allowing the implementation of a near-quantum-limited phase-preserving microwave amplifier.
Such engineered mechanical dissipation extends the toolbox of quantum manipulation techniques of the microwave field and
constitutes a new ingredient for optomechanical protocols.

D issipation can significantly a�ect the quantum behaviour
of a system and even completely suppress it1. However, if
carefully constructed, dissipation can relax the system of

interest to a desired target quantum state. This pioneering insight
was originally theoretically conceived and studied in the context
of trapped ions2, experimentally first realized with trapped atomic
ensembles3 and later with trapped ions4–6. Moreover, reservoir
engineering has recently also been realized in the context of circuit
quantum electrodynamics (circuit QED)7–9. In these experiments
the optical or microwave field provides a dissipative reservoir to the
quantum systems. In cavity optomechanics10, in which amechanical
oscillator and electromagnetic degree of freedom are parametrically
coupled, analogous ideas have been developed, and reservoir
engineering for the preparation of squeezed mechanical states has
been theoretically proposed11,12 and recently demonstrated13–15. As
in the atomic physics case, the electromagnetic field acts as the
engineered environment of the quantum system of interest.

In contrast, recent theoretical work16–20 has considered the oppo-
site scenario, where the mechanical degree of freedom is employed
to provide a dissipative, cold bath for light. This engineered bath can
then be employed to achieve desirable quantum states of light or to
modify the optical field properties. For example, such a dissipative
reservoir for light can be exploited for amplification17,18, entan-
glement generation16 or dissipative squeezing of electromagnetic
modes19. Moreover, it provides an ingredient to realize nonrecipro-
cal devices20 such as isolators, circulators or directional microwave
amplifiers. For a su�ciently cold dissipative mechanical reservoir,
nonreciprocal devices implemented in this manner can operate in
the quantum regime, with minimal added noise.

Here we engineer a mechanical oscillator into a quantum
reservoir for microwave light. This is achieved in a microwave
optomechanical system21 by engineering the mechanical dissipation
rate to exceed that of the electromagnetic mode. This regime allows
one to demonstrate dynamical backaction22 on microwave light,
and the control of a microwave mode by tuning its coupling to the
reservoir. Backaction amplification leads to stimulated emission of

microwaves and maser action using the mechanical oscillator as the
gain medium. Below the masing threshold, we implement a large-
gain, phase-preserving amplifier that operates with added noise 0.87
quanta (or a factor of two) above the quantum limit. Critically, this
demonstrates that the mechanical reservoir for light can function as
a useful quantum resource.

Optomechanical circuit with dark and bright modes
We utilize a scheme in which two microwave modes are coupled to
the same mechanical oscillator18. One (auxiliary) electromagnetic
mode is used to damp the oscillator via optomechanical sideband
cooling23,24 and engineer it into a cold bath for the other (pri-
mary) electromagnetic mode (Fig. 1a). A key ingredient for the
scheme is an optomechanical cooling rate of the auxiliary mode
which greatly exceeds the electromagnetic decay rate of the primary
microwave mode, necessitating vastly di�erent decay rates of the
employed microwave cavities. This is challenging to achieve with
previously realized dual-mode circuits15, since any parasitic cou-
pling between the two modes opens a decay channel, equilibrating
their decay in energy. Here, we address this challenge by engi-
neering hybridized modes with inherently dissimilar decay rates
arising from interference in the output channel (see Fig. 1b,c and
Supplementary Information).

Specifically, we design an electromechanical circuit using two
LC resonators, both coupled inductively to a common feedline,
one of which has a mechanically compliant vacuum-gap capacitor25
coupling mechanical vibrations to the microwave mode. The two
resonators are strongly coupled through sharing a common inductor
(see Fig. 1b). In terms of the annihilation operators â1 and â2 of the
bare modes, the resulting interaction Hamiltonian is given by

Ĥint =~J (â†
1â2 + â†

2â1)�~g̃0â†
1â1(b̂+ b̂†) (1)

where b̂ designates the annihilation operator for the mechanical
mode, J the intermode coupling strength, and g̃0 the vacuum
electromechanical coupling strength to the first mode (~ is the
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I. INTRODUCTION

Light carries momentum which gives rise to radiation
pressure forces. These forces were already postulated in
the 17th century by Kepler, who noted that the dust tails
of comets point away from the sun during a comet tran-
sit (Kepler, 1619). The first unambiguous experimental
demonstrations of the radiation pressure force predicted
by Maxwell were performed using a light mill configura-
tion (Lebedew, 1901; Nichols and Hull, 1901). A careful
analysis of these experiments was required to distinguish
the phenomenon from thermal e✏ects that had domi-
nated earlier observations. As early as 1909, Einstein
derived the statistics of the radiation pressure force fluc-
tuations acting on a moveable mirror (Einstein, 1909),
including the frictional e✏ects of the radiation force, and
this analysis allowed him to reveal the dual wave-particle
nature of blackbody radiation. In pioneering experi-
ments, both the linear and angular momentum transfer of
photons to atoms and macroscopic objects were demon-
strated by Frisch (Frisch, 1933) and by Beth (Beth, 1936),
respectively.

In the 1970s Arthur Ashkin demonstrated that focused
lasers beams can be used to trap and control dielectric
particles, which also included feedback cooling (Ashkin,
1978, 2006). The non-conservative nature of the radia-
tion pressure force and the resulting possibility to use it
for cooling atomic motion was first pointed out by Hän-
sch and Schawlow and by Dehmelt and Wineland (Hän-
sch and Schawlow, 1975; Wineland and Dehmelt, 1975).
Laser cooling was subsequently realized experimentally
in the 1980s and has become since then an extraordi-
narily important technique (Stenholm, 1986). It has, for
example, allowed cooling of ions to their motional ground
state and it is the underlying resource for ultracold atom
experiments. Many applications have been enabled by
laser cooling (Metcalf and van der Straten, 1999), includ-
ing optical atomic clocks, precision measurements of the
gravitational field, and systematic studies of quantum
many-body physics in trapped clouds of atoms (Bloch
and Zwerger, 2008).

The role of radiation pressure and its ability to pro-
vide cooling for larger objects was already investigated
earlier by Braginsky in the context of interferometers.
Braginsky considered the dynamical influence of radia-
tion pressure on a harmonically suspended end-mirror
of a cavity. His analysis revealed that the retarded
nature of the force, due to the finite cavity lifetime,
provides either damping or anti-damping of mechani-
cal motion, two e✏ects that he was able to demon-
strate in pioneering experiments using a microwave cav-
ity (Braginsky and Manukin, 1967; Braginsky et al.,
1970). In later experiments, these phenomena were also
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Figure 1 Schematic of a generic optomechanical system, both
in the optical domain (top), with a laser-driven optical cav-
ity and a vibrating end mirror, as well as in the microwave
domain (bottom), with a vibrating capacitor. Here we have
depicted a microwave drive entering along a transmission line
that is inductively coupled to the LC circuit representing the
microwave resonator.

observed in microwave-coupled kg-scale mechanical res-
onators (Cuthbertson et al., 1996). Independently, sim-
ilar physics was explored theoretically for solid-state vi-
brations (Dykman, 1978). In the optical domain, the first
cavity optomechanical experiment (Dorsel et al., 1983)
demonstrated bistability of the radiation pressure force
acting on a macroscopic end-mirror.

