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Overview

Why YIG nanoresonators?
How to make them?
Structural properties

Magnonic properties
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Quantum information processing

B Nanostructured
Materials

— Coupling of qubits to magnons successfully demonstrated

— Also promising: coupling of qubits to mechanical oscillators
(by electric fields: Chu et al. Science 358, 199 (2017))

— Why not use magnons and magnetoelastic coupling?

Static field

YIG sphere Bitatic 0.5 mm

(Tabuchi et al. Science 349, 405 (2015))
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Magnonmechanics

Magnons and Phonons
— Coupling of magnons and phonons recently demonstrated
— Drawback: YIG resonators are macroscopic spheres (250 um)

not suitable for integration

Magnon mode

VNA

BSF

B Nanostructured
Materials
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Overview
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Can frequencies match?

a 154

— Demonstrated in 2003: ]

Mechanical nanoresonator with ~__ 10-

resonance frequency above 1 =

GHz ° 5

— Approaching range of useful 3

magnon frequencies 8 o

— Example for YIG: S

1 um length, 150 nm thickness & 5]

f~1 GHz > |

— Typical shape: "7_1 e
cantilever (1 anchor point)

bridge (2 anchor points) 1.00 101 102 103 1.04
— How to make them? Frequency (GHz)

Huang et al. Nature 421, 496 (2003)
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Making cantilevers and bridges
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Crystalline materials
— Epitaxial growth at high temperatures
* No patterning by resist and lift-off possibls
— Use of sacrificial layers and wet etching
— Limited use of focused ion beam techniques

Seo et al. APL 110

M.L. Roukes (2017)

Physics World
(2001)
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— Limite

AccV Spot Magn Det WD ——
30.0kv 2.0 39000x SE 11.4 bridges 30kV_

™ AccVY Spot Magn Det WD | [ 2pum

O ,__w"“w 30.0 kV 2.0 14000x SE _14.6 30KV_4kV. 750/400

AccV Spot Magn Det WD 1 500 nm
300kv 1.2 40000x SE 11.4 two-level bridges
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Making cantilevers and bridges

B Nanostructured
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Crystalline materials
— Epitaxial growth at high temperatures
« No patterning by resist and lift-off possible
— Use of sacrificial layers and wet etching
— Limited use of focused ion beam techniques

Amorphous/polycristalline
— Patterning by lift off
« Use multilayer resists with different sensitivity
» Use different acceleration voltages

No sacrificial layers for YIG/GGG!!!

Deposition by LPE or PLD at high temperatures forbids resist-
based lift-off!!!

How to combine Lift-Off with crystalline YIG?7??
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Breakthrough
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YIG deposition by PLD at RT
— Amorphous YIG deposited at RT
— Annealing leads to high quality material
— Perfect crystallization over at least 100 nm
— Substrate acts as seed.

Amorphous YIG

10 nm

(C. Hauser, GS et al. Scientific Reports 6, 20827 (2016))
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Breakthrough
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YIG deposition by PLD at RT

— Annealed material has very low damping

— For a 56 nm thick layer:
e Linewidth of 0.13 mT @ 9.6 GHz

e Damping a=6.15x10"°
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Breakthrough
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Combine the two

AccV  Spot Magn Det WD 1 500nm
30.0kv 2.0 39000x SE 11.4 bridges 30kvV_4kV

— Big questions:
Are PLD and 3D lift-off compatible?

Can the crystallization propagate from the substrate through the
resonator?

Is the magnonic quality still good?

G. Schmidt, Mainz, May 2018



Process
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Multi-voltage electron beam exposure

— Exposure with different penetration depth defines profile:
HV for posts, LV for span

(F. Heyroth, GS et al. cond-mat.1802.03176)
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Process
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Development
— Results in slight undercut suitable for lift-off

(F. Heyroth, GS et al. cond-mat.1802.03176)
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Process
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Pulsed laser deposition

— Directed deposition (beam-like) separates top layer from bridge
(more critical than for 2D structures)

(F. Heyroth, GS et al. cond-mat.1802.03176)
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Process
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Lift-off
— Top layer is removed, bridge remains (ideally)

(F. Heyroth, GS et al. cond-mat.1802.03176)
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Results

Nanostructured

Yeah! Bridges! Materials

(F. Heyroth, GS et al. cond-mat.1802.03176)
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Transmission electron microscopyj & =

Monocristalline span (almost) N m?;?;flzctured
— Crystallization frots propagate from the substrate, single defect at center

of span
— Transition from post to span shows accumulation of defects

18  G. Schmidt, Mainz, May 2018



Transmission electron microscopyl!{

Higher bridges [ Nanostructured
— 200 nm high bridge shows increased strain
— Larger defect at center
— More defects at post

Materials

(F. Heyroth, GS et al.
cond-mat.1802.03176)
.. 50 nm
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Transmission electron microscopy

Longer bridges W | Nanostuctured
— Bridges of several micron length are possible
— Still defect in span only at center
— No visible bending due to strain (all images after annealing)

Deposited carbon YIG base

\/(IG span

5GG substrate

(F. Heyroth, GS et al.
cond-mat.1802.03176)
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L attice tilt?

