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presence of U(1)-breaking in-plane magnetic anisotropy.
Even if the dc superfluid transport is quenched by pinning,
coherent ac spin transport can still occur via oscillations of
the local magnetic order about the pinning potential
minimum (without the need for full 2π rotations as in
the dc regime), thus circumventing the pinning problem.
Spin transmission through a magnet of length L shows
resonances as a function of ac frequency ω. For ω ≫ ω0,
ℏω0 being the gap in the spin-wave spectrum associated
with the in-plane anisotropy, the resonance peaks occur in
intervals of πv=L, allowing one to extract the spin-wave
velocity v. Spin transmission is exponentially suppressed
for ω ≪ ω0, and the position of the first peak (at ω ¼ ω0)
gives a direct measure of the gap. Furthermore, measure-
ments of peak heights and widths allow one to extract the
effective spin Hall angle and spin-mixing conductance at
the interfaces. We show that finite-frequency spin waves
can support spin transmission decaying algebraically as a
function of sample length, as in spin transmission via dc
spin superfluidity. Therefore, the ac transport studies
should not only serve as a simpler route to realizing
nonequilbrium coherent spin transport, but also as a useful
way to characterize the magnetic system and as a mean-
ingful precursor to the ultimate realization of the dc
superfluid spin transport.
General considerations.—Consider a magnetic insulator

sandwiched by two normal metals as sketched in Fig. 1.
Our focus is on magnets well below the magnetic ordering
temperature, which, in the long-wavelength limit, is char-
acterized by a slow continuum variable, the U(1) order
parameter nðx; tÞ, encoding the magnetic state in the (easy)
xy plane. Specifically, recall that, for a ferromagnetic
insulator, n corresponds to the direction of the local spin
density, and the U(1) easy plane can generally be defined
by the shape anisotropy [3]. For an isotropic antiferro-
magnet, n is the direction of the local Néel order, and the
U(1) plane is defined to be normal to a uniform external

magnetic field [4]. For the axially symmetric magnetic
state, the spin density polarized along the z axis is a
hydrodynamic quantity that is approximately conserved.
(Its relaxation is in practice governed by spin-orbit impu-
rities, which microscopically break the symmetry.) For
simplicity, we take the normal metals and the interfaces to
be identical on the two sides. The metals, treated here as
diffusive films of thickness tN lying parallel to the yz plane,
possess strong spin-orbit coupling with an effective spin
Hall angle θ at the interfaces.
The left (l) and right (r) interfaces, located at x ¼ 0 and

x ¼ L, respectively, break translational symmetry along the
x direction, but full translational symmetry is assumed
parallel to the interface (yz) plane. The entire heterostruc-
ture can thus be described using three coarse-grained
hydrodynamic fields: the U(1) phase φðx; tÞ and out-of-
plane spin density szðx; tÞ in the magnet and the 2D charge
current densities in the left and right normal metals,
jlðtÞ≡ ðjyl ; jzl Þ and jrðtÞ≡ ðjyr; jzrÞ. For concreteness, we
hereafter focus on an easy-plane ferromagnet [3]: n≡ s=s,
in this case, being the direction of the local spin density
s≈ðs cosφ; s sinφ; szÞ, where s is the magnitude of the
equilibrium spin density associated with the magnetic
order. The formalism is sufficiently general that it can
be readily extended to other magnets supporting spin
superfluidity; it is straightforward to show, in particular,
that the case of a Heisenberg antiferromagnet is closely
analogous [4]. The dynamics of an isolated easy-plane
ferromagnet is given by [3]

_φ ¼ K
s
nz þ α _nz; _nz ¼

A
s
φ00 −α _φ; ð1Þ

where A and K parameterize the exchange stiffness and the
easy-plane magnetic anisotropy, respectively, and α is the
Gilbert damping parameter. The primes (dots) denote
differentiation with respect to x (time). Recognizing the
second equation in Eq. (1) as the continuity equation for
sz ≡ snz, the z-polarized spin current (hereafter referred to
as simply spin current) reads jsðx; tÞ ¼−Aφ0ðx; tÞ.
In the presence of an external electric field E, a uniform

current-carrying state of an isolated metal is governed by
Ohm’s law ρjðtÞ ¼ EðtÞ, where ρ is its (2D) resistivity. In
the presence of spin-orbit coupling at the metaljmagnet
interfaces, current in the metal can induce a torque τ on the
adjacent ferromagnetic moments, and, inversely, the ferro-
magnetic dynamics would induce an electromotive force
in the adjacent metal. According to spin Hall phenomenol-
ogy [7], the torques at the left and right interfaces can be
written as

τl;r ¼ %ðη þ ϑnl;r×Þðx̂ × jl;rÞ × nl;r; ð2Þ

the upper (lower) sign corresponding to the left
(right) interface, and the constants η and ϑ quantifying
the fieldlike and dampinglike torques, respectively. Here,

FIG. 1 (color online). Schematics of the series (a) and parallel
(b) configurations, as detailed in the text.
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Magnetic insulators as signal transducers
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Outline

• Magnetic insulators as a transport medium: The two-fluid way

• Easy-plane spin dynamics

• Spin condensates: Natural and (thermoelectrically) pumped

• Microwave regime of collective spin transport

• (Approximately) easy-plane magnets

• Triplet superconductors

• Glassy spin superfluidity



Excitations of ordered media

• Spin waves (Goldstone modes)

• Topological textures (and topological defects)       long-ranged transport
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FIG. 2. (Color online) (a), (b) The DWs with the topological
charge q = 1. (c), (d) The walls with q = −1.

A finite temperature causes spontaneous nucleation and
annihilation of DWs. In the bulk, DWs are created and
destroyed always in pairs with opposite charges as shown in
Fig. 3(a) [24]. The topological charge density, ρ ≡ ρ+ − ρ−

is, thus, preserved in the bulk [Figs. 3(b) and 3(c)], where
ρ± are the linear densities of DWs with q = ± 1, respectively.
A topological charge can be injected or ejected through the
boundaries of the ferromagnet. In equilibrium, the DW density
is charge independent; ρ± → ρ0 ∝ exp(−E0/T ), where E0 is
the DW energy.

A DW should generally behave as a particle immersed
in a viscous medium due to its coupling to, e.g., lattice
vibrations [19] or other microscopic degrees of freedom. As
such, it must exhibit Brownian motion at a finite temperature
due to random forces, whose existence is dictated by the
fluctuation-dissipation theorem [17]. For a conglomerate of
DWs that diffuse by Brownian motion, the dynamics of the
topological charge density is described by the Fokker-Planck
equation [22]:

∂tρ + ∂xI = 0, I ≡ −D∂xρ , (2)

in the absence of an external force, where I is the topological
charge current. In equilibrium, the density and the current
of the topological charge are zero; ρ = 0 = I according to
the reflection symmetry in the xz plane and the time-reversal
symmetry.

The topological charge density can be injected by per-
turbing the ferromagnet by the nonequilibrium z axis spin
accumulation in the left metal, µ ≡ µẑ, which we assume
positive, µ > 0, for concreteness. The spin-transfer torque
caused by the spin accumulation is τ = (g′

L + gLn×)(µ ×
n)/4π , where g

↑↓
i ≡ gi + ıg′

i is the effective complex spin
mixing conductance associated with the ferromagnet/metal-i
interface [26]. The torque does work on the ferromagnet
favoring the nucleation of DWs with the positive charge:
Wq = qgLµS/4, where q is the charge of the wall and S
is the cross-sectional area of the ferromagnet. The resultant
nucleation rate of the topological charge is $LδW/T to linear
order in the bias, where $L is the equilibrium-nucleation rate
of DWs at the left interface and δW ≡ W+ − W− = gLµS/2
is the difference between the two works.

