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Why YIG nanoresonators?

How to make them?

Structural properties

Magnonic properties

Overview
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Magnonmechanics

Quantum information processing
– Coupling of qubits to magnons successfully demonstrated
– Also promising: coupling of qubits to mechanical oscillators

(by electric fields:  Chu et al. Science 358, 199 (2017))
– Why not use magnons and magnetoelastic coupling?

(Tabuchi et al. Science 349, 405 (2015))
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Magnonmechanics

Magnons and Phonons
– Coupling of magnons and phonons recently demonstrated
– Drawback: YIG resonators are macroscopic spheres (250 µm)

not suitable for integration

Zhang et al. Sci. Adv. 2016; 2 : e1501286
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Overview

Huang et al. Nature 421, 496 (2003)

Can frequencies match?

– Demonstrated in 2003:
Mechanical nanoresonator with
resonance frequency above 1 
GHz

– Approaching range of useful
magnon frequencies

– Example for YIG:
1 µm length, 150 nm thickness
f ~ 1 GHz

– Typical shape:
cantilever (1 anchor point)
bridge (2 anchor points)

– How to make them?
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Making cantilevers and bridges

Crystalline materials
– Epitaxial growth at high temperatures

• No patterning by resist and lift-off possible
– Use of sacrificial layers and wet etching
– Limited use of focused ion beam techniques

M.L. Roukes
Physics World 
(2001)

Seo et al. APL 110
(2017)
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– Epitaxial growth at high temperatures
• No patterning by resist and lift-off possible

– Use of sacrificial layers and wet etching
– Limited use of focused ion beam techniques

Amorphous/polycristalline
– Patterning by lift off

• Use multilayer resists with different sensitivity
• Use different acceleration voltages

Making cantilevers and bridges
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Making cantilevers and bridges

Crystalline materials
– Epitaxial growth at high temperatures

• No patterning by resist and lift-off possible
– Use of sacrificial layers and wet etching
– Limited use of focused ion beam techniques

Amorphous/polycristalline
– Patterning by lift off

• Use multilayer resists with different sensitivity
• Use different acceleration voltages

No sacrificial layers for YIG/GGG!!!

Deposition by LPE or PLD at high temperatures forbids resist-
based lift-off!!!

How to combine Lift-Off with crystalline YIG???
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Breakthrough

YIG deposition by PLD at RT
– Amorphous YIG deposited at RT
– Annealing leads to high quality material
– Perfect crystallization over at least 100 nm
– Substrate acts as seed.

(C. Hauser, GS et al. Scientific Reports 6, 20827 (2016))
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Breakthrough

YIG deposition by PLD at RT
– Annealed material has very low damping
– For a 56 nm thick layer: 

• Linewidth of 0.13 mT @ 9.6 GHz
• Damping α=6.15x10-5
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Breakthrough

Combine the two

– Big questions: 
Are PLD and 3D lift-off compatible?

Can the crystallization propagate from the substrate through the 
resonator?

Is the magnonic quality still good?

+
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Process

Multi-voltage electron beam exposure
– Exposure with different penetration depth defines profile:

HV for posts, LV for span

(F. Heyroth, GS et al. cond-mat.1802.03176)
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Process

Development
– Results in slight undercut suitable for lift-off

(F. Heyroth, GS et al. cond-mat.1802.03176)
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Process

Pulsed laser deposition
– Directed deposition (beam-like) separates top layer from bridge

(more critical than for 2D structures)

(F. Heyroth, GS et al. cond-mat.1802.03176)
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Process

Lift-off
– Top layer is removed, bridge remains (ideally)

(F. Heyroth, GS et al. cond-mat.1802.03176)
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Results

Yeah! Bridges!
– Even micrometer long bridges 

are possible 
– Annealing seems to induce strain 
– Edges show artifacts from PLD

(F. Heyroth, GS et al. cond-mat.1802.03176)
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Transmission electron microscopy
Monocristalline span (almost)

– Crystallization frots propagate from the substrate, single defect at center 
of span

– Transition from post to span shows accumulation of defects
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Transmission electron microscopy
Higher bridges

– 200 nm high bridge shows increased strain
– Larger defect at center
– More defects at post

(F. Heyroth, GS et al. 
cond-mat.1802.03176)
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Transmission electron microscopy
Longer bridges

– Bridges of several micron length are possible
– Still defect in span only at center
– No visible bending due to strain (all images after annealing)

(F. Heyroth, GS et al. 
cond-mat.1802.03176)
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Lattice tilt?
FFT

– Image different areas on the bridge
– Make FFT of lattice
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Lattice tilt?
Superposition 

