Quantum photonic interface between spin and mechanical oscillators

Eugene Polzik Niels Bohr Institute Copenhagen

Image credit Bastian Leonhardt Strube and Mads Vadsholt

European Research Council Established by the European Commission

Room temperature long-lived macro-spin

NoiseTemperature < 300 nanoK N_{thermal} < 0.03

Frequency $10^2 - 10^7$ Hz

0.01 – 10 sec

 T_2

Alkane wall coating protects spin quantum state for > 10⁴ wall collisions

10¹² Cesium spins

B. Julsgard, A. Kozhekin and ESP, *Nature*, **413**, 400 (2001)

H. Krauter, C. Muschik, K. Jensen, W. Wasilewski, J. Pedersen, I. Cirac, and ESP. PRL 107, 080503 (2011) H.Krauter, D.Salart, C.Muschik, J. M. Petersen, T. Fernholz, and ESP. *Nature Physics*, July (2013) C. Møller et al. *Nature*, 547, 191 (2017)

Spin coherence > 3 msec at RT

High quality anti-relaxation coating material for alkali atom vapor cells

M. V. Balabas^{1,2,*}, K. Jensen¹, W. Wasilewski¹, H. Krauter¹, L. S. Madsen¹, J. H. Müller¹, T. Fernholz¹, and E. S. Polzik¹ Spin readout rate ~ photon flux and optical depth

Optical coupling to oscillating spin

B. Julsgaard, A. Kozhekin, EP, Nature, 413, 400 (2001)

$$Var(X - X_{0}) + Var(P + P_{0}) < 2$$
$$Var(\hat{J}_{z1} + \hat{J}_{z2}) / 2J_{x} + Var(\hat{J}_{y1} + \hat{J}_{y2}) / 2J_{x} < 2$$

W. Heisenberg

Standard quantum limit of displacement measurement • Heisenberg microscope •

N. Bohr

photon

particle

Trajectories without quantum uncertainties

in negative mass reference frame

 E.S. Polzik, K. Hammerer. Ann. der Physik 527, A15 (2015).

 See also:
 W. Wasilewski et al. PRL, 104, 133601 (2010).

 Tsai and Caves, PRL 2010
 K. Hammerer et al. PRL102, 020501 (2009).

 M. Ozawa

3 steps to noiseless quantum trajectories

1. Define trajectory relative to a quantum reference

2. Reference system has an effective negative mass

з. Entangled state of the reference and the probed systems is generated

"Experimental long-lived entanglement of two macroscopic objects". B. Julsgaard, A. Kozhekin and ESP. **Nature**, 413, 400 (**2001**)

"Establishing Einstein-Podolsky-Rosen channels between nanomechanics and atomic ensembles". K. Hammerer, M. Aspelmeyer, ESP, P. Zoller. **PRL** 102, 020501 (**2009**).

"Trajectories without quantum uncertainties". K. Hammerer and ESP, Annalen der Physik . (2015)

Probe system entangled with origin system $X(dt)_{X0} = X(0)_{X0} + (\dot{X} - \dot{X}_0)dt$ $= X(0)_{X0} + (P - P_0)dt$ Not good enougl Λ↑Υ_{γ0}

Trajectory in reference frame with negative mass EPR state relative to a negative mass origin $X(t)_{X0} = X(0)_{X0} + (\dot{X} - \dot{X}_0)dt$ $= X(0)_{X0} + (P + P_0) dt =$ $= X(0)_{x0}$ + classical dynamics $m = -m_0 = 1$

Oscillator: mass, spring constant, frequency <0

$$X(t) = X(0)\cos(\omega t) + P(0)\sin(\omega t)/m$$

Oscillator in negative mass ($m = -m_0$) reference oscillator frame:

$$X(t) - X_0(t) = [X(0) - X_0(0)] \cos(\omega t) + [P(0) + P_0(0)] \sin(\omega t) / \omega m$$

 $Var[X(t) - X_0(t)] < 1$

 $Var(X - X_0) + Var(P + P_0) < 2$

EPR:

Quantum back-action-evading measurement of motion in a negative mass reference frame

Christoffer B. Møller¹*, Rodrigo A. Thomas¹*, Georgios Vasilakis^{1,2}, Emil Zeuthen^{1,3}, Yeghishe Tsaturyan¹, Mikhail Balabas^{1,4}, Kasper Jensen¹, Albert Schliesser¹, Klemens Hammerer³ & Eugene S. Polzik¹

LETTER doi:10.1038/nature22980

Distributed HYBRID quantum system of SPIN and MECHANICS at (nearly) room temperature

Room temperature spin quantum oscillator

Mechanical oscillator with Q = 1 billion

Image credit

Bastian Leonhardt Strube and Mads Vadsholt

$$H_{spin} = \frac{\kappa}{\tau_p} X_{spin} x_{light}$$

 $H_{mech} = g x_{Mech} x_{light}$

See also: Regal group, Science 2013; Stamper-Kurn group, Nat. Phys. 2016

C. B. Møller et al. LETTER doi:10.1038/nature22980

Rodrigo Thomas Giorgos Vasilakis Christoffer Møller

RGE 9 ERV BS **QUANTUM BACK ACTION OF LIGHT** MITED BY SOON O BE L

PSelected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

G

PRL 116, 061102 (2016)

F. Khalili and E.S.P.arxiv.org/abs/1710.10405

Simulation for LIGO

Summary: standard quantum limits of measurement precision of fields and forces can be surpassed

Next generation of sensors of e.-m. fields, forces, acceleration, and gravity

Image credit: Bastian Leonhardt Strube and Mads Vadsholt