The injected topological charges diffuse by Brownian
motion and can leave the ferromagnet through the right
boundary. The conservation of the topological charge leads
to the steady-state current (as derived below):

I = gLµ

RL + RR + RB

, (3)

(a)

(b)

(c)
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FIG. 3. (Color online) Schematic for the conservation of the total
topological charge. (a) A pair of DWs with opposite charges, so that
the direction of the magnetization does not wind the circle as shown
in the right. The magnetization texture is, therefore, topologically
trivial and can be created or destroyed spontaneously. (b), (c) A pair
of DWs with the same charge. The direction of the magnetization
winds around the circle once, which makes the textured configuration
topologically stable from thermal annihilation. The total topological
charge, i.e., the net winding number, is conserved during interactions
between DWs.

where

RL ≡ 2T

$LS
, RR ≡ 2T

$RS
, RB ≡ 2T L

ρ0DS
, (4)

and L is the length of the ferromagnet. We may interpret the
topological charge current I as the applied “voltage” gLµ (with
units of J/m2) divided by the total “resistance” RL + RR + RB

(with units of J s/m2) of the series circuit, which is made of the
interface resistances, RL and RR , and the bulk resistance RB .
Note that the bulk resistance RB is proportional to the ratio of
the length to the cross-sectional area, L/S, which is analogous
to the electrical resistance.

The dynamics of the local spin density at the boundaries
injects spin current into the metals via spin pumping, which
is the Onsager reciprocal effect [17] to spin-transfer torque.
The spin current density associated with spin pumping at the
right interface is Js

R = !(g′
R + gRn×)ṅ/4π . The annihilation

of the topological charge pumps spin current polarized in the
z direction to the right metal:

J s
R = !gR

4
I = !gRgLµ

4(RL + RR + RB)
. (5)

This is a central result of our work. Note that the spin current
decays algebraically as a function of the ferromagnet’s length
L, which is similar to superfluid spin transport in an easy-plane
ferromagnet [5], but contrasts with the exponential decay of the
spin transport by thermal magnons [27]. The formalism that
we have developed is general enough to be readily extended to
other easy-plane magnets, e.g., the case of an antiferromagnet
with an additional easy-axis anisotropy within the easy-plane
is closely analogous [5].

Brownian motion. Let us provide an explicit model for
Brownian motion of DWs following Ref. [22]. We assume
the following free energy for the ferromagnet: U [n] =∫

dV (A|∂xn|2 + Kn2
z − κn2

x)/2, where A represents the ex-
change stiffness, and the positive coefficients κ and K
parametrize the anisotropy magnitudes. In equilibrium, the
local spin density s = sn lies in the xy plane, which can be
parametrized by its azimuthal angle φ. A static DW solution
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Topological Effects on Quantum Phase Slips in Superfluid Spin Transport
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We theoretically investigate effects of quantum fluctuations on superfluid spin transport through easy-
plane quantum antiferromagnetic spin chains in the large-spin limit. Quantum fluctuations result in the
decaying spin supercurrent by unwinding the magnetic order parameter within the easy plane, which is
referred to as phase slips. We show that the topological term in the nonlinear sigma model for the spin
chains qualitatively differentiates the decaying rate of the spin supercurrent between the integer versus
half-odd-integer spin chains. An experimental setup for a magnetoelectric circuit is proposed, in which
the dependence of the decaying rate on constituent spins can be verified by measuring the nonlocal
magnetoresistance.
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Introduction.—One-dimensional quantum magnetism
has been a natural hotbed to seek and study exotic states
that defy classical descriptions [1,2]. A prototypical exam-
ple showing the importance of quantum effects is provided
by Heisenberg antiferromagnetic spin chains. For isotropic
spin-s chains, Haldane suggested in 1983 [3] that integer-s
chains have disordered ground states with gapped excita-
tions unlike half-odd-integer-s chains, which have gapless
excitations [4]. The existence of the gap has been exper-
imentally confirmed for s ¼ 1 [5].

By considering anisotropic antiferromagnetic spin chains
in the large-s limit, Affleck [6] was able to attribute this
distinction between integer and half-odd-integer spin chains
to the topological term in the O(3) nonlinear sigma model
that describes the dynamics of the local Néel order parameter
[3,7,8]. For sufficiently large s, easy-plane spin-s chains are
in the gapless XY phase, where order-destroying excitations
are vortices of the order parameter in the two-dimensional
Euclidean spacetime. It is the Skyrmion charge Q of a
vortex, quantifying how many times the order parameter
wraps the unit sphere, that serves as the topological charge in
the nonlinear sigma model. Figure 1 illustrates vortices with
minimum nonzero Skyrmion charges Q ¼ "1=2, which are
often referred to as merons [9]. Only for half-odd-integer
spin chains, the topological term creates destructive inter-
ference between vortices and, thereby, suppresses effects of
their quantum fluctuations [1,10].

Superfluid spin transport, a spin analog of an electrical
supercurrent, has been proposed in magnets with easy-
plane anisotropy, where the direction of the local magnetic
order within the easy plane plays the role of the phase of a
superfluid order parameter [11–14]. Spin supercurrent
therein is sustained by a spiraling texture of the magnetic
order, being proportional to the gradient of the in-plane
components of the order parameter. Under the guidance of
established theories for resistance in superconducting wires
[15], we have recently investigated the intrinsic thermal

dissipation in one-dimensional superfluid spin transport,
which arises via thermally activated phase slips [16] (that
unwind the phase by lifting the magnetic order out of the
easy plane [17]). At sufficiently low temperatures, however,
dissipation is mainly induced by quantum fluctuations via
quantum phase slips (QPS) [18,19]. The QPS in super-
conducting wires correspond to vortices of the phase of the
order parameter in the Euclidean spacetime. Likewise, the
QPS in one-dimensional spin superfluidity correspond to
vortices of the magnetic order parameter. Then, there arises
a natural question regrading the role of the topological
term for the integer-s and half-odd-integer-s chains in the
QPS-induced dissipation of superfluid spin transport.
In this Letter, we theoretically study the QPS in super-

fluid spin transport through easy-plane quantum antiferro-
magnetic spin chains. For an integer s, the topological term
is inoperative, and dissipation arises due to the QPS of
the Skyrmion charges Q ¼ "1=2 that change the winding
number by 2π. For a half-odd-integer s, these QPS are
completely suppressed due to destructive interferences.
Instead, the QPS of twice-larger Skyrmion charges,
Q ¼ "1, give rise to dissipation by unwinding the phase
by 4π. See Fig. 2 for illustrations. Dissipation in superfluid
spin transport can be characterized by the spin-current

FIG. 1. Vortex configurations of the local Néel order parameter
in the Euclidean spacetime ðx; τÞ with Skyrmion charges
(a) Q ¼ 1=2 and (b) Q ¼ −1=2.
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Two types of flows

• Particle-like hydrodynamics

• Coherent order-parameter dynamics

j / r(µ, T )

- continuity equation according to 
the particle number conservation 

- the quasiequilibrium state is locally 
parametrized by temperature and 
chemical potential
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(easy-plane “spin superfluid”)

j / r'

- continuity equation according to 
the particle number conservation 

- the coherent flow is rooted in the 
order-parameter rigidity

Halperin and Hohenberg, PR (1969); Sonin, JETP (1978)
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An elementary circuit based on the winding flow

Takei and YT,  PRL (2014)
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The conversion of magnons into electron spin flips via spin pumping may allow for low-power spin-
based data transmission schemes.
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Future green information and communication tech-
nologies should be highly integrated, fast, and energy
e�cient, while operating at room temperature. It is un-
likely that conventional silicon-based CMOS technology
will be able to meet these demands indefinitely as we
move towards smaller devices. Of the many approaches
taken to address this need, the field of spintronics strives
to exploit the spin degree of freedom of the electron in
order to develop alternatives to conventional electronics.
In metals, spin currents heat the material through which
they propagate just as charge currents do. In magnetic
insulators, on the other hand, charge currents simply do
not exist, while spin currents can still be transmitted
with very little dissipation [1, 2]. However, the e�ciency
of spin current actuation and detection remains an issue.
Now, Christian Sandweg and colleagues at Technische
Universität Kaiserslautern in Germany with collabora-
tors at Tohoku University, Sendai, Japan, have demon-
strated experimentally an unprecedented control of the
pumping of electron spins by an insulating ferromagnet
[3], which should encourage e�orts towards a new class of
electronics, in particular, information transmission sys-
tems.