Braginsky also addressed the fundamental conse-
quences of the quantum fluctuations of radiation pres-
sure and demonstrated that they impose a limit on how
accurately the position of a free test mass (e.g. a mirror)
can be measured (Braginsky and Khalili, 1995; Bragin-
sky and Manukin, 1977). A detailed analysis by Caves
clarified the role of this ponderomotive quantum noise in
interferometers (Caves, 1980). These works established
the standard quantum limit for continuous position de-
tection, which is essential for gravitational wave detectors
such as LIGO or VIRGO.

During the 1990s, several aspects of quantum cavity
optomechanical systems started to be explored theoret-
ically. These include squeezing of light (Fabre et al.,
1994; Mancini and Tombesi, 1994) and quantum non-
demolition (QND) detection of the light intensity (Jacobs
et al., 1994; Pinard et al., 1995), which exploit the e✏ec-
tive Kerr nonlinearity generated by the optomechanical
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resonators, as shown in Fig. 1(a). The cavities are driven close
to the motional sidebands. After a standard treatment, which
includes linearizing the Hamiltonian, neglecting counterrotat-
ing terms, and going into a rotating frame [37, 38], we arrive
at the time-independent Hamiltonian (` = 1)
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), and g0,ij are the vacuum

optomechanical couplings. Since the couplings G
ij
, J

ij
depend

on the pumps, their amplitude and phase can be controlled.
The interactions are represented in Figs. 1(a), 2(a), 3(a) as red
(G

ij
) and blue (J

ij
) lines. Further details can be found in the

Supplementary Information (SI), including a discussion about
the limits of validity of the rotating-wave approximation.

We describe the system with quantum Langevin equa-
tions [38–40]. Neglecting mechanical noise (analyzed later),
and eliminating the mechanical modes, we obtain
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susceptibility �m,i

appears in the coupling matrix.
Using the input-output relation a

i,out = a
i,in *

˘


i
a
i
, [39]

the optical scattering matrix is Soptical(!) = 4 * L�(!)L,
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We say the system is nonreciprocal if the moduli of for-
ward and reverse scattering amplitudes differ, which occurs if
T12 ë T21. Looking for instance at the top left elements
[iT12]11, [iT21]11, we see that nonreciprocity arises because
flipping direction (1 õ 2) conjugates the complex couplings,

but leaves the mechanical susceptibility unchanged. Nonre-
ciprocity can also be understood in the framework presented
in Ref. [18] (cf. SI).

Directional phase-preserving amplifier (DPPA).—We con-
sider the coupling amplitudes [cf. Fig. 2(a)]
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that is, the first (second) cavity has two drives, close to the
red (blue) motional sidebands corresponding to the mechan-
ical resonators [cf. Fig. 2(a-b)]. We have already written the
amplitudes in terms of cooperativities C1i = 4G1i

2_(1�m,i
),

C2i = 4J2i2_(2�m,i
), and chosen the cooperativities in both

arms to be equal C1 í C1i, C2 í C2i. Given Eqs. (2) and (5),
isolation (T12 = 0) requires �21�
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2
m,1 [41]. �1 and �2

must have opposite signs, and we parametrize them by a single
dimensionless variable �1 = ��m,1, �2 = *��m,2.

Isolation occurs for certain phases of the coupling ampli-
tudes ✓1i í arg(G1i) and ✓2i í arg(J2i). However, only the
overall relative “plaquette phase”, � í ✓11 + ✓21 * ✓12 * ✓22,
is relevant, which explains the parameterization in Eq. (5).
Setting � =
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2C1 * 1_2 achieves impedance matching (i.e.,
vanishing reflection at cavity 1), attainable for C1 g 0.5. Then
the plaquette phase at which isolation occurs is
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Inverting the plaquette phase *� leads to isolation in the op-
posite direction (cf. SI).

We have chosen the couplings [Eq. (5)] due to the following
reasons. First, an even number of blue and red tones ensures
equivalent arms of the circuit. Second, amplification requires
blue tones. Third, a directional amplifier with four blue tones
cannot be impedance matched to the signal source (cf. SI).
Last, swapping hopping and amplifier interactions in one arm
of the circuit cannot lead to directional amplification [42].

The condition C2 < C1 ensures that the system does not
exceed the parametric instability threshold. In the limit of large
gain, we obtain our first main result, the scattering matrix
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with vanishing reverse gain S
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which can in principle be arbitrarily large, as long as the RWA
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resonators, as shown in Fig. 1(a). The cavities are driven close
to the motional sidebands. After a standard treatment, which
includes linearizing the Hamiltonian, neglecting counterrotat-
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optomechanical couplings. Since the couplings G
ij
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depend

on the pumps, their amplitude and phase can be controlled.
The interactions are represented in Figs. 1(a), 2(a), 3(a) as red
(G
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) and blue (J
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) lines. Further details can be found in the

Supplementary Information (SI), including a discussion about
the limits of validity of the rotating-wave approximation.

We describe the system with quantum Langevin equa-
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We say the system is nonreciprocal if the moduli of for-
ward and reverse scattering amplitudes differ, which occurs if
T12 ë T21. Looking for instance at the top left elements
[iT12]11, [iT21]11, we see that nonreciprocity arises because
flipping direction (1 õ 2) conjugates the complex couplings,

but leaves the mechanical susceptibility unchanged. Nonre-
ciprocity can also be understood in the framework presented
in Ref. [18] (cf. SI).

Directional phase-preserving amplifier (DPPA).—We con-
sider the coupling amplitudes [cf. Fig. 2(a)]
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that is, the first (second) cavity has two drives, close to the
red (blue) motional sidebands corresponding to the mechan-
ical resonators [cf. Fig. 2(a-b)]. We have already written the
amplitudes in terms of cooperativities C1i = 4G1i

2_(1�m,i
),

C2i = 4J2i2_(2�m,i
), and chosen the cooperativities in both

arms to be equal C1 í C1i, C2 í C2i. Given Eqs. (2) and (5),
isolation (T12 = 0) requires �21�
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m,1 [41]. �1 and �2

must have opposite signs, and we parametrize them by a single
dimensionless variable �1 = ��m,1, �2 = *��m,2.

Isolation occurs for certain phases of the coupling ampli-
tudes ✓1i í arg(G1i) and ✓2i í arg(J2i). However, only the
overall relative “plaquette phase”, � í ✓11 + ✓21 * ✓12 * ✓22,
is relevant, which explains the parameterization in Eq. (5).
Setting � =

˘

2C1 * 1_2 achieves impedance matching (i.e.,
vanishing reflection at cavity 1), attainable for C1 g 0.5. Then
the plaquette phase at which isolation occurs is

� = i log
⇠2� * i

2� + i

⇡

= 2 arccos
˘

1 * 1_(2C1). (6)

Inverting the plaquette phase *� leads to isolation in the op-
posite direction (cf. SI).

