# Making high quality freestanding magnon nanoresonators





Institut für Physik & Center for materials science Martin-Luther-Universität Halle Wittenberg georg.schmidt@physik.uni-halle.de

G. Schmidt



**Financial support** EC funding: IP-IFOX DFG: SFB 762



# **Contributors/Collaborators**



F. Heyroth, F. Syrowatka (Center for Materials Science) P. Trempler, P. Geyer, C. Hauser (Nanostructured Materials) G. Woltersdorf, R. Dreyer (Optics Group) S.G. Ebbinghaus (Institute of Chemistry)

# **Overview**



Nanostructured Materials

Why YIG nanoresonators?

How to make them?

**Structural properties** 

**Magnonic properties** 



Nanostructured

**Materials** 

### **Quantum information processing**

- Coupling of qubits to magnons successfully demonstrated
- Also promising: coupling of qubits to mechanical oscillators (by electric fields: Chu et al. Science **358**, 199 (2017))
- Why not use magnons and magnetoelastic coupling?



(Tabuchi et al. Science **349**, 405 (2015))

# **Magnonmechanics**



Nanostructured Materials

### **Magnons and Phonons**

- Coupling of magnons and phonons recently demonstrated
- Drawback: YIG resonators are macroscopic spheres (250 μm) not suitable for integration



### Zhang et al. Sci. Adv. 2016; 2 : e1501286 G. Schmidt, Mainz, May 2018

5

# **Overview**



Nanostructured

**Materials** 

**Can frequencies match?** 

- Demonstrated in 2003: Mechanical nanoresonator with resonance frequency above 1 GHz
- Approaching range of useful magnon frequencies
- Example for YIG:
   1 μm length, 150 nm thickness
   f ~ 1 GHz
- Typical shape: cantilever (1 anchor point) bridge (2 anchor points)
- How to make them?



Huang et al. Nature 421, 496 (2003)

# Making cantilevers and bridges



Nanostructured Materials

### **Crystalline materials**

- Epitaxial growth at high temperatures
  - No patterning by resist and lift-off possible
- Use of sacrificial layers and wet etching
- Limited use of focused ion beam techniques

M.L. Roukes Physics World (2001)





Seo et al. APL **110** (2017)





# Making cantilevers and bridges



Nanostructured Materials

### **Crystalline materials**

- Epitaxial growth at high temperatures
  - No patterning by resist and lift-off possible
- Use of sacrificial layers and wet etching
- Limited use of focused ion beam techniques

### Amorphous/polycristalline

- Patterning by lift off
  - Use multilayer resists with different sensitivity
  - Use different acceleration voltages

### No sacrificial layers for YIG/GGG!!!

### Deposition by LPE or PLD at high temperatures forbids resistbased lift-off!!!

### How to combine Lift-Off with crystalline YIG???

# **Breakthrough**



Nanostructured Materials

### YIG deposition by PLD at RT

- Amorphous YIG deposited at RT
- Annealing leads to high quality material
- Perfect crystallization over at least 100 nm
- Substrate acts as seed.





### (C. Hauser, GS et al. Scientific Reports 6, 20827 (2016))

# **Breakthrough**



Nanostructured Materials

### YIG deposition by PLD at RT

- Annealed material has very low damping
- For a 56 nm thick layer:
  - Linewidth of 0.13 mT @ 9.6 GHz
  - Damping α=6.15x10<sup>-5</sup>



# Breakthrough Image: state sta

- Big questions:

11.4 hridnes 30kV 4kV

Det WD

Acc.V

Spot Magn

30.0 kV 2.0 39000x SE

500 nm

## Are PLD and 3D lift-off compatible?

<u>5 nm</u>

# Can the crystallization propagate from the substrate through the resonator?

### Is the magnonic quality still good?





### Multi-voltage electron beam exposure

 Exposure with different penetration depth defines profile: HV for posts, LV for span







### **Development**

### - Results in slight undercut suitable for lift-off







### **Pulsed laser deposition**

 Directed deposition (beam-like) separates top layer from bridge (more critical than for 2D structures)







Lift-off

### - Top layer is removed, bridge remains (ideally)







### Yeah! Bridges!



# **Transmission electron microscopy**



### Monocristalline span (almost)

- Crystallization frots propagate from the substrate, single defect at center of span
- Transition from post to span shows accumulation of defects