To explain this result we must consider what spin
pumping really means. A mechanical pump transports
fluid by means of a periodically varied mechanical ac-
tion. In mesoscopic structures, electrons can be pumped
one by one, by single-electron “turnstiles” [4]. If the ap-
proach to pump is by varying the system Hamiltonian
instead of using an external bias, it is known as paramet-
ric pumping [5]. In contrast to a mechanical or charge
pump, a pure spin pump transports angular momentum

FIG. 1: Generation of a magnon (directional wavy line and

snapshot of the magnetization) by the spin-transfer torque,

which is associated with an electron spin flip indicated by

spheres, at the left interface between normal metal and ferro-

magnet, and the reciprocal magnon detection by spin pump-

ing at the right interface. (Credit: Alan Stonebraker)

by moving an equal number of up and down spins in op-
posite directions. Such a device can be operated as a
parametric quantum pump by the spin-dependent elec-
tron reflection at the interface between a nonmagnetic
conductor and an excited ferromagnet, in which a quan-
tum of the magnetization dynamics is emitted to generate
a spin flip (see right interface in Fig. 1) [6]. Adiabatic
quantum pumping of charge derived for mesoscopic sys-
tems [5] has never been unambiguously realized in such
devices because, in real experiments, they are very dif-
ficult to disentangle from other competing e�ects. In
contrast, the spin pumping by magnetization dynamics
turned out in the last decade to be a robust and ubiqui-
tous e�ect at ambient temperatures.

In addition to the spin-pumping e�ect, the interaction
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Fig. 1. The nonlocal spin transport in the spin superfluid ground state of the canted 

antiferromagnetic Cr2O3 thin film. (A) The spin structure of single crystalline 

antiferromagnetic (0001)-oriented Cr2O3 thin film. Up (red) and down (blue) spins of the Cr3+ 

ions are aligned parallel the crystal’s [0001] orientation. (B) Schematic of the nonlocal spin 

transport geometry for the spin transport measurement in the spin superfluid state. The canted 

magnetization direction is controlled by the external magnetic field (B) along the x direction. In 

such canted antiferromagnetic configuration, the spin component (Sy + iSz) that is perpendicular 

to the magnetic field direction becomes coherent in the spin superfluid state. (C) The second 
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Experimental signatures of spin superfluid ground
state in canted antiferromagnet Cr2O3 via nonlocal
spin transport
Wei Yuan,1,2 Qiong Zhu,1,2 Tang Su,1,2 Yunyan Yao,1,2 Wenyu Xing,1,2 Yangyang Chen,1,2

Yang Ma,1,2 Xi Lin,1,2 Jing Shi,3* Ryuichi Shindou,1,2 X. C. Xie,1,2* Wei Han1,2*

Spin superfluid is a novel emerging quantummatter arising from the Bose-Einstein condensate (BEC) of spin-1 bos-
ons. We demonstrate the spin superfluid ground state in canted antiferromagnetic Cr2O3 thin film at low tem-
peratures via nonlocal spin transport. A large enhancement of the nonlocal spin signal is observed below~20 K, and
it saturates from ~5 down to 2 K. We show that the spins can propagate over very long distances (~20 mm) in such
spin superfluid ground state and that the nonlocal spin signal decreases very slowly as the spacing increases with
an inverse relationship, which is consistent with theoretical prediction. Furthermore, spin superfluidity has been
investigated in the canted antiferromagnetic phase of the (11!20)-oriented Cr2O3 film, where the magnetic field
dependence of the associated critical temperature follows a 2/3 power law near the critical point. The experimental
demonstration of the spin superfluid ground state in canted antiferromagnet will be extremely important for the
fundamental physics on the BEC of spin-1 bosons and paves the way for future spin supercurrent devices, such as
spin-Josephson junctions.

INTRODUCTION
The Bose-Einstein condensate (BEC) refers to the quantum state of
matter when a large fraction of bosons occupy in the lowest accessible
quantum state and has been observed in liquid helium (4He), cold gases,
polaritons, photons, etc. (1–6). Recently, this concept has beenmuch
more general, for example, the BEC of spin-1 bosons and the spin super-
fluid (7–14). To achieve this spin superfluid state, a great deal of effort
has been made. For example, microwave pumping has been used to
generate the BEC ofmagnons and supercurrent at room temperature
(9, 14). However, because the condensed magnons are inherently
thermal excitations, the spin superfluidity is not the ground state and,
thus, occurs only in a very short time scale (microseconds). Theoreti-
cally, the spin transport in spin superfluid has been recently proposed
for ferromagnetic graphene and the n =0quantumHall state of graphene
(15–17), ferromagnetic materials (18–20), and antiferromagnetic insula-
tors (21–23). Besides, recent progresses of BEC in quantummagnets ex-
hibit a thermodynamic ground state at low temperatures inferred
from magnetization and heat capacity measurements (7, 8, 10, 11, 13),
where the condensing spin-1 bosons can be regarded as the mapping of
the spin ground state onto a lattice of bosons (13). However, despite the
enormous effort in this field, the direct experimental observation of
real spin transport in the spin superfluid ground state has been
lacking.

We report the experimental observation of long-distance spin trans-
port in the spin superfluid ground state in canted antiferromagnetic
Cr2O3 thin films at low temperatures, which provides the direct
experimental evidence of the spin superfluid ground state in canted
antiferromagnet.

RESULTS AND DISCUSSION
The high-quality Cr2O3 thin films are grown on (0001)-oriented Al2O3

substrates via pulsed laser deposition (PLD) (see Materials and
Methods). The spin configurations on the Cr atoms (Cr3+, s = 3/2) are
illustrated in Fig. 1A, which shows that the spins are aligned along
the crystal’s [0001] orientation. The spin transport in the spin superfluid
state is performed using the nonlocal geometry, as shown in Fig. 1 (B
and C, inset). The spins are injected into the antiferromagnetic Cr2O3

thin films from the local Joule heating on the Pt strip via spin Seebeck
effect (24–26). Then, the spin information transports in the spin super-
fluid state, which can propagate to the right Pt electrode and be detected
by voltage measurement across the Pt strip via the inverse spin Hall
effect using standard low-frequency lock-in technique (see Materials
and Methods). Because the spins are injected by thermal heating via
spin Seebeck effect and detected via inverse spinHall effect, the nonlocal
spin signal is probed by measuring the second harmonic nonlocal
resistance (R2ϖ).