We have chosen the couplings [Eq. (5)] due to the following
reasons. First, an even number of blue and red tones ensures
equivalent arms of the circuit. Second, amplification requires
blue tones. Third, a directional amplifier with four blue tones
cannot be impedance matched to the signal source (cf. SI).
Last, swapping hopping and amplifier interactions in one arm
of the circuit cannot lead to directional amplification [42].

The condition C2 < C1 ensures that the system does not
exceed the parametric instability threshold. In the limit of large
gain, we obtain our first main result, the scattering matrix
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with vanishing reverse gain S
a2ôa1

(0)2, but forward gain
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(0)2 í G =
4C1C2

(C1 * C2)2
, (8)

which can in principle be arbitrarily large, as long as the RWA
is valid (cf. SI).
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DPSA • QND measurement couples one optical 
quadrature to the mechanical oscillators

• unlimited gain

• unlimited gain-bandwidth product

• quantum limited
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G ¼ 8C2ð2C1 − 1Þ
C21

; ð12Þ

mechanical Xi¼ðbiþb†i Þ=
ffiffiffi
2

p
, Pi¼iðb†i−biÞ=

ffiffiffi
2

p
, and op-

tical quadratures Ui¼ðaiþa†i Þ=
ffiffiffi
2

p
, Vi ¼ iða†i − aiÞ=

ffiffiffi
2

p
.

The amplifier is phase sensitive and directional, as only
the phase quadrature of the second cavity, V2, inherits the
amplified signal from the phase quadrature of the first
cavity, V1. We calculate the noise added to the signal as
before,

N DPSA ¼
nm;1 þ nm;2 þ 1

2ð2C1 − 1Þ
þ C1
8C2

C1
2C1 − 1

"
n c;2 þ

1

2

#
:

ð13Þ

The crucial difference to DPPA is that the noise stemming
from reflection of fluctuations at cavity 2 can also be
suppressed, such that in the limit C2 ≫ C1 ≫ 1 added noise
vanishes.
We again plot forward gain, reverse gain, added noise,

and spectral noise density at cavity 1 in Figs. 3(c)–3(f) at
cooperativities C1 ¼ f1; 3; 10; 30g, C2 ¼ C21. Increasing C1
enhances bandwidth and gain [cf. Fig. 3(c)] and suppresses
mechanical noise [cf. Fig. 3(e)]. Close to resonance, the
reverse scattering behaves like in the DPPA Sa2→a1ðωÞ≈
−iω

ffiffiffi
G

p
=Γm [39], and the same conclusions apply

[cf. Figs. 3(d) and 3(f)]. The gain-isolation-bandwidth
product is Γm. Forward and reverse gain are proportional
to

ffiffiffiffiffi
C2

p
, implying an unlimited gain-bandwidth product

[39]. For equivalent mechanical resonators Γm;1 ¼ Γm;2 ¼
Γm and in the limit κ=Γm ≫ f1; C1g, the amplitude
gain bandwidth of the DPSA is well approximated by
Γgain ¼ 2C1Γm.
Backward-propagating noise and sideband cooling.—

The noise emitted in the reverse direction is of central
importance for directional amplifiers. For both DPPA and
DPSA, the output noise spectral density of cavity 1 on
resonance is Sout1;DPSAð0Þ¼Sout1;DPPAð0Þ¼ðnm;1þnm;2þ1Þ=2.
Because of impedance matching and directionality, fluctua-
tions incident on the cavities do not appear in a1;out
[cf. Eqs. (7) and (11)]. The commutation relations of a1;out
then imply

P
2
j¼1½jSbi→a1ð0Þj

2 − jSb†i→a1
ð0Þj2& ¼ 1; i.e.,

mechanical fluctuations have to appear in the output instead.
The lowest possible value forS1;out is 1=2, attainable for zero
thermal noise quanta in the mechanical resonators.
However, even in state-of-the-art dilution refrigerators,

the required temperatures are out of reach. One way to
mitigate backward noise emission is to add another micro-
wave mode to the setup that can replace the fluctuations in
the output of cavity 1, essentially realizing a circulator.
Without modifying the theory above, one can either
increase the mechanical resonator frequencies, which is
mainly a technological challenge, or one could resort to
external sideband cooling with an auxiliary mode. The

latter can achieve nm → 0 [53–55], and has the added
benefit of enhancing mechanical linewidths [cf. red
(dashed) curve in Figs. 2 and 3 and SM [39] ]. While this
could be done with an additional cavity mode for each
resonator, implementing a circuit with four cavity modes
coupled to two mechanical resonators is a formidable
technical challenge. A problem arises when cooling with
only one additional mode, since it can lead to a coupling of
the mechanical resonators via the extra cooling mode; this
thereby changes the topology of the system, thus spoiling
directionality. This can be mitigated by detuning each
pump by several mechanical linewidths [39], making
cooling with only one additional mode feasible.
Conclusion.—We have presented quantum-limited, non-

reciprocal amplifiers using an optomechanical plaquette
comprising two cavities and intermediate mechanical
resonators [25,26]. Such devices carry great promise, since
they can be integrated into superconducting circuits and
amplify near or at the quantum limit, while protecting the
signal source.
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bandwidth, there is large reverse gain off resonance
[cf. Fig. 2(d)], and noise from cavity 2 dominates the
noise spectral density at cavity 1 [Fig. 2(f)]. With increas-
ing effective mechanical linewidth Γm (e.g. through addi-
tional sideband cooling), the isolation bandwidth grows,
suppressing reverse gain off resonance (cf. red dashed
curve in Fig. 2 and Ref. [18]). In the SM we calculate how
off-resonant terms renormalize the parameters of the
DPPA [39].
Directional phase-sensitive amplifier (DPSA).—We now

turn to an implementation of a DPSA, which necessitates
six tones. Essentially, we replace the amplifier interaction
in the DPPA by a phase-sensitive quantum nondemolition
(QND) interaction that couples one quadrature of cavity 2
to only one quadrature of the mechanical resonator [45,46],
choosing

