Electro-Mechano-Optical (EMO) Detection of Nuclear Magnetic Resonance

Kazuyuki Takeda (Kyoto Univ.)

Special thanks to:

Kazuhiko Yamada, Koji Usami (Organizer), Kentaro Nagasaka, Eiji Iwase, Masato Takahashi, Atsushi Saito, Rekishu Yamazaki, Yasunobu Nakamura, Jacob Taylor, Yusuke Tominaga, Atsushi Noguchi

Solid-State NMR Lab in Division of Chemistry, Kyoto Univ.

(partially) 3D-printed electromagnet

I T permanent

Causality between the NMR spectrum and properties of matter

An Example of Pulse Sequences

It is a bit like music composition!

Alzheimer's Desease (AD)

Solid-state ¹³C NMR Spectrum

Dipolar recoupling

 ^{13}C NMR of $2^{-13}C^{-15}N$ -labeled Glycine

Commercial NMR systems are indeed sophisticated, but too much...

OPENCORE NMR Spectrometer

http://kuchem.kyoto-u.ac.jp/bun/indiv/takezo/opencorenmr2/index.html

Takeda, Review of Scientific Instruments, 78 (2007) 033103. Takeda, JMR, 192 (2008) 218–229. Takeda, Annual Reports on NMR, 74 (2011) 355–393.

http://kuchem.kyoto-u.ac.jp/bun/indiv/takezo/opencorenmr

NMR Spectrometer Modules

Specs

- 3 rf channels (synchronous & asynchronous modes)
- amplitude, phase, frequency modulation (up to ~600 MHz)
- minimum pulse width: 25 ns
- mininum pulse-width step: 6.25 ns
- 80 Ms ADC

FPGA integration

digital quadrature demodulation

Our NMR systems are running on...

(partially) 3D-printed electromagnet

I T permanent

Sensitivity demanding experiments

⁶Li exchange in ⁶Li–labeled LiCoO₂

• ¹³C microcoil CPMAS & TPPM decouple in Aβ42

in-situ ⁷Li NMR of thin-film batteries

Journal of The Electrochemical Society, 162 (2015) A952 Carbon 79 (2014) 380

rf modulation

Double Nutation (DONUT) ¹H decoupling

$$U = e^{2\pi i\nu_2 tI_y} e^{2\pi i\nu_1 tI_x}$$

Portable hand-made NMR

1 T magnet

NMR in a hospital

NMR in a classroom

NMR at home

¹H FID in water

Spectrometer & Field monitor

Birdcage coil

Macaca brain

500 mm bore high-Tc SCM (Bi-2223 tape conductor)

pineapple

IEEE Transaction on Applied Superconductivity 23 (2013) 4400904

Bookshelf NMR / MRI

Extension to X-band ESR

We hack NMR to hack nuclear-spin dynamics.

Challenge in NMR

Low Sensitivity !

Innovations toward better sensitivity are welcome.

- Nuclear Hyperpolarization
- Ultra high-field
- Cryo-probe
- •

RF-to-light up-conversion via SiN membrane

T. Bagci et al., Nature **507**, 81 (2014)

• magnetic resonance!

Toward application to NMR...

Electro-Mechano-Optical (EMO) NMR

Si Frame SiN Membrane

SiN membranes *are* available, but membrane capacitors are *not*.

vacuum deposition

Design and fabriaction of membrane capacitors

assembly

Stoichiometric SiN membrane (Norcada inc.)

C ~ 0.1 pF

 $\omega_{\rm m}/2\pi \approx 180 \sim 440 \ \rm kHz$

Assembly in clean environment

Membrane insertion

(b)

Differential optical measurement

Noise foor level vs laser power

Slope **1** corresponds to shot-noise-limited measurement

Optically-detected thermal membrane oscillation

Portable NMR with a 1 T magnet

We need a Drive signal

Circuit diagram

 $\omega_{\rm s} = \omega_{\rm LC} \approx 2\pi \cdot 42.8 \text{ MHz}$

1 T magnet

EMO NMR System

incident laser beam

The First Signal (1H spin echo in water)

Happy birthday, EMO NMR! (28 Oct 2016)

And happy 70th birthday, NMR!

Bloch (1946)

(in codensed matter)

Electro-Mechano-Optical (EMO) signal transduction

Effective Hamiltonian

$$\begin{split} H &= -\frac{\Delta_{\rm i}}{2} \left(q^2 + \phi^2 \right) - \frac{\Delta_{\rm o}}{2} \left(X^2 + Y^2 \right) + \frac{\omega_{\rm m}}{2} \left(z^2 + p^2 \right) + G_{\rm em} q z + G_{\rm om} X z. \\ \text{LC} \qquad \text{Optical cavity} \qquad \begin{array}{c} \text{Membrane} \\ \text{oscillator} \end{array} \quad \begin{array}{c} \text{electro-} \\ \text{mechanical} \\ \text{coupling} \end{array} \quad \begin{array}{c} \text{opto-} \\ \text{mechanical} \\ \text{coupling} \end{array} \end{split}$$

For 5000 times accum., SNR was ~ 5 \longrightarrow Single-shot SNR ~ 0.1

Phase-noise-free transduction

Tominaga, Nagasaka, Usami, Takeda, Under Review.

Phase-noise-free EMO NMR

¹H Free-induction decay

 \bigcirc

- 0.1M CuSO₄ aq., ~3 mm³
- 1H NMR Freq.: 42.74 MHz
- Membrane Freq.: 435 kHz

Tominaga, Nagasaka, Usami, Takeda, Under Review.

In-progress...

YBCO HTS coil

Courtesy: M. Takahashi (RIKEN), A. Saito (Yamagata Univ.)

At 20 K, Q = 9098 (40 MHz) !

~ 100 times Q of copper coil with the same geometry

(Nuclear) Spin-cavity coupling may be explored.

Reproducing spin-cavity coupling

Abe et al., Appl. Phys. Lett. 98 (2011) 251108

DPPH was packed tightly

Dielectric resonator

- dielectric const.: 37.4
- unloaded Q: >6000
- outer diameter: 5.98 mm
- inner diameter: 2.0 mm
- height: 2.7 mm

(~60 mg)

Partially 3D-printed electromagnet

matching adjustment

Strong coupling between spin ensemble and DR

Freq: 9.53847 GHz

Magnetic field [T]

Field-Gradient Coils for MRI, and hopefully EMO-MRI

eee Acknowledgment

K. Yamada, M. Takahashi

Thank you!