Figure 1C shows the R2ϖ as a function of the magnetic field angle
(φ) measured on the nonlocal device on the ~19-nm Cr2O3 thin film
with a spacing (d) of 10 mm between the two Pt strips. During the mea-
surement, the temperature is 2 K, and the in-plane static magnetic field
is 9 T. The in-plane magnetic field is used to generate a canted antifer-
romagnetic phase, as shown in Fig. 1B. The effective spins are detected
via the inverse spin Hall effect of Pt, and the second harmonic nonlocal
resistance is expected to be proportional to sin (φ) (25)

R2ϖ ¼
1
2
RNL sinðφÞ ð1Þ

where the RNL is the nonlocal spin signal. The red solid line is a fitting
curvebasedonEq. 1, fromwhichRNL isdetermined tobe 0.79±0.02V/A2.
Figure 2A shows typical representative R2ϖ curves on this device (d =
10 mm) as a function of the magnetic field angle (φ) in 9 T at 2, 5, 10,
15, and 30 K, respectively. The nonlocal spin signal as a function of
the temperature from2 to 110K is summarized in Fig. 2B. No clear non-
local spin signal is observable when the temperature is higher than
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Figure 1 BEC of magnons in dimerized quantum antiferromagnets. a, Dimers in the real material TlCuCl3 with S= 1/2 from Cu2+ ions and superexchange via Cl�

(refs 8,11,12,14,25,26,99). b, Dimers on a square lattice with dominant antiferromagnetic intradimer interaction J0 and interdimer interactions Ji . Triplet states (grey, top)
are mapped onto quasiparticle bosons (triplons, bottom). c, Zeeman splitting of the triplet modes with gap 1 and bandwidth D at k0 = (⇡/a,⇡/a). Inset, Dispersion of
triplons at the critical field Hc1 (refs 11,12,14,25,26). d, Resulting phase diagram with paramagnetic (PM), quantum disordered (QD) and field-aligned ferromagnetic (FM)
phases and canted-antiferromagnetic (XY-AFM) phase, where a magnon BEC occurs. Close to Hc1 and Hc2 the phase boundary follows a power law Tc / (H�Hc1 )� with a
universal exponent � = 2/3 for a magnon BEC7,8. Inset, Magnetization curve mz (H ) for a three-dimensional dimer spin system with a plateau at mz = 0,1 (gapped)8,36,37.

interaction, which is antiferromagnetic, J0 > 0, so that an isolated
dimer has a ground state with total spin S = 0 and a triply
degenerate excited state of energy J0 and spin S = 1 (Fig. 1c).
It is convenient to identify the triplet state with the presence of
a triplon, a bosonic particle with S = 1, and the singlet state
with the absence of a triplon; see Fig. 1b. As long as interdimer
interactions are weak, the ground state consists of non-magnetic
singlets. It remains disordered down to absolute zero temperature
without long-range magnetic order. The triplon excitations are
made mobile by weak interdimer couplings J1,2,..., from a sum
over single-ion interactions Jmnij ; see Fig. 1b. For dimers forming
a square lattice (for simplicity), the energy of a triplon with spin
projection Sz = 0,±1 to first order in J1 is

"(k) = J0 + J1[cos(kx a)+cos(ky a)]� gµBHSz , (2)

where k = (kx , ky) is the quasiparticle wavevector, a is the
lattice constant and D = 4J1 is the bandwidth; see Fig. 1c. The
energy–momentum dependence (dispersion) of the triplons and
singlet–triplet correlations have been measured directly by inelastic
neutron scattering25,34,35,41.

The Zeeman term �gµBHSz controls the density of triplons.
As the magnetic field increases, the excitation energy of triplons

with Sz = +1 is lowered and eventually crosses zero, as shown in
Figs 1c and 2a. This defines two critical magnetic fields Hc1 and Hc2

in the phase diagram; see Fig. 1d. At zero temperature, below Hc1

the magnetization mz(H) is zero and only singlets exist. Between
Hc1 and Hc2 the magnetization increases with increasing field as
more triplons appear in the ground state owing to the increased
gain in Zeeman energy; see Fig. 1c. Above Hc2 each site is occupied
by a triplon and the magnetization saturates at one per dimer.

The bosonic nature of triplons is guaranteed by the simple fact
that spin operators of two diVerent dimers commute. However,
because a dimer can hold at most one triplon, the bosonic picture
requires the introduction of a hard-core constraint to exclude states
with more than one quasiparticle per dimer. The constraint, which
can be interpreted as a strong short-range repulsion between the
bosons, poses a diYcult theoretical problem. However, close to Hc1

their density is small and collisions between bosons are rare; in this
limit interactions can be fully taken into account. By particle–hole
symmetry, a similar simplification occurs near Hc2.

BEC OF TRIPLONS

The nature of the ground state above Hc1, its interpretation as a BEC
of magnetic quasiparticles and the tuning of the particle density
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Figure 2 |Activation gaps of half-filled quartet LLs. a, B? dependence of the ⌫ = 0 gap, 0�, for several devices. 0� increases approximately linearly with
applied B?, a feature not associated with any currently proposed theory for ⌫ = 0. The dashed line indicates g? = 23. b, Tilted field dependence of the
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Half filling of a fourfold-degenerate graphene LL provides
an ideal testing ground for the relative strength of the spin
and valley anisotropies within the SU(4) isospin space. Because
each cyclotron guiding centre is doubly occupied, Pauli exclusion
prevents the half-filled LL from fully polarizing in both spin
and valley simultaneously. As a result, spin and valley polarizing
tendencies necessarily compete, and the resulting ground state
reflects the result of this competition. The fact that different
orders prevail at half filling for N = 0 and N 6= 0 even under
identical experimental conditions (B? and BT, which together
fix the relative magnitude of the real spin anisotropy) suggests
that the difference between LLs is intrinsic to graphene and
originates in the valley sector. A likely origin lies with the unique
structure of the ZLL wavefunctions: whereas for the N 6= 0 LLs
wavefunctions in a single valley are spread equally over the two
real space sublattices, for the ZLL electrons in a single valley
are localized on a single sublattice6. Long-range interactions
do not distinguish between such lattice scale orbital structural
difference, but short-range interactions do, potentially leading to
different ground states in the N = 0 and N 6= 0 LLs (ref. 23).
At ⌫ = 0, the resulting interaction induced valley anisotropies
have been predicted to drive the system to one of a number of
sublattice-ordered ground states20,21,23,24,27,29,30,33,34, some of which
are depicted in Fig. 2c. The experimental data presented here
indicate that, whereas the Zeeman effect wins the competition for
the N 6= 0 LLs, leading to spin polarized states at ⌫ = �12,�8,

and �4, the valley anisotropies dominate the zero LL, leading to
the formation of one of the possible lattice scale density waves
portrayed in Fig. 2c(ii)–(iv). The large size of the measured 0�
gap, and its insensitivity to in-plane fields, suggest that the valley
anisotropies may be more than ten times stronger than their naive
scale, (1/`B) ⇥ EC, in line with renormalization group34,40 and
numerical calculations29.

A further notable feature of the experimental data is the linear
dependence of 0� on B?. The ⌫ = 0 insulating state is not spin
polarized, precluding linear-in-BT Zeeman contributions to the
excitation energy (as in equation (2)); consequently, the linear
dependence must have an orbital origin. Theoretical models based
on Coulomb interactions within the continuum Dirac model,
whereas consistent with the magnitude of the gaps, implicitly
predict a

p
B? scaling of the ⌫ = 0 energy gap, a fact that derives

from the
p
B? dependence of both EC and E0. Theories based

on other mechanisms that do predict a linear dependence18,26 are
unable to account for the large 0� gap sizes observed.

Motivating future work on the ⌫ = 0 state, quantitative data
(Supplementary Information) on the decrease of the gap in applied
parallel field suggest that the real spin ferromagnet, which is
predicted22,25 to be an analog of the quantum spin Hall state41, may
be experimentally accessible in the best samples at high tilt angles in
realistic magnetic fields (BT ⇠< 45 T).