G ¼ 1

2

 
eiΦ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1Γm;1κ1

p
e−iΦ=2
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p
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C2Γm;2κ2

p
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and the same J as for the DPPA [Eq. (5)], illustrated in
Figs. 3(a) and 3(b). Since the QND interaction requires
jGi2j¼ jJi2j, and we require symmetric amplifier arms,
two cooperativities suffice to characterize the six tones.
In the DPSA, we need to ensure the transmitted mechanical
quadratures agree, μ ¼ arg½G11χm;1ð0ÞG21=J21% ¼
arg½&G12χm;2ð0ÞG22=J22%, and that information from both
emerges in the same cavity quadrature, ν ¼
argðG21J21Þ ¼ argð&G22J22Þ. μ and ν determine the

quadratures involved in amplification. The two remaining
phases are an arbitrary mechanical phase and the pla-
quette phase.
While there is no parametric instability of the kind that

limits backaction-evading measurements [47,48], we show
in the SM [39] using a Floquet technique [49,50] that
counterrotating terms induce an instability threshold for
finite sideband parameter (similar to Ref. [51]), and the
RWA is only valid for sideband parameters that are bigger
than the cooperativities. This is not out of reach [52], but
needs to be taken into account in experimental design.
The isolation, detuning, and impedance-matching con-

ditions coincide with those of the DPPA, and we obtain
another central result, the scattering matrix (on resonance)
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provide the phase-sensitive amplification. (b) Pump setup: cavity 1 is pumped on the red sidebands of the mechanical resonators,
whereas cavity 2 has pumps on the red and blue sidebands. (c)–(f) Plots of forward gain, reverse gain [cf. Eq. (7)], added noise [Eq. (9)],
and the output noise fluctuation spectrum of cavity 1, all as functions of frequency in units of Γm;1, for cooperativities
C1 ¼ f1; 3; 10; 30g, C2 ¼ C21 (yellow to black, or light to dark). The parameters are the same as in Fig. 2. Depending on parameters,
external sideband cooling with an auxiliary mode can achieve nm;j ≈ 0, without negatively affecting amplification properties,
as described below. The red (dashed) curve in each plot illustrates this case, with C1 ¼ 30 and effective parameters n eff;i ¼
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with noise scattering intensity

bandwidth, there is large reverse gain off resonance
[cf. Fig. 2(d)], and noise from cavity 2 dominates the
noise spectral density at cavity 1 [Fig. 2(f)]. With increas-
ing effective mechanical linewidth Γm (e.g. through addi-
tional sideband cooling), the isolation bandwidth grows,
suppressing reverse gain off resonance (cf. red dashed
curve in Fig. 2 and Ref. [18]). In the SM we calculate how
off-resonant terms renormalize the parameters of the
DPPA [39].
Directional phase-sensitive amplifier (DPSA).—We now

turn to an implementation of a DPSA, which necessitates
six tones. Essentially, we replace the amplifier interaction
in the DPPA by a phase-sensitive quantum nondemolition
(QND) interaction that couples one quadrature of cavity 2
to only one quadrature of the mechanical resonator [45,46],
choosing
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and the same J as for the DPPA [Eq. (5)], illustrated in
Figs. 3(a) and 3(b). Since the QND interaction requires
jGi2j¼ jJi2j, and we require symmetric amplifier arms,
two cooperativities suffice to characterize the six tones.
In the DPSA, we need to ensure the transmitted mechanical
quadratures agree, μ ¼ arg½G11χm;1ð0ÞG21=J21% ¼
arg½&G12χm;2ð0ÞG22=J22%, and that information from both
emerges in the same cavity quadrature, ν ¼
argðG21J21Þ ¼ argð&G22J22Þ. μ and ν determine the

quadratures involved in amplification. The two remaining
phases are an arbitrary mechanical phase and the pla-
quette phase.
While there is no parametric instability of the kind that

limits backaction-evading measurements [47,48], we show
in the SM [39] using a Floquet technique [49,50] that
counterrotating terms induce an instability threshold for
finite sideband parameter (similar to Ref. [51]), and the
RWA is only valid for sideband parameters that are bigger
than the cooperativities. This is not out of reach [52], but
needs to be taken into account in experimental design.
The isolation, detuning, and impedance-matching con-

ditions coincide with those of the DPPA, and we obtain
another central result, the scattering matrix (on resonance)
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FIG. 6. Observation of asymmetric noise spectra due to Kerr-type
nonlinearity. (a) Pumping scheme with two equal red-detuned pumps.
(b) The peak ratio of the observed spectra vs. ⌦mod for constant
power of nc = 800 intracavity photons, showing decreased effect
for higher modulation frequencies. The data include small correction
for finite cavity bandwidth . The inset shows the spectra for the
enlarged data points in the main panel. (c) Increasing the pump power
for a constant ⌦mod/2⇡ = 4MHz, showing growing asymmetry and
eventually higher-order peaks. Also shown are fits to the analytic
model of Sec. III, see text for details. a

a TJK: 1. Color schemes comment as before and make a wide column
figure 2. a.u. is atomic units, not arb. units. 3. Figure mixes fonts. A uses
times new roman, rest using arial. It looks very anharmonic to the human
eye. 4. I find the graphs to elongated. Make wide column, or stack
underneath each other. 5. Can you show data trances that are no
background subtracted? 6. Inset has no vertical axis -¿ not allowed in
AASP

but include the additional Kerr frequency shifts �Kerr, �PT,
discussed above, as well as an optical and mechanical bath,
described by quantum Langevin equations, obtained from a
standard treatment [35, 38]. Linearising around the mean field
in the cavity â = ā(t) + d̂, we obtain the equations for linear
optomechanics [35], but with a periodic modulation of the
cavity frequency and coupling strengths

ḋ =

h
i (�+�e↵(t))�


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i
d+ ig(t)(b+ b

†
) +

p
din,

(7a)
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b+ g(t)(d

†
+ d) +

p
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where � = !cav � !pumps is the detuning of the pumps from
the cavity, g(t) = g0|ā0|2 cos(⌦modt) is the modulated op-

 

FIG. 7. An illustration of the coupled mode system. As a first ap-
proximation we only consider the central three modes. The most
important point is that mechanical noise incident on mode b̂(0) will
be distributed onto d̂R and d̂C . However, the modulated Kerr shift
couples these two modes, such that mechanical noise can interfere
with itself in the Fourier modes / sidebands. Notably, due to the finite
response time, the coupling between the Fourier modes is complex,
which leads to asymmetric sidebands.

tomechanically enhanced coupling strength, and we have sub-
sumed all Kerr effects into �e↵(t) ⌘ �k exp(i⌦modt) +

�
⇤
k exp(�i⌦modt), with a single complex parameter �k. This

works because all underlying Kerr effects have the same period-
icity. Such Langevin equations with periodic time-dependence
can be analysed with a recently developed method [39]. Note
that closely related models have been studied in the context of
levitated optomechanics [40, 41].

If the two pumps lie close to the red sideband (� ⇡ �⌦M ),
and the modulation frequency is much smaller than ⌦M , we
can assume the RWA and neglect terms rotating at 2⌦M .
Howeve, the resulting equations still have an explicit time-
dependence, which encode non-resonant processes. The
time-dependence can be removed by splitting the fields d

and b into Fourier components d(t) =
P

n exp(in⌦modt +

i⌦modt/2)d
(n)

(t), b(t) =
P

n exp(in⌦modt)b
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(t) [39], at
the cost of introducing an infinite set of coupled equations of
motion
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which are pictorially represented in Fig. 7. The Fourier compo-
nents sometimes also called auxiliary modes [42], frequency-
shifted operators [40], or simply sidebands. The explicitly
time-dependent terms in the linearised equations of motion
couple the Fourier modes. They are suppressed by the re-
sponse function of the modes, such that good approximations
are attained by including only few Fourier modes.

