Spin-photon interfaces and quantum transduction

J. M. Taylor QuICS/JQI/NIST @quantum_jake

JOINT CENTER FOR QUANTUM INFORMATION AND COMPUTER SCIENCE

Quantum systems, entangled at a distance, provide...

Fundamental physics tests (Bell's inequality) New approaches for metrology (clock syncronization) Shared randomness at distance Distributed quantum computing And more (homomorphic/blind compute)?

Quantum networks provide these opportunities, but we need a way to get Q information from A to B

Applications of linear systems: quantum interfaces

Spins in quantum dots

Local confinement in a semiconductor – Trap single electrons in controlled potentials – Electron spin provides a quantum bit [Loss & DiVincenzo 1998]

$$"0"\rangle = |\uparrow\rangle, |"1"\rangle = |\downarrow\rangle$$

Why solid-state atoms?

- Stability
- Local manipulation
- Possibility of large-scale integration

Why spins?

- Avoids charge relaxation
- Reduced coupling to 1/f
- *But...*

magnetic dipole coupling *weak,* hard to localize

Quantum memory

Electron spin in a quantum dot

Coherence time ~ 1-100 µs Fast gates ~ 1-100 ns Length scale ~ 100 nm

Single phosphorous impurity nuclei

Coherence time ~ 10⁴ s Slow gates ~ 0.1-10 ms Length scale ~ 5 nm

Spin-based computing in silicon

electrostatic coupling

electrodynamic coupling

Operating parameters:

Low temperature (mK) Microwave control and measurement Small qubits (nm scale)

Short-range coupling: exchange

Overlap of wavefunctions

Spin singlet and spin triplet: different energies (like molecular bonds)

Double dot-based exchange interaction

- Hubbard model (t-U)
- same QD: large exchange $|S_0\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle)$
- separated quantum dots: small exchange J, singlet-triplet degeneracy $|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle$
 - separated electrons can enter same quantum dot iff singlet
 - control exchange with voltage
 - measure charge state
 with nearby electrometer

Coupling a spin to microwaves

Double quantum dot in an InAs nanowire (two electrons)

Voltage induces charge oscillations... spin-orbit leads to spin rotations

Coupling a spin to microwaves

[Taylor, Lukin (2006); Petersson et al. Nature (2012)]

Cavity QED and beyond

[Haroche, Kimble, Rempe, ...]

Goal: coupling *magnetic* dipoles to photons

Vacuum Rabi coupling Resonance frequency

$$\frac{g}{\omega} \sim \sqrt{\alpha} \frac{\mathcal{D}}{ea_0} \sqrt{\frac{\lambda a_0^2}{V}}$$

$$\frac{g_{\mu}}{\omega} \sim \alpha^{3/2} \frac{\mu}{\mu_B} \sqrt{\frac{\lambda a_0^2}{V}}$$

- decrease the volume
- increase the dipole moment
- decouple the magnetic and electric fields

[Schoelkopf group]

Spin-"orbit" and electric dipole transitions

Different working regime:

- large gradient
- intermediate exchange

Single spin coupling approach: mix in charge

[Srinivasa et al. (2013)]

The Lambda system at zero detuning for spin-charge-photon coupling

Key features: dark state/bright state $|B\rangle \propto (ga^{\dagger}|+,\downarrow\rangle + dB_x |+,\uparrow\rangle) |vac\rangle$ dark state: *no* decay through charge!

Experimental evidence for strong coupling

Entanglement generation using a resonator

Two atoms, one resonator: destructive and constructive interference

Steady state reached in time $\gg \frac{\gamma}{g^2}$, infidelity ~ $\frac{1}{C} \sim \frac{\gamma \kappa}{4g^2}$

Applications of linear systems: quantum interfaces

[JMT et al PRL (2013)] [Bagci et al Nature (2014)] [Regal, Lehnert (2015)] [Usami group (2017)]

A universal interface?

Enhanced NMR via optical readout

Sideband cooling

Optomechanical Quantum Correlation Thermometry

 Brownian motion is an absolute noise thermometer (like Johnson noise) but is hard to calibrate

- Use quantum fluctuations as intrinsic force standard
- Look at optical correlations to distinguish thermal from quantum backaction force (similar to Raman sideband asymmetry, but technically easier)
- Goals:
 - Build on-chip, photonic integrated primary thermometer
 - Develop methods to observe quantum measurement backaction at room temperature

3.6 GHz vibrational mode of Si₃N₄ nanobeam

Optomechanical Quantum Correlation Thermometry

T. P. Purdy, K. E. Grutter, K. Srinivasan, J. M. Taylor, Science 2017

Using entanglement: deterministic distributed computation

Dealing with imperfections: 3 more spins

[Dür & Briegel (2003); Jiang et al. (2007); Jiang et al. (2009)]

Robust measurement

- imperfect initialization, measurement (p_I,p_M ~ 5%)
- near-perfect local operation ($p_L \sim 0.01\%$)

$$\tilde{\varepsilon}_M \approx \left(\frac{2m+1}{m+1}\right) (p_I + p_M)^r$$
$$\tilde{t}_M = (2m+1) (t_I + t_L + t_M)$$

Further improvements: better collection efficiency via cavities (Purcell effect)

- improves both speed and fidelity

Robust entanglement generation

- Large time overhead $(t_C \sim 100-1000 \ t_L)$
- Initial F=0.9 gives final F>0.995 (N_{eff} ~ 20)
- Good quantum memory critical

Large-scale processors

[Oskin et al. (2002); Copsey et al. (2003); Metodi et al., (2005, 2008); Jiang et al. (2007); DiVincenzo (2009); Fowler et al. (2010); Monroe et al. (2014); Veldhost et al. (2016);

In all cases: quantum error correction dominates over logical operations.

Distributed computation: registers and links

Shuttling and neighbors

Deterministic resonator coupling and control

Thanks!

<u>quics.umd.edu</u> @quantum_jake

X. Wu

J. Zwolak M. Gullans

S. Ragole C.-H. Wang A. Glaudell

M. Tran B. Richman S. Guo

Mónica Benito González, Guido Burkard, Xiao Mi, Jason Petta