Despite the role of the single-particle Zeeman effect in setting
the order in the higher LLs, tilted field activation gaps demonstrate
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decreases for higher tilt angles, indicating a spin-unpolarized state. c, Candidate QHIFM states for ⌫ = 0. Our experiment rules out the spin ferromagnet,
(i); all other states are marked by lattice scale spin (for the canted antiferromagnet (ii)) or charge (for the charge density wave (iii) or Kekulé distortion
(iv)) order. d, B? dependence of the half-filled quartets for N 6= 0, ⌫ = �4,�8,�12. Like the ⌫ = 0, all gaps scale approximately linearly with B?, with
enhanced g? factors that decrease with increasing LL index. e, Unlike the ⌫ = 0 state, all activation gaps measured for half-filled LLs with N 6= 0 increase
with BT, indicating spin polarized states. For ⌫ = �4 and �8, the enhancement of gk indicates that charged excitations contain multiple flipped spins.
f, Schematic representation of charged excitations at half filling for N 6= 0. Excitations into the spin-reversed conduction band can take the form of single
reversed spin particle–hole pairs or smoothly varying skyrmion–antiskyrmion (S–aS) spin textures, depending on the strength of exchange interactions
relative to disorder and the Zeeman energy. At B? = 15 T in the samples studied in this work, the S–aS scenario prevails at ⌫ = �4 and �8, whereas charge
at ⌫ = �12 is carried by single electron–hole pairs. The error bars on all activation gaps are dominated by the uncertainty in the range of the simply
activated regime, which is much larger than intrinsic scatter in the data.

Half filling of a fourfold-degenerate graphene LL provides
an ideal testing ground for the relative strength of the spin
and valley anisotropies within the SU(4) isospin space. Because
each cyclotron guiding centre is doubly occupied, Pauli exclusion
prevents the half-filled LL from fully polarizing in both spin
and valley simultaneously. As a result, spin and valley polarizing
tendencies necessarily compete, and the resulting ground state
reflects the result of this competition. The fact that different
orders prevail at half filling for N = 0 and N 6= 0 even under
identical experimental conditions (B? and BT, which together
fix the relative magnitude of the real spin anisotropy) suggests
that the difference between LLs is intrinsic to graphene and
originates in the valley sector. A likely origin lies with the unique
structure of the ZLL wavefunctions: whereas for the N 6= 0 LLs
wavefunctions in a single valley are spread equally over the two
real space sublattices, for the ZLL electrons in a single valley
are localized on a single sublattice6. Long-range interactions
do not distinguish between such lattice scale orbital structural
difference, but short-range interactions do, potentially leading to
different ground states in the N = 0 and N 6= 0 LLs (ref. 23).
At ⌫ = 0, the resulting interaction induced valley anisotropies
have been predicted to drive the system to one of a number of
sublattice-ordered ground states20,21,23,24,27,29,30,33,34, some of which
are depicted in Fig. 2c. The experimental data presented here
indicate that, whereas the Zeeman effect wins the competition for
the N 6= 0 LLs, leading to spin polarized states at ⌫ = �12,�8,

and �4, the valley anisotropies dominate the zero LL, leading to
the formation of one of the possible lattice scale density waves
portrayed in Fig. 2c(ii)–(iv). The large size of the measured 0�
gap, and its insensitivity to in-plane fields, suggest that the valley
anisotropies may be more than ten times stronger than their naive
scale, (1/`B) ⇥ EC, in line with renormalization group34,40 and
numerical calculations29.

A further notable feature of the experimental data is the linear
dependence of 0� on B?. The ⌫ = 0 insulating state is not spin
polarized, precluding linear-in-BT Zeeman contributions to the
excitation energy (as in equation (2)); consequently, the linear
dependence must have an orbital origin. Theoretical models based
on Coulomb interactions within the continuum Dirac model,
whereas consistent with the magnitude of the gaps, implicitly
predict a

p
B? scaling of the ⌫ = 0 energy gap, a fact that derives

from the
p
B? dependence of both EC and E0. Theories based

on other mechanisms that do predict a linear dependence18,26 are
unable to account for the large 0� gap sizes observed.

Motivating future work on the ⌫ = 0 state, quantitative data
(Supplementary Information) on the decrease of the gap in applied
parallel field suggest that the real spin ferromagnet, which is
predicted22,25 to be an analog of the quantum spin Hall state41, may
be experimentally accessible in the best samples at high tilt angles in
realistic magnetic fields (BT ⇠< 45 T).

Despite the role of the single-particle Zeeman effect in setting
the order in the higher LLs, tilted field activation gaps demonstrate
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relative to disorder and the Zeeman energy. At B? = 15 T in the samples studied in this work, the S–aS scenario prevails at ⌫ = �4 and �8, whereas charge
at ⌫ = �12 is carried by single electron–hole pairs. The error bars on all activation gaps are dominated by the uncertainty in the range of the simply
activated regime, which is much larger than intrinsic scatter in the data.

Half filling of a fourfold-degenerate graphene LL provides
an ideal testing ground for the relative strength of the spin
and valley anisotropies within the SU(4) isospin space. Because
each cyclotron guiding centre is doubly occupied, Pauli exclusion
prevents the half-filled LL from fully polarizing in both spin
and valley simultaneously. As a result, spin and valley polarizing
tendencies necessarily compete, and the resulting ground state
reflects the result of this competition. The fact that different
orders prevail at half filling for N = 0 and N 6= 0 even under
identical experimental conditions (B? and BT, which together
fix the relative magnitude of the real spin anisotropy) suggests
that the difference between LLs is intrinsic to graphene and
originates in the valley sector. A likely origin lies with the unique
structure of the ZLL wavefunctions: whereas for the N 6= 0 LLs
wavefunctions in a single valley are spread equally over the two
real space sublattices, for the ZLL electrons in a single valley
are localized on a single sublattice6. Long-range interactions
do not distinguish between such lattice scale orbital structural
difference, but short-range interactions do, potentially leading to
different ground states in the N = 0 and N 6= 0 LLs (ref. 23).
At ⌫ = 0, the resulting interaction induced valley anisotropies
have been predicted to drive the system to one of a number of
sublattice-ordered ground states20,21,23,24,27,29,30,33,34, some of which
are depicted in Fig. 2c. The experimental data presented here
indicate that, whereas the Zeeman effect wins the competition for
the N 6= 0 LLs, leading to spin polarized states at ⌫ = �12,�8,

and �4, the valley anisotropies dominate the zero LL, leading to
the formation of one of the possible lattice scale density waves
portrayed in Fig. 2c(ii)–(iv). The large size of the measured 0�
gap, and its insensitivity to in-plane fields, suggest that the valley
anisotropies may be more than ten times stronger than their naive
scale, (1/`B) ⇥ EC, in line with renormalization group34,40 and
numerical calculations29.

A further notable feature of the experimental data is the linear
dependence of 0� on B?. The ⌫ = 0 insulating state is not spin
polarized, precluding linear-in-BT Zeeman contributions to the
excitation energy (as in equation (2)); consequently, the linear
dependence must have an orbital origin. Theoretical models based
on Coulomb interactions within the continuum Dirac model,
whereas consistent with the magnitude of the gaps, implicitly
predict a

p
B? scaling of the ⌫ = 0 energy gap, a fact that derives

from the
p
B? dependence of both EC and E0. Theories based

on other mechanisms that do predict a linear dependence18,26 are
unable to account for the large 0� gap sizes observed.