For weak driving, we find that the central three modes (in
bold colour in Fig. 7) are sufficient to describe the physics.
Stronger driving enhances the interaction between the optical
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Reservoir engineering enables the robust preparation of pure quantum states in noisy environments. We show
how a new family of quantum states of a mechanical oscillator can be stabilized in a cavity that is parametrically
coupled to both the mechanical displacement and the displacement squared. The cavity is driven with three
lasers, on the red sideband, on the cavity resonance and on the second blue sideband. The states so stabilized
are (squeezed and displaced) superpositions of a finite number of phonons. They show the unique feature of
encompassing two prototypes of nonclassicality for bosonic systems: by adjusting the strength of the drives, one
can in fact move from single-phonon- to Schrödinger-cat-like state. The scheme is deterministic, supersedes the
need for measurement-and-feedback loops and does not require initialization of the oscillator to the ground
state. As such, it enables the unconditional preparation of nonclassical states of a macroscopic object.

Introduction.—The preparation and manipulation of pure
quantum states usually requires isolation of the system from
the surrounding environment and control of the Hamiltonian.
Pursuing a radically different approach, reservoir engineering
aims instead to stabilize genuine quantum features of a sys-
tem by tailoring the properties of the environment [1]. Such
a technique has proven particularly successful in cavity sys-
tems, where a damped cavity mode naturally provides a highly
tunable reservoir. Reservoir engineering has been success-
fully applied to trapped atoms [2] and ions [3–5], circuit quan-
tum electrodynamics [6, 7] and opto/electro-mechanics [8–
10]. Focusing on cavity optomechanics, the stabilization of
mechanical single- and two-mode squeezed states has been re-
cently achieved [11–14]. Besides quantum state preparation,
reservoir engineering is also a valuable tool for the design
of transport properties, e.g. in nonreciprocal devices [15–19].
However, despite this success, the dissipative preparation of
mechanical pure states is currently limited by the linear char-
acter of the evolution, which restricts the set of target states to
Gaussian ones [20, 21].

In order to prepare non-Gaussian – and especially non-
classical – states of motion, some source of nonlinearity
is needed [22]. Early proposals for generating mechanical
nonclassical states in optomechanical systems exploited the
regime of single-photon strong coupling [23, 24], which how-
ever is extremely weak in current experimental platforms.
Conditional strategies have also beed developed, e.g. based
on photon-subtraction or pulsed interactions, which how-
ever suffer from being probabilistic and/or having a low effi-
ciency [25–30]. In contrast, reservoir engineering guarantees
the stable and unconditional preparation of the desired state.

In this Letter we propose a dissipative scheme that exploits
both the linear and the nonlinear (quadratic) optomechanical
coupling between one cavity mode and one mechanical res-
onator to generate highly nonclassical states of motion of the
mechanical element. In our scheme, the cavity provides a

⇤ These authors contributed equally to this work

f̂

â
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FIG. 1. Schematic depiction of the system considered. (a) A
cavity mode (â) and a mechanical oscillator (b̂) are coupled via a
linear-and-quadratic optomechanical interaction [Eq. (1)]. The linear
(quadratic) term describes photon-number dependent displacement
(squeezing) of the oscillator with strength g(1)0 (g(2)0 ). The cavity is
driven with three lasers as shown on the left side. (b) The cavity
fluctuation d̂ is coupled via a beam-splitter interaction (with strength
G1) to the operator f̂ , which is a nonlinear function of the mode
b̂ [Eqs. (2) and (3)] and whose form is determined by the relative
strengths and phases among the drives (symbolized by the circles).
The prevailing cavity losses, which couple the system at a rate  to
an environment with zero thermal occupation, drive the oscillator to-
ward the desired state [Eqs. (7) or (8)] while mechanical damping at
a rate � introduces imperfections [see Fig. 3].

tunable reservoir whose properties are controlled by apply-
ing three coherent drives. A specific choice of their relative
strengths and phases yields a novel class of bosonic steady
states that admits a simple analytical expression. These states
are (squeezed and displaced) finite superpositions of phonon
number states with fixed parity and are parametrized by a
non-negative integer n, which determines how many number
states are superimposed. By selecting n = 1 we can sta-
bilize a (squeezed displaced) single-phonon state, while for
increasing n the state becomes a macroscopic quantum su-
perposition similar to a Schrödinger cat state. Our scheme
thus interpolates between the two prototypes of nonclassical-
ity for bosonic systems: from single-particle nonclassicality,
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Quantum synchronization

Christiaan Huygens
(1629 – 1695)

Letter to Royal Society of London
“adjustment of rhythms of oscillating 

objects due to weak interaction”

1.1 Synchronization in historical perspective 3

pendulum in opposite swings were so much in agreement that they never
receded the least bit from each other and the sound of each was always heard
simultaneously. Further, if this agreement was disturbed by some interference, it
reestablished itself in a short time. For a long time I was amazed at this
unexpected result, but after a careful examination finally found that the cause of
this is due to the motion of the beam, even though this is hardly perceptible. The
cause is that the oscillations of the pendula, in proportion to their weight,
communicate some motion to the clocks. This motion, impressed onto the beam,
necessarily has the effect of making the pendula come to a state of exactly
contrary swings if it happened that they moved otherwise at first, and from this
finally the motion of the beam completely ceases. But this cause is not
sufficiently powerful unless the opposite motions of the clocks are exactly equal
and uniform.

The first mention of this discovery can be found in Huygens’ letter to his father
of 26 February 1665, reprinted in a collection of papers [Huygens 1967a] and repro-
duced in Appendix A1. According to this letter, the observation of synchronization
was made while Huygens was sick and stayed in bed for a couple of days watching
two clocks hanging on a wall (Fig. 1.2). Interestingly, in describing the discovered
phenomenon, Huygens wrote about “sympathy of two clocks” (le phénoméne de la
sympathie, sympathie des horloges).

Thus, Huygens had given not only an exact description, but also a brilliant quali-
tative explanation of this effect of mutual synchronization; he correctly understood
that the conformity of the rhythms of two clocks had been caused by an impercep-
tible motion of the beam. In modern terminology this would mean that the clocks
were synchronized in anti-phase due to coupling through the beam.

In the middle of the nineteenth century, in his famous treatise The Theory of
Sound, William Strutt (Fig. 1.3) [Lord Rayleigh 1945] described the interesting
phenomenon of synchronization in acoustical systems as follows.

When two organ-pipes of the same pitch stand side by side, complications ensue
which not unfrequently give trouble in practice. In extreme cases the pipes may

Figure 1.2. Original
drawing of Christiaan
Huygens illustrating his
experiments with two
pendulum clocks placed on
a common support.
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simplest model: driven van der Pol oscillator
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Genuine quantum features:
• footprint of quantized Fock levels
• negative steady-state Wigner density

Add
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We study forced synchronization of a self-oscillator to an external drive and to another self-oscillator. For
nonlinear oscillators the oscillation frequency in phase space is amplitude-dependent. In the quantum regime this
amplitude dependence is quantized. As we show in this article the discrete spectrum is reflected in resonances
in the phase locking behavior not present in the corresponding classical system. A further quantum signature is
found in the steady state Wigner density, which can show areas of negative density. Experimental realizations
of our proposal are in reach of several physical platforms.