FET | Nanostructured
— Image different areas on the bridge Materials

— Make FFT of lattice




| attice tilt?

Su p er p osition B Nanostructured
— Superposition shows small rotation (between 0.5 and 3°) Materials

— Rotation between left and right side of the bridge (obviously also
between side of the span and substrate

(F. Heyroth, GS et al.
cond-mat.1802.03176)
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Ferromagnetic resonance

B Nanostructured

Array of bridges Materials
— Measurement on 8000 (nominally) identical bridges (3000x500 nm)
— Linewidth of main resonance AH=1.25 mT@8 GHz
— Either very similar bridges or very narrow lines
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Ferromagnetic resonance

Damping
Measurements at various frequencies
At low frequencies lines cannot be resolved

B Nanostructured
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Measurements between 8 and 12 GHz indicate Damping o < 4.1x10*
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(F. Heyroth, GS et al.
cond-mat.1802.03176)



TR-MOKE

Time resolved scanning Kerr microscopy M | Nanostructured

) . ) Materials
— Allows to locally visualize time development of x or y-component of
magnetization vector

— Resolution: ~300 nm
— Time resolution ~1 ps

b)
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TR-MOKE

Standing spin waves

— Homogeneous mode (zero nodes)

— Damon Eshbach mode at lower fields (as expected)
— Backward volume modes at higher fields (up to 6 nodes)

P , i
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A v 4
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11.9mT 21.9mT 25.6 mT
2 GHz 2 GHz 2 GHz

(F. Heyroth, GS et al
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Simulation

Spin dynamics simulation using mumax 3* = I'\“Az?gr?;:ctured
— Single step excitation

— FFT for each point of the bridge *'The design and verification of
mumax3”, AIP Advances 4, 107133
— Select frequency (2014).

— Reconstruct image from amplitude and phase

194 mT 194 mT 194 mT 83.8 mT 83.8 mT
2.32 GHz 2 GHz 1.85 GHz 3.73 GHz 3.66 GHz

(F. Heyroth, GS et al. cond-mat.1802.03176)
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Scanning TR MOKE

Ferromagnetic resonance

— FMR on single spoton s

le bridge

ing
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(F. Heyroth, GS et al.
cond-mat.1802.03176)

ﬁ/.

()]

c

o

S
_ o i K
8 = A
ICING!

S o 3
E v -

o S
Ea @
c 3 i = .0
—_— -+
IS & NG
> (00
£ 5 N <
wm - o S
o 8 V
-
o=z | M Q
= 0o o
O -

S @

n <

mm \ ] \ ] \
m.m <t AN o
S (A1) reubis 11y
5 S

O =

|

G. Schmidt, Mainz, May 2018

28



Scanning TR MOKE

B Nanostructured

Different bridges? Materials
— Main resonance on different bridges may at leat vary by 0.7 mT @ 2 GHz
— May explain the broadening in the array at 8 GHz (1.4 mT)

21.95 mT

(F. Heyroth, GS et al. cond-mat.1802.03176)
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Scanning TR MOKE

Different parts (span/post)?

— Resonance of span and overhang
differ by 7 mT

— Much more than broadening of
array

— Leads to additional peak

Nanostructured
Materials

Post
Span

Overhang
N re

74.52 mT

(F. Heyroth, GS et al. cond-mat.1802.03176)
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Ferromagnetic resonance

Array Of brldges B Nanostructured

— Measurement on 8000 (nominally)identical bridges Materials

— Linewidth of main resonance AH=1.25 mT@8GHz

— Either very similar bridges or very narrow lines
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Scanning TR MOKE

Dam p I n g B Nanostructured
— For single spot Gilbert damping a < 2.4 x 104 Materials
— Intrinsic linewidth at zero field: AH=75 uT
— Really high quality thin film YIG
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Different shapes
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A few more
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Optimized process
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Conclusion

Nanostructured

Results Materials

— New process allows the fabrication of nano-
sized free standing YIG resonators

— Span is monocrystalline with single defect
— Crystal structure adopted from substrate

— Resonators can accomodate magnons with low
damping and narrow linewidth

— Additive process compatible with post
processing and addition of more
microelectronics (waveguides, magnets, etc.)

Outlook

— Coupling to mechanical vibrations must be
investigated

— Ultimately coupling to qubits / integration of
multiple devices

— Collaborations welcome!
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Jobs

B Nanostructured

PhD positions Materials

— Ultrafast spintronics:
» Electrical detection of GMR in the 100 GHz regime
» Electrical detection of ultrafast demagnetization (sub 10 ps)

— YIG Spin Hall nano-oscillators

« Fabrication and nanopatterning
» Characterization in the GHz regime

36 G. Schmidt, Mainz, May 2018
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