Motivating future work on the ⌫ = 0 state, quantitative data
(Supplementary Information) on the decrease of the gap in applied
parallel field suggest that the real spin ferromagnet, which is
predicted22,25 to be an analog of the quantum spin Hall state41, may
be experimentally accessible in the best samples at high tilt angles in
realistic magnetic fields (BT ⇠< 45 T).

Despite the role of the single-particle Zeeman effect in setting
the order in the higher LLs, tilted field activation gaps demonstrate
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• edge reconstruction in tilted magnetic field shows consistency with the canted 
antiferromagnetic (CAF) ground state scenario

device plane, held constant, the initially low charge-neutrality point
conductance (Gcnp) increases steadily before finally saturating at
G < 1.8e2/h for the largest total field applied (e, electron charge; h,
Planck’s constant). Evidence for a similar transition was recently
reported in bilayer graphene24, where the additional orbital degeneracy

of the zLL leads to a conductance of 4e2/h. We note that although
superficially similar, the structure and transport properties of the
resulting edge modes are likely to be heavily influenced by the addi-
tional degeneracy, particularly when many-body reconstructions of
the edge states are taken into account10,25.

To distinguish the roles of the edges and the bulk in this conduc-
tance transition, we also measure the capacitance between the graphene
and the graphite back gate under similar conditions. Capacitance (C)
measurements serve as a probe of the bulk density of states (D) via
C{1~C{1

G z Ae2Dð Þ{1, where CG is the geometric capacitance and A
is the sample area. Simultaneous capacitance and transport measure-
ments from a second graphene device show that quantized Hall states
within the zLL at n 5 0 and n 5 61 are associated with minima in the
density of states (Fig. 1b, c). As the total field is increased, the capacit-
ance dip at n 5 0 remains unaltered even as the conductance increases
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Figure 1 | QSH state in monolayer graphene in extreme tilted magnetic
fields. a, Conductance of device A at BH 5 1.4 T for different values of BT. As
BT increases, the insulating state at n 5 0 is gradually replaced by a high-
conductance state, with an accompanying inversion of the sign of hGcnp/hT
(additional data in Extended Data Figs 2 and 3). Inset, Gcnp as a function of BT

for device A:BH 5 0.75, 1.0, 1.4, 1.6, 2.0, 2.5, 3.0 and 4.0 T (left to right).
b, Capacitance (opaque lines) and dissipation (semi-opaque lines) of device B at

BH 5 2.5 T. The low dissipation confirms that the measurements are in the
low-frequency limit, such that the dips in capacitance can be interpreted as
corresponding to incompressible states. c, Conductance under the same
conditions. The absence of a detectable change in capacitance, even as the two-
terminal conductance undergoes a transition from an insulating state to a
metallic state (Extended Data Fig. 6), suggests that the conductance transition is
due to the emergence of gapless edge states.
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regime, Gcnp depends strongly on the number of floating contacts (see Extended
Data Fig. 4 for similar data for device C). Inset, atomic force microscope (AFM)
phase micrograph of device A; scale bar, 1mm. c, Gcnp for eighteen different
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a. Data are plotted against two model fits. In a numerical simulation based on a
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conductor with the conductivity left as a fitting parameter (s 5 3.25e2/h for the
best fit). The QSH model (red circles) is equation (1) and has no fitting
parameters. The dashed line indicates a perfect fit of data to model. We note
that the measured Gcnp never reaches the value predicted by the QSH model,
indicating either contact resistance or finite backscattering between the helical
edge states. d, Schematic diagram of bulk order and edge-state spin texture in
the fully polarized QSH regime. Arrows indicate the projection of the electron
spin on a particular sublattice, with the two sublattices indicated by open and
filled circles. The edge-state wavefunctions are evenly distributed on the two
sublattices and have opposite spin polarizations, at least for an idealized
armchair edge14.
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by several orders of magnitude. This implies that the high-field n 5 0
state has an incompressible bulk, consistent with the hypothesis of a
ferromagnetic QSH state with conducting edge states and a bulk gap.

We probe the nature of the edge states through non-local transport
measurements in which floating contacts are added along the sample
edges26. Unlike the chiral edge of a quantum Hall state, which carries
current in only one direction, the QSH edge can carry current either
way, with backscattering suppressed by the conservation of spin within
the helical edge states. Because the carriers do not maintain their spin
coherence within a metal contact, contacts equilibrate the counterpro-
pagating states such that each length of QSH edge between contacts
must be considered a single resistor of resistance h/e2. The two-terminal
conductance results from the parallel addition of the two edges con-
necting the measurement probes:

G~
e2

h
1

N1z1
z

1
N2z1

! "
ð1Þ

Here N1 and N2 are the respective numbers of floating contacts along
each edge. Figure 2b shows the results of non-local two-terminal con-
ductance measurements for the four distinct two-terminal measurement
geometries available in a four-terminal device (Fig. 2a). Repeating the
measurement for 18 cyclic permutations of the available contact con-
figurations, we find that the results are well fitted by the simple model
of equation (1) (Fig. 2c), despite large variations in the effective bulk
aspect ratio. Notably, Gcnp is always less than the value expected from
the QSH model, suggesting some small but finite amount of backscat-
tering or contact resistance. The combination of bulk incompressibility
and non-local transport signatures of counterpropagating edge states
leads us to conclude that the high-field metallic state observed indeed
displays a QSH effect.

The QSH state realized here is equivalent to two copies of the quantum
Hall effect, protected from mixing by the U(1) symmetry of spin rotations
in the plane perpendicular to the magnetic field. As such, it constitutes

a topologically non-trivial state that is clearly distinct in its edge-state
properties from the insulating state at fully perpendicular field. Capa-
citance measurements in the intermediate conductance regime reveal
that the bulk gap does not close as the total field is increased (Fig. 3a).
This rules out a conventional topological phase transition, in which
case the bulk gap is required to close27; the transition must thus occur
by breaking the spin symmetry on which the QSH effect relies. In fact, a
canted antiferromagnetic (CAF) state (Fig. 3b) that spontaneously breaks
this symmetry is among the theoretically allowed n 5 0 states11–13. In
this scenario, the canting angle is controlled by the ratio of the Zeeman
energy, gmBBT (g 5 2, bare gyromagnetic ratio; mB, Bohr magneton),
and the antiferromagnetic exchange coupling, which depends only on
BH. The observed conductance transition results from the edge gap
closing (Fig. 3c) as the spins on the two graphene sublattices are slowly
canted by the in-plane magnetic field, with the fully polarized QSH
state emerging above a critical value of BT (ref. 14). In the language of
SPT insulators, the antiferromagnetic instability breaks the spin sym-
metry below this critical field, allowing the counterpropagating edge
states to backscatter and acquire a gap28.