INTRODUCTION

Synchronization of self-oscillators is a subject with great
relevance in all natural sciences [2, 16], with exciting fron-
tiers including the investigation of the neuronal synchroniza-
tion in the human brain or in artificial neural networks, as well
as engineering of high precision clocks. Recent advances in
nanotechnology o↵er the perspective of physical experiments
with large arrays of self-oscillators [5, 17]. Whereas most
of this research has been focused on the domain of classi-
cal physics, presently even in the quantum regime synchro-
nization is being investigated as experiments are becoming
feasible on various platforms such as mesoscopic ensembles
of atoms [23, 24], lasers [? ], nanomechanical oscillators
[1, 15, 18, 26, 27], trapped ions [7, 12], Josephson junctions
[? ? ].

Studying a van der Pol Oscillator, the most prominent ex-
ample of a self-oscillator, recent theoretical work character-
ized how the synchronization behavior quantitatively di↵ers
between its quantum and classical realization in phase locking
[11, 12] and frequency entrainment [19, 20]. While synchro-
nization is hindered by quantum noise as compared to the fully
classical model[19, 20], this noise is less detrimental [12] than
one would expect from a semiclassical description of the sys-
tem by a Fokker-Planck equation [3, 6].

In this article we study self-oscillators, for which not only
the damping but also the frequency is amplitude-dependent,
and show that their synchronization behavior is qualitatively
di↵erent in the quantum and the classical regime. We discuss
two quantum signatures: While classically the phase lock-
ing of one such oscillator to an external drive is maximal at
one particular frequency, the corresponding quantum system
can show enhanced synchronization when the drive is reso-
nant with one of its (many) possible energy gaps. These dis-
crete resonances reflect the quantized energy spectrum of the
quantum system. In a semiclassical limit the energy spectrum
becomes continuous so that the resonances (and therefore the
quantized energy spectrum) cannot be resolved. Quantum res-
onances generalize to the case of two coupled oscillators with
amplitude-dependent frequency. Secondly, the steady state
Wigner function of the oscillator can exhibit areas of negative
density which were not found in the previous studies.

a

Figure 1. (a) Level scheme of driven oscillator with Kerr and van der
Pol nonlinearities. (b) Steady state Wigner function with negativity
for parameters �/�1 = 240, �2/�1 = 0.8, E/�1 = 9,K/�1 = 50.

ONE OSCILLATOR

The system

We choose a damping nonlinearity of van der Pol type and a
Kerr type frequency nonlinearity, as these are the most promi-
nent and simple examples, but it is straight forward to general-
ize the results presented here to more complex nonlinearities.
In the framework of quantum master equations the system dy-
namics is given by

⇢̇ = �i[H0 + H1, ⇢] + L⇢, (1)

with system Hamiltonian H0 = ��a†a+K(a†a)2, drive Hamil-
tonian H1 = E(a+a†) and Lindblad operator L⇢ = �1D[a†]⇢+
�2D[a2]⇢ , where a denotes the annihilation operator for the
oscillator and D[x]⇢ = 2x⇢x† � (x†x⇢ � ⇢x†x). An illustration
of these terms is sketched in figure 1 a). The Hamiltonian de-
scribes a Kerr oscillator with nonlinearity parameter K, which
is coherently driven with an amplitude E at a detuning � from
its harmonic frequency !m. The van der Pol dynamics is mod-
eled by the Lindblad operator with linear antidamping param-
eter �1 and nonlinear damping parameter �2. We note that a
Du�ng oscillator with nonlinearity D(a + a†)4 in the Hamil-
tonian may be approximated by the corresponding Kerr term
for !m � Dha†ai using the rotating wave approximation. The
corresponding Kerr parameter is then given by K = 6D.

Fully equivalent to the density matrix description of Eq. (1),

…
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Aim: To study the tendency to phase locking 3

b

c

d

Figure 2. (a) Phase locking measure S for forced synchronization
and corresponding Wigner distributions. The phase locking behavior
for the quantum system (black solid line) described by ⇤ (defined
in Eq. (2)) can be understood with our perturbative expression (8)
(red bold dotted line). For the parameters of this plot (�2/�1 = 7,
E/�1 = 2.25, K/�1 = 50) approximately three energy levels have
significant occupation, so that two resonances are possible. The blue
dashed line shows the results of the corresponding semi-classical
model ⇤c (defined in Eq. (3)), for which there is only one resonance
as expected. The Wigner distributions for the parameters at the two
peaks (b), (d) and the minimum (c) illustrate the quantum phase lock-
ing behavior of ⇤.

lute value of the measure defined in Ref. [23], i.e.

S =
|hai|
p
ha†ai

=

���P1m=0

p
m + 1⇢m+1,m

���
pP

1

m=0 m⇢m,m
. (7)

In the following we will use (7) as a measure to compare phase
locking in the quantum case (2) and the semiclassical case (3).

For the perturbative steady-state solution (6), we obtain

S (⇢(1)) =

�������

1X

m=0

⇣
⇢(0)

m+1,m+1 � ⇢
(0)
mm

⌘ m + 1
p
ha†ai

E
�m+1,m

�������
. (8)

Equation (8) is one of the main results of this Letter. S (⇢(1)) is
a coherent sum of resonances at � = K(2m+ 1) and width �m.
They can be resolved for large Kerr anharmonicity K � �m
defined in Eq. (5). The number of visible resonances depends
on the number of non-negligible probabilities ⇢(0)

mm in the un-
perturbed steady state ⇢(0). In the quantum limit r ! 0, the
resonances become more pronounced since fewer levels are
occupied. In the limit r ! 1, the energy spectrum becomes
continuous, so that the resonances can no longer be resolved.

With this analytical understanding in mind we now present
exact numerical steady-state results of Eq. (1) obtained with
the steady-state solver of QuTiP [42, 43] which we compare
to the semiclassical approximation described by ⇤c of Eq. (3),
where the steady-state is found by discretizing the Fokker-
Planck equation. In Figs. 2 and 3 the resulting phase-locking
measure S is plotted as a function of the system parameters.
The black solid line in Fig. 2 (a) shows S as a function of the
detuning �/K for �2 = 7�1, E = 2.25�1 and K = 50�1. We

Figure 3. Global behavior of the phase-locking measure S for the
steady state of ⇤ (a, c, e) and ⇤c (b, d, f). In (a) and (b) S is plotted
as a function of � and �2 for E = 2.25�1 and K = 50�1, in (c) and (d)
as a function of � and E for �2 = 5�1 and K = 50�1, and in (e) and (f)
as a function of � and K for �2 = 5�1, E = 2.25�1, and Kmax = 50�1.

find that the position of the resonances is very well described
by Eq. (8) (red bold dotted line). In contrast, the semi-classical
model defined by Eq. (3) would lead to a single, broad reso-
nance (blue dashed line). Figures 2 (b)-(d) show how phase
locking at the two maxima and the one minimum manifests in
the steady-state Wigner distribution W(↵,↵⇤).