# **Transmission electron microscopy**

### **Higher bridges**

Nanostructured

**Materials** 

- 200 nm high bridge shows increased strain
- Larger defect at center
- More defects at post



# **Transmission electron microscopy**

### Longer bridges

Nanostructured

**Materials** 

- Bridges of several micron length are possible
- Still defect in span only at center
- No visible bending due to strain (all images after annealing)



# Lattice tilt?

### FFT

- Image different areas on the bridge
- Make FFT of lattice



# Lattice tilt?

### **Superposition**

Nanostructured

**Materials** 

- Superposition shows small rotation (between 0.5 and 3°)
- Rotation between left and right side of the bridge (obviously also between side of the span and substrate



22 G. Schmidt, Mainz, May 2018

# **Ferromagnetic resonance**

### Array of bridges

- Measurement on 8000 (nominally) identical bridges (3000x500 nm)
- Linewidth of main resonance  $\Delta$ H=1.25 mT@8 GHz
- Either very similar bridges or very narrow lines



# **Ferromagnetic resonance**



Nanostructured

**Materials** 

Damping

- Measurements at various frequencies
- At low frequencies lines cannot be resolved
- Measurements between 8 and 12 GHz indicate Damping  $\alpha \leq 4.1 x 10^{\text{-4}}$



# TR-MOKE



### Time resolved scanning Kerr microscopy

- Allows to locally visualize time development of x or y-component of magnetization vector
- Resolution: ~300 nm
- Time resolution ~1 ps



# TR-MOKE

### **Standing spin waves**

- Homogeneous mode (zero nodes)
- Damon Eshbach mode at lower fields (as expected)
- Backward volume modes at higher fields (up to 6 nodes)



Nanostructured Materials



# **Simulation**

### Spin dynamics simulation using mumax 3\*

- Single step excitation
- FFT for each point of the bridge
- Select frequency
- Reconstruct image from amplitude and phase

\*"The design and verification of mumax3", AIP Advances 4, 107133 (2014).



(F. Heyroth, GS et al. cond-mat.1802.03176)



### **Ferromagnetic resonance**

- FMR on single spot on single bridge
- Linewidth of main resonance  $\Delta H{=}140~\mu T@8GHz$
- Corresponds to high quality thin film material
- Much more narrow than for array: Possible reasons?





Nanostructured Materials

### **Different bridges?**



Nanostructured Materials

- Main resonance on different bridges may at leat vary by 0.7 mT @ 2 GHz
- May explain the broadening in the array at 8 GHz (1.4 mT)



### **Different parts (span/post)?**

- Resonance of span and overhang differ by 7 mT
- Much more than broadening of array
- Leads to additional peak



(F. Heyroth, GS et al. cond-mat.1802.03176)





# **Ferromagnetic resonance**

## Array of bridges

- Measurement on 8000 (nominally)identical bridges
- Linewidth of main resonance  $\Delta$ H=1.25 mT@8GHz
- Either very similar bridges or very narrow lines



31



**Materials** 

### Damping

- For single spot Gilbert damping  $\alpha \le 2.4 \text{ x } 10^{-4}$
- Intrinsic linewidth at zero field:  $\Delta$ H=75  $\mu$ T
- Really high quality thin film YIG









### **Optimized process**



Nanostructured Materials



### 34 G. Schmidt, Mainz, May 2018

# **Conclusion**



Nanostructured

### Results

- New process allows the fabrication of nanosized free standing YIG resonators
- Span is monocrystalline with single defect
- Crystal structure adopted from substrate
- Resonators can accomodate magnons with low damping and narrow linewidth
- Additive process compatible with post processing and addition of more microelectronics (waveguides, magnets, etc.)

### Outlook

- Coupling to mechanical vibrations must be investigated
- Ultimately coupling to qubits / integration of multiple devices
- Collaborations welcome!



# <u>Jobs</u>

PhD positions



- Ultrafast spintronics:
  - Electrical detection of GMR in the 100 GHz regime
  - Electrical detection of ultrafast demagnetization (sub 10 ps)
- YIG Spin Hall nano-oscillators
  - Fabrication and nanopatterning
  - Characterization in the GHz regime