Experimentally, the subcritical field regime is characterized by high-
conductance peaks appearing symmetrically between n 5 0 and n 5 61.
We observe G . e2/h peaks in many samples with widely varying aspect
ratios (Extended Data Fig. 5), which is inconsistent with diffusive bulk
transport in a compressible Landau level29. Measurements at different
temperatures indicate that the peaks are metallic, even when the state at
n 5 0 is still strongly insulating (Fig. 4a). Moreover, the peaks exhibit
the non-local transport behaviour of counterpropagating edge states
(Fig. 4b); in particular, the peak conductance is always strictly less than
e2/h when the two edges are each interrupted by a floating contact.
These results indicate that the conductance peaks are due to edge-state
transport in the CAF state. The high conductance of these edge states,
despite proximity to the strongly disordered etched graphene edge, implies
that backscattering is at least partly suppressed. This is consistent with
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Figure 3 | Symmetry-driven quantum phase transition. a, Capacitance (top)
and conductance (bottom) of device A at BH 5 1.1 T. The central dip in
capacitance does not change with BT at any point during the transition,
implying that the bulk gap does not close. b, Bulk spin order in the three
transition regimes. The balls and arrows are respectively schematic
representations of the spin and sublattice textures of the ground-state
wavefunctions and do not represent individual electrons; the electron density
within the zLL at n 5 0 is two electrons per cyclotron guiding centre. Insets,
details of the relative alignment of the electron spins on the two sublattices. At
large BT, the bulk electron spins are aligned with the field (top panel), resulting
in an emergent U(1) spin-rotation symmetry in the plane perpendicular to BT.
As the total magnetic field is reduced below some critical value (with BH held
constant), the spins on opposite sublattices cant with respect to each other while

maintaining a net polarization in the direction of BT (middle panel). This state
spontaneously breaks the U(1) symmetry, rendering local rotations of the
electron spins energetically costly. For pure perpendicular fields (bottom
panel), the valley isospin anisotropy energy overwhelms the Zeeman energy
and the canting angle, h, is close to 90u, defining a state with antiferromagnetic
order. c, Low-energy band structure in the three phases14. e is the energy and x is
the in-plane coordinate perpendicular to the physical edge of the sample. The
intermediate CAF phase smoothly interpolates between the gapless edge states
of the QSH phase (top panel; FM, ferromagnetic) and the gapped edge of the
perpendicular-field phase (bottom panel; AF, antiferromagnetic) without
closing the bulk gap. Colour indicates the spin texture of the bands projected
onto the magnetic field direction: red, aligned; blue, antialigned; black, zero net
spin along the field direction.
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Figure 2 |Activation gaps of half-filled quartet LLs. a, B? dependence of the ⌫ = 0 gap, 0�, for several devices. 0� increases approximately linearly with
applied B?, a feature not associated with any currently proposed theory for ⌫ = 0. The dashed line indicates g? = 23. b, Tilted field dependence of the
resistance of the ⌫ = 0 state. The resistance increases exponentially with field, consistent with a gapped state with 0�/ B?. The resistance at fixed B?
decreases for higher tilt angles, indicating a spin-unpolarized state. c, Candidate QHIFM states for ⌫ = 0. Our experiment rules out the spin ferromagnet,
(i); all other states are marked by lattice scale spin (for the canted antiferromagnet (ii)) or charge (for the charge density wave (iii) or Kekulé distortion
(iv)) order. d, B? dependence of the half-filled quartets for N 6= 0, ⌫ = �4,�8,�12. Like the ⌫ = 0, all gaps scale approximately linearly with B?, with
enhanced g? factors that decrease with increasing LL index. e, Unlike the ⌫ = 0 state, all activation gaps measured for half-filled LLs with N 6= 0 increase
with BT, indicating spin polarized states. For ⌫ = �4 and �8, the enhancement of gk indicates that charged excitations contain multiple flipped spins.
f, Schematic representation of charged excitations at half filling for N 6= 0. Excitations into the spin-reversed conduction band can take the form of single
reversed spin particle–hole pairs or smoothly varying skyrmion–antiskyrmion (S–aS) spin textures, depending on the strength of exchange interactions
relative to disorder and the Zeeman energy. At B? = 15 T in the samples studied in this work, the S–aS scenario prevails at ⌫ = �4 and �8, whereas charge
at ⌫ = �12 is carried by single electron–hole pairs. The error bars on all activation gaps are dominated by the uncertainty in the range of the simply
activated regime, which is much larger than intrinsic scatter in the data.

Half filling of a fourfold-degenerate graphene LL provides
an ideal testing ground for the relative strength of the spin
and valley anisotropies within the SU(4) isospin space. Because
each cyclotron guiding centre is doubly occupied, Pauli exclusion
prevents the half-filled LL from fully polarizing in both spin
and valley simultaneously. As a result, spin and valley polarizing
tendencies necessarily compete, and the resulting ground state
reflects the result of this competition. The fact that different
orders prevail at half filling for N = 0 and N 6= 0 even under
identical experimental conditions (B? and BT, which together
fix the relative magnitude of the real spin anisotropy) suggests
that the difference between LLs is intrinsic to graphene and
originates in the valley sector. A likely origin lies with the unique
structure of the ZLL wavefunctions: whereas for the N 6= 0 LLs
wavefunctions in a single valley are spread equally over the two
real space sublattices, for the ZLL electrons in a single valley
are localized on a single sublattice6. Long-range interactions
do not distinguish between such lattice scale orbital structural
difference, but short-range interactions do, potentially leading to
different ground states in the N = 0 and N 6= 0 LLs (ref. 23).
At ⌫ = 0, the resulting interaction induced valley anisotropies
have been predicted to drive the system to one of a number of
sublattice-ordered ground states20,21,23,24,27,29,30,33,34, some of which
are depicted in Fig. 2c. The experimental data presented here
indicate that, whereas the Zeeman effect wins the competition for
the N 6= 0 LLs, leading to spin polarized states at ⌫ = �12,�8,

and �4, the valley anisotropies dominate the zero LL, leading to
the formation of one of the possible lattice scale density waves
portrayed in Fig. 2c(ii)–(iv). The large size of the measured 0�
gap, and its insensitivity to in-plane fields, suggest that the valley
anisotropies may be more than ten times stronger than their naive
scale, (1/`B) ⇥ EC, in line with renormalization group34,40 and
numerical calculations29.

A further notable feature of the experimental data is the linear
dependence of 0� on B?. The ⌫ = 0 insulating state is not spin
polarized, precluding linear-in-BT Zeeman contributions to the
excitation energy (as in equation (2)); consequently, the linear
dependence must have an orbital origin. Theoretical models based
on Coulomb interactions within the continuum Dirac model,
whereas consistent with the magnitude of the gaps, implicitly
predict a

p
B? scaling of the ⌫ = 0 energy gap, a fact that derives

from the
p
B? dependence of both EC and E0. Theories based

on other mechanisms that do predict a linear dependence18,26 are
unable to account for the large 0� gap sizes observed.

Motivating future work on the ⌫ = 0 state, quantitative data
(Supplementary Information) on the decrease of the gap in applied
parallel field suggest that the real spin ferromagnet, which is
predicted22,25 to be an analog of the quantum spin Hall state41, may
be experimentally accessible in the best samples at high tilt angles in
realistic magnetic fields (BT ⇠< 45 T).

Despite the role of the single-particle Zeeman effect in setting
the order in the higher LLs, tilted field activation gaps demonstrate
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Figure 2 |Activation gaps of half-filled quartet LLs. a, B? dependence of the ⌫ = 0 gap, 0�, for several devices. 0� increases approximately linearly with
applied B?, a feature not associated with any currently proposed theory for ⌫ = 0. The dashed line indicates g? = 23. b, Tilted field dependence of the
resistance of the ⌫ = 0 state. The resistance increases exponentially with field, consistent with a gapped state with 0�/ B?. The resistance at fixed B?
decreases for higher tilt angles, indicating a spin-unpolarized state. c, Candidate QHIFM states for ⌫ = 0. Our experiment rules out the spin ferromagnet,
(i); all other states are marked by lattice scale spin (for the canted antiferromagnet (ii)) or charge (for the charge density wave (iii) or Kekulé distortion
(iv)) order. d, B? dependence of the half-filled quartets for N 6= 0, ⌫ = �4,�8,�12. Like the ⌫ = 0, all gaps scale approximately linearly with B?, with
enhanced g? factors that decrease with increasing LL index. e, Unlike the ⌫ = 0 state, all activation gaps measured for half-filled LLs with N 6= 0 increase
with BT, indicating spin polarized states. For ⌫ = �4 and �8, the enhancement of gk indicates that charged excitations contain multiple flipped spins.
f, Schematic representation of charged excitations at half filling for N 6= 0. Excitations into the spin-reversed conduction band can take the form of single
reversed spin particle–hole pairs or smoothly varying skyrmion–antiskyrmion (S–aS) spin textures, depending on the strength of exchange interactions
relative to disorder and the Zeeman energy. At B? = 15 T in the samples studied in this work, the S–aS scenario prevails at ⌫ = �4 and �8, whereas charge
at ⌫ = �12 is carried by single electron–hole pairs. The error bars on all activation gaps are dominated by the uncertainty in the range of the simply
activated regime, which is much larger than intrinsic scatter in the data.