Figure 3 (a) illustrates how more resonances at � = K(2m+
1) appear with decreasing �2/�1, as more Fock levels become
populated, while each individual resonance becomes weaker.
The semiclassical approximation depicted in Fig. 3 (b) shows
broadening, but there is one smeared-out resonance, as the en-
ergy distribution is continuous classically. Figure 3 (c) shows
the synchronization tongue, i.e. the synchronization measure
as a function of detuning � for increasing drive E. The ra-
tio �2/�1 is chosen such that three Fock levels have a non-
negligible population in steady state resulting in the two res-
onances for the full quantum description. As expected classi-
cally, the tongue is not split in Fig. 3 (d) showing the solution
for ⇤c. Finally, Figures 3 (e) and (f) illustrate that in the ab-
sence of a Kerr anharmonicity, K = 0, there is only one reso-
nance as all energy gaps are identical for harmonic oscillators.
For increasing K the resonance splits in the quantum system
Fig. 3 (e), while the classical resonance Fig. 3 (f) broadens.

Frequency entrainment and negative Wigner density.– We
now use the power spectrum

P(!) =
Z
1

�1

ei!t
hb†(t)b(0)idt (9)

to discuss the frequency entrainment [22]. In Fig. 4 (a) we
demonstrate that for a nonzero Kerr anharmonicity K , 0
the frequency entrainment shows resonances at detunings � =
(2n+1)K, similar to the resonances in phase locking discussed
in the previous paragraph. For the parameters of Fig. 4 the
drive is so strong that the dynamics goes beyond first-order
perturbation theory and also diagonal matrix elements of the
density matrix in steady state are changed. As shown in the
inset of Fig. 4 (b), for the detuning at the � = 5K resonance
the redistribution is from even to odd Fock states, which have

Fokker Planck
(semiclassical):

broad resonance

3

Figure 2. Phase locking measure S 1 for forced synchronization of a
nonlinear quantum oscillator. For the steady state of ⇤ (a) and ⇤c
(b), S 1 is plotted as a function of � and �2 for constant E = 4.5�1
and K = 100�1. Again for the steady state of ⇤ (c) and ⇤c (d),
S 1 is plotted as a function of � and E for constant �2 = 5�1 and
K = 100�1.

As L1 couples only neighboring Fock states, L1⇢0 has
nonzero elements only on the minor diagonals. Next we ex-
ploit the fact that the superoperator L0 can be decomposed
into a subspace coupling only diagonal density matrix ele-
ments and a subspace coupling only o↵-diagonal elements.
Neglecting perturbations of order �1/K and �2/K, the inverse
L
�1
0 on the o↵-diagonal subspace is obtained by inverting its

diagonal so that L�1
0 |nihm| ⇡ �

�1
nm|nihm| with

�m+1,m = i (� � K(2m + 1)) � �m (5)

and �m = �1(2m + 3) + 2�2m2. Within this approximation the
phase locking measure is given by

S 1(⇢) =

�������

1X

m=1

pm
m
hni

E
�m,m�1

�������
(6)

to first order in E; here, the pm denote the occupation prob-
abilities in the steady state of L. The resonances in synchro-
nization described by Eq. (6) is the main result of this article.

While it is possible to obtain more accurate results in
higher-order perturbation theory, we will adopt Eq. (6) to un-
derstand the numerical results as most features can be under-
stood with this simple equation: It is a weighted sum over the
Lorentz (not right word, how to call these coe�cients?) fac-
tors E/�m+1,m that are resonant at � = K(2m+1) with integers
m 2 N. We note that in the regime E > � each E/�m+1,m is
still bounded by 1 due to higher-order terms. For resonances
to be visible we see that K � �1, �2 is required. The number
of visible resonances is equal to the number of non-negligible
probabilities pm, corresponding to the number of levels oc-
cupied in the steady state of L. In the regime of large �2/�1

Figure 3. (a) Phase locking measure S 1 for forced synchronization
and corresponding Wigner functions. The phase locking behavior for
the quantum system (black solid line) described by ⇤ can be under-
stood with the perturbation theory model (red dash-dotted line). For
the parameters of this plot (�2/�1 = 7, E/�1 = 4.5, K/�1 = 100)
approximately three energy levels have significant occupation, so
that two resonances are possible. For comparison the blue dashed
line shows the results of the corresponding semi-classical model ⇤c,
where there is only one resonance, as classically expected. The
Wigner functions for the parameters at the two peaks (b), (d) and
the minimum (c) illustrate the quantum phase locking behavior of ⇤.

the mean occupation hni becomes small, only few levels will
be occupied, and in consequence each individual pm becomes
larger and the resonances more pronounced.

Numerical Results

Armed with this analytical intuition we now discuss the ex-
act numerical results obtained with the steady state solver of
QuTiP [8, 9]. In Fig. 2, where the phase locking measure S 1
is plotted as a function of the system parameters. Figure 2 a)
illustrates how more resonances at � = K(2m+1) appear with
shrinking �2/�1, as more Fock levels become populated, while
each individual resonance becomes weaker. Figure 2 c) shows
the synchronization tongue for parameters where the nonlin-
ear damping ratio is chosen such that three Fock levels have a
non-negligible population in steady state resulting in the two
resonances for the full quantum description. In Figs. 2 b) and
d) the same plots are shown for the steady state of the semi-
classical model ⇤c, which shows only a single resonance.

Figure 3 is a cut through Figs. 2 a) and c) at constant
�2 = 7�1 and E = 4.5�1, showing in addition the simple ana-
lytical formula 6 for comparison. While E < �2 is just barely
fulfilled, the position of the resonances is well described by
Eq. (6). Figures 3 b)-d) illustrate how the phase locking be-
havior at both peaks and the local minimum in between is re-
flected in the Wigner function of the steady state.

numerical solution
to master equation

analytical expression
perturbative in drive
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We study forced synchronization of a self-oscillator to an external drive and to another self-oscillator. For
nonlinear oscillators the oscillation frequency in phase space is amplitude-dependent. In the quantum regime this
amplitude dependence is quantized. As we show in this article the discrete spectrum is reflected in resonances
in the phase locking behavior not present in the corresponding classical system. A further quantum signature is
found in the steady state Wigner density, which can show areas of negative density. Experimental realizations
of our proposal are in reach of several physical platforms.

INTRODUCTION

Synchronization of self-oscillators is a subject with great
relevance in all natural sciences [2, 16], with exciting fron-
tiers including the investigation of the neuronal synchroniza-
tion in the human brain or in artificial neural networks, as well
as engineering of high precision clocks. Recent advances in
nanotechnology o↵er the perspective of physical experiments
with large arrays of self-oscillators [5, 17]. Whereas most
of this research has been focused on the domain of classi-
cal physics, presently even in the quantum regime synchro-
nization is being investigated as experiments are becoming
feasible on various platforms such as mesoscopic ensembles
of atoms [23, 24], lasers [? ], nanomechanical oscillators
[1, 15, 18, 26, 27], trapped ions [7, 12], Josephson junctions
[? ? ].