– Superposition shows small rotation (between 0.5 and 3°)
– Rotation between left and right side of the bridge (obviously also 

between side of the span and substrate

(F. Heyroth, GS et al. 
cond-mat.1802.03176)
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Ferromagnetic resonance
Array of bridges

– Measurement on 8000 (nominally) identical bridges (3000x500 nm)
– Linewidth of main resonance ∆H=1.25 mT@8 GHz
– Either very similar bridges or very narrow lines
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2∆H < 2.5 mT (F. Heyroth, GS et al. 
cond-mat.1802.03176)
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Ferromagnetic resonance
Damping

– Measurements at various frequencies 
– At low frequencies lines cannot be resolved
– Measurements between 8 and 12 GHz indicate Damping α ≤ 4.1x10-4

0 4 8 12
0

200

400

600

800

1000  Experiment
 Fit

HW
HM

 (µ
T)

frequency (GHz)

FMR

TR-MOKE

(F. Heyroth, GS et al. 
cond-mat.1802.03176)
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TR-MOKE
Time resolved scanning Kerr microscopy

– Allows to locally visualize time development of x or y-component of 
magnetization vector

– Resolution: ~300 nm
– Time resolution ~1 ps
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TR-MOKE
Standing spin waves

– Homogeneous mode (zero nodes)
– Damon Eshbach mode at lower fields (as expected)
– Backward volume modes at higher fields (up to 6 nodes)

21.9 mT
2 GHz

11.9 mT
2 GHz

25.6 mT
2 GHz

89.7 mT
4 GHz

92.5 mT
4 GHz

(F. Heyroth, GS et al. cond-mat.1802.03176)
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21.9 mT
2 GHz

11.9 mT
2 GHz

25.6 mT
2 GHz

89.7 mT
4 GHz

92.5 mT
4 GHz

Simulation
Spin dynamics simulation using mumax 3*

– Single step excitation
– FFT for each point of the bridge 
– Select frequency
– Reconstruct image from amplitude and phase

19.4 mT
2 GHz

19.4 mT
2.32 GHz

19.4 mT
1.85 GHz

83.8 mT
3.73 GHz

83.8 mT
3.66 GHz

*”The design and verification of 
mumax3”, AIP Advances 4, 107133 
(2014). 

(F. Heyroth, GS et al. cond-mat.1802.03176)
27



G. Schmidt, Mainz, May 2018

Nanostructured
Materials

Scanning TR MOKE
Ferromagnetic resonance

– FMR on single spot on single bridge
– Linewidth of main resonance ∆H=140 µT@8GHz
– Corresponds to high quality thin film material
– Much more narrow than for array: Possible reasons?
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(F. Heyroth, GS et al. 
cond-mat.1802.03176)
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Scanning TR MOKE

Different bridges?
– Main resonance on different bridges may at leat vary by 0.7 mT @ 2 GHz
– May explain the broadening in the array at 8 GHz (1.4 mT)

(F. Heyroth, GS et al. cond-mat.1802.03176)
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Scanning TR MOKE
Different parts (span/post)?

– Resonance of span and overhang
differ by 7 mT

– Much more than broadening of 
array

– Leads to additional peak

(F. Heyroth, GS et al. cond-mat.1802.03176)
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Ferromagnetic resonance
Array of bridges

– Measurement on 8000 (nominally)identical bridges
– Linewidth of main resonance ∆H=1.25 mT@8GHz
– Either very similar bridges or very narrow lines
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(F. Heyroth, GS et al. 
cond-mat.1802.03176)
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Scanning TR MOKE
Damping

– For single spot Gilbert damping α ≤ 2.4 x 10-4

– Intrinsic linewidth at zero field: ∆H=75 µT
– Really high quality thin film YIG

(F. Heyroth, GS et al. 
cond-mat.1802.03176)
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Different shapes
Optimized process

– Allows more complex structures
– Different resonator shapes for different magnon modes possible
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A few more
Optimized process
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Conclusion

Results
– New process allows the fabrication of nano-

sized free standing YIG resonators
– Span is monocrystalline with single defect
– Crystal structure adopted from substrate
– Resonators can accomodate magnons with low

damping and narrow linewidth
– Additive process compatible with post

processing and addition of more
microelectronics (waveguides, magnets, etc.) 

Outlook
– Coupling to mechanical vibrations must be

investigated
– Ultimately coupling to qubits / integration of

multiple devices
– Collaborations welcome!
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Jobs

PhD positions

– Ultrafast spintronics: 
• Electrical detection of GMR in the 100 GHz regime
• Electrical detection of ultrafast demagnetization (sub 10 ps)

– YIG Spin Hall nano-oscillators
• Fabrication and nanopatterning
• Characterization in the GHz regime
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