Studying a van der Pol Oscillator, the most prominent ex-
ample of a self-oscillator, recent theoretical work character-
ized how the synchronization behavior quantitatively di↵ers
between its quantum and classical realization in phase locking
[11, 12] and frequency entrainment [19, 20]. While synchro-
nization is hindered by quantum noise as compared to the fully
classical model[19, 20], this noise is less detrimental [12] than
one would expect from a semiclassical description of the sys-
tem by a Fokker-Planck equation [3, 6].

In this article we study self-oscillators, for which not only
the damping but also the frequency is amplitude-dependent,
and show that their synchronization behavior is qualitatively
di↵erent in the quantum and the classical regime. We discuss
two quantum signatures: While classically the phase lock-
ing of one such oscillator to an external drive is maximal at
one particular frequency, the corresponding quantum system
can show enhanced synchronization when the drive is reso-
nant with one of its (many) possible energy gaps. These dis-
crete resonances reflect the quantized energy spectrum of the
quantum system. In a semiclassical limit the energy spectrum
becomes continuous so that the resonances (and therefore the
quantized energy spectrum) cannot be resolved. Quantum res-
onances generalize to the case of two coupled oscillators with
amplitude-dependent frequency. Secondly, the steady state
Wigner function of the oscillator can exhibit areas of negative
density which were not found in the previous studies.

a

Figure 1. (a) Level scheme of driven oscillator with Kerr and van der
Pol nonlinearities. (b) Steady state Wigner function with negativity
for parameters �/�1 = 240, �2/�1 = 0.8, E/�1 = 9,K/�1 = 50.

ONE OSCILLATOR

The system

We choose a damping nonlinearity of van der Pol type and a
Kerr type frequency nonlinearity, as these are the most promi-
nent and simple examples, but it is straight forward to general-
ize the results presented here to more complex nonlinearities.
In the framework of quantum master equations the system dy-
namics is given by

⇢̇ = �i[H0 + H1, ⇢] + L⇢, (1)

with system Hamiltonian H0 = ��a†a+K(a†a)2, drive Hamil-
tonian H1 = E(a+a†) and Lindblad operator L⇢ = �1D[a†]⇢+
�2D[a2]⇢ , where a denotes the annihilation operator for the
oscillator and D[x]⇢ = 2x⇢x† � (x†x⇢ � ⇢x†x). An illustration
of these terms is sketched in figure 1 a). The Hamiltonian de-
scribes a Kerr oscillator with nonlinearity parameter K, which
is coherently driven with an amplitude E at a detuning � from
its harmonic frequency !m. The van der Pol dynamics is mod-
eled by the Lindblad operator with linear antidamping param-
eter �1 and nonlinear damping parameter �2. We note that a
Du�ng oscillator with nonlinearity D(a + a†)4 in the Hamil-
tonian may be approximated by the corresponding Kerr term
for !m � Dha†ai using the rotating wave approximation. The
corresponding Kerr parameter is then given by K = 6D.

Fully equivalent to the density matrix description of Eq. (1),

…

Multiple phase locking resonances are 
footprint of quantized energy levels.
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Figure 4. (a) Power spectrum P(!) of the quantum van der Pol-Kerr
oscillator as a function of detuning � for �2 = 0.8�1, E = 4.5�1, and
K = 25�1. The red solid line indicates the maximum of the power
spectrum, the black dashed line the detuning � of the external drive.
Around � ⇡ K and � ⇡ 3K the two lines match indicating a reso-
nance in frequency entrainment. At � = 5K the spectrum shows a
third, smaller response. The steady state for these parameters is char-
acterized by a Wigner distribution with negative density, see panel
(b). The inset shows the Fock state probabilities P(n) in the presence
(right blue bars) and absence of the coherent drive (left black bars).

negative Wigner density around the origin ↵ = 0. Accord-
ingly, the steady-state Wigner distribution shows strong neg-
ative density as shown in Fig. 4 (b) and therefore cannot be
described in a semiclassical picture.

This clearly demonstrates that (quantum-induced) di↵usion
is insu�cient to describe the synchronization dynamics of
anharmonic oscillators, since derivatives of higher than sec-
ond order are required to bring about a negative Wigner den-
sity [33] in the phase space formulation of quantum optics.
Here, the higher-order derivatives stem from both the Kerr
and the van der Pol nonlinearity, see Eq. (2). Interestingly
though, in the case of linear instead of nonlinear damping, the
steady-state Wigner distribution can be calculated analytically
[44, 45] and it is always positive, even for K , 0. Similarly,
for van der Pol oscillators without Kerr term, only positive-
valued Wigner densities have been found [22, 24]. These ob-
servations suggest that for harmonic driving only the combi-
nation of a Kerr anharmonicity and a van der Pol nonlinearity
results in a nonclassical steady state.

Experimental implementation.– The driven van der Pol os-
cillator can be implemented with trapped ions, where one-
phonon gain and two-phonon loss can be engineered by driv-
ing di↵erent sidebands [24]. Also our additional requirement
K � �m is feasible, as trapping potentials with very large an-
harmonicities in position can be realized [46–48] with almost
lossless resonators, e.g. K = 20 kHz in Ref. [47] and typi-
cal heating rates on the order of 100 Hz [49]. For optimized
systems [50, 51] heating rates on the order of Hz have been
reported. We note that a Du�ng oscillator with anharmonic-
ity �(a+ a†)4 in the Hamiltonian may be approximated by the
corresponding Kerr term for !m � �ha†ai using the rotating-
wave approximation. The corresponding Kerr parameter is
then given by K = 6�. Synchronization can also be studied in
optomechanical systems [11–15], where as a future perspec-
tive strong Kerr anharmonicities may be engineered according
to proposals [52–55].

Conclusion.– We have identified parameter regimes where
synchronization of a quantum anharmonic oscillator is qual-
itatively di↵erent from that in the corresponding semiclassi-
cal model. We have shown that phase locking is resonantly
enhanced and suppressed due to the quantization of possi-
ble oscillation frequencies, as reflected in the extrema of the
synchronization tongue of Fig. 3. This behavior can be un-
derstood with a simple analytical model leading to Eq. (8).
Frequency entrainment can switch from unlocked to nearly
locked behavior at the same resonances as shown in Fig. 4 (a).
A further clear signature of nonclassical dynamics is the neg-
ative density in the steady-state Wigner distribution displayed
in Fig. 4 (b), which is in contrast to similar systems [45]. Pos-
sible experimental realizations include trapped ion setups or
other platforms with strongly anharmonic spectrum. We ex-
pect that the genuine quantum signatures discussed here will
be relevant in studies of synchronization in anharmonic os-
cillator networks or anharmonic oscillators coupled to other
quantum systems such as qubits.
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New platform for quantum science and technology 

Non-reciprocal devices with reservoir engineering 
• Optomechancial isolator and circulator proposal
• Proposal for optomechanical directional amplifier
• Proposal for current rectification in double QD

Platform for synchronization in quantum regime 
• Quantum noise generically destroys locking
• Genuine quantum features in sync identified
• “Quantum synchronization blockade”
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