Half filling of a fourfold-degenerate graphene LL provides
an ideal testing ground for the relative strength of the spin
and valley anisotropies within the SU(4) isospin space. Because
each cyclotron guiding centre is doubly occupied, Pauli exclusion
prevents the half-filled LL from fully polarizing in both spin
and valley simultaneously. As a result, spin and valley polarizing
tendencies necessarily compete, and the resulting ground state
reflects the result of this competition. The fact that different
orders prevail at half filling for N = 0 and N 6= 0 even under
identical experimental conditions (B? and BT, which together
fix the relative magnitude of the real spin anisotropy) suggests
that the difference between LLs is intrinsic to graphene and
originates in the valley sector. A likely origin lies with the unique
structure of the ZLL wavefunctions: whereas for the N 6= 0 LLs
wavefunctions in a single valley are spread equally over the two
real space sublattices, for the ZLL electrons in a single valley
are localized on a single sublattice6. Long-range interactions
do not distinguish between such lattice scale orbital structural
difference, but short-range interactions do, potentially leading to
different ground states in the N = 0 and N 6= 0 LLs (ref. 23).
At ⌫ = 0, the resulting interaction induced valley anisotropies
have been predicted to drive the system to one of a number of
sublattice-ordered ground states20,21,23,24,27,29,30,33,34, some of which
are depicted in Fig. 2c. The experimental data presented here
indicate that, whereas the Zeeman effect wins the competition for
the N 6= 0 LLs, leading to spin polarized states at ⌫ = �12,�8,

and �4, the valley anisotropies dominate the zero LL, leading to
the formation of one of the possible lattice scale density waves
portrayed in Fig. 2c(ii)–(iv). The large size of the measured 0�
gap, and its insensitivity to in-plane fields, suggest that the valley
anisotropies may be more than ten times stronger than their naive
scale, (1/`B) ⇥ EC, in line with renormalization group34,40 and
numerical calculations29.

A further notable feature of the experimental data is the linear
dependence of 0� on B?. The ⌫ = 0 insulating state is not spin
polarized, precluding linear-in-BT Zeeman contributions to the
excitation energy (as in equation (2)); consequently, the linear
dependence must have an orbital origin. Theoretical models based
on Coulomb interactions within the continuum Dirac model,
whereas consistent with the magnitude of the gaps, implicitly
predict a

p
B? scaling of the ⌫ = 0 energy gap, a fact that derives

from the
p
B? dependence of both EC and E0. Theories based

on other mechanisms that do predict a linear dependence18,26 are
unable to account for the large 0� gap sizes observed.

Motivating future work on the ⌫ = 0 state, quantitative data
(Supplementary Information) on the decrease of the gap in applied
parallel field suggest that the real spin ferromagnet, which is
predicted22,25 to be an analog of the quantum spin Hall state41, may
be experimentally accessible in the best samples at high tilt angles in
realistic magnetic fields (BT ⇠< 45 T).

Despite the role of the single-particle Zeeman effect in setting
the order in the higher LLs, tilted field activation gaps demonstrate
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reversed spin particle–hole pairs or smoothly varying skyrmion–antiskyrmion (S–aS) spin textures, depending on the strength of exchange interactions
relative to disorder and the Zeeman energy. At B? = 15 T in the samples studied in this work, the S–aS scenario prevails at ⌫ = �4 and �8, whereas charge
at ⌫ = �12 is carried by single electron–hole pairs. The error bars on all activation gaps are dominated by the uncertainty in the range of the simply
activated regime, which is much larger than intrinsic scatter in the data.

Half filling of a fourfold-degenerate graphene LL provides
an ideal testing ground for the relative strength of the spin
and valley anisotropies within the SU(4) isospin space. Because
each cyclotron guiding centre is doubly occupied, Pauli exclusion
prevents the half-filled LL from fully polarizing in both spin
and valley simultaneously. As a result, spin and valley polarizing
tendencies necessarily compete, and the resulting ground state
reflects the result of this competition. The fact that different
orders prevail at half filling for N = 0 and N 6= 0 even under
identical experimental conditions (B? and BT, which together
fix the relative magnitude of the real spin anisotropy) suggests
that the difference between LLs is intrinsic to graphene and
originates in the valley sector. A likely origin lies with the unique
structure of the ZLL wavefunctions: whereas for the N 6= 0 LLs
wavefunctions in a single valley are spread equally over the two
real space sublattices, for the ZLL electrons in a single valley
are localized on a single sublattice6. Long-range interactions
do not distinguish between such lattice scale orbital structural
difference, but short-range interactions do, potentially leading to
different ground states in the N = 0 and N 6= 0 LLs (ref. 23).
At ⌫ = 0, the resulting interaction induced valley anisotropies
have been predicted to drive the system to one of a number of
sublattice-ordered ground states20,21,23,24,27,29,30,33,34, some of which
are depicted in Fig. 2c. The experimental data presented here
indicate that, whereas the Zeeman effect wins the competition for
the N 6= 0 LLs, leading to spin polarized states at ⌫ = �12,�8,

and �4, the valley anisotropies dominate the zero LL, leading to
the formation of one of the possible lattice scale density waves
portrayed in Fig. 2c(ii)–(iv). The large size of the measured 0�
gap, and its insensitivity to in-plane fields, suggest that the valley
anisotropies may be more than ten times stronger than their naive
scale, (1/`B) ⇥ EC, in line with renormalization group34,40 and
numerical calculations29.

A further notable feature of the experimental data is the linear
dependence of 0� on B?. The ⌫ = 0 insulating state is not spin
polarized, precluding linear-in-BT Zeeman contributions to the
excitation energy (as in equation (2)); consequently, the linear
dependence must have an orbital origin. Theoretical models based
on Coulomb interactions within the continuum Dirac model,
whereas consistent with the magnitude of the gaps, implicitly
predict a

p
B? scaling of the ⌫ = 0 energy gap, a fact that derives

from the
p
B? dependence of both EC and E0. Theories based

on other mechanisms that do predict a linear dependence18,26 are
unable to account for the large 0� gap sizes observed.

Motivating future work on the ⌫ = 0 state, quantitative data
(Supplementary Information) on the decrease of the gap in applied
parallel field suggest that the real spin ferromagnet, which is
predicted22,25 to be an analog of the quantum spin Hall state41, may
be experimentally accessible in the best samples at high tilt angles in
realistic magnetic fields (BT ⇠< 45 T).

Despite the role of the single-particle Zeeman effect in setting
the order in the higher LLs, tilted field activation gaps demonstrate
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• edge reconstruction in tilted magnetic field shows consistency with the canted 
antiferromagnetic (CAF) ground state scenario

device plane, held constant, the initially low charge-neutrality point
conductance (Gcnp) increases steadily before finally saturating at
G < 1.8e2/h for the largest total field applied (e, electron charge; h,
Planck’s constant). Evidence for a similar transition was recently
reported in bilayer graphene24, where the additional orbital degeneracy

of the zLL leads to a conductance of 4e2/h. We note that although
superficially similar, the structure and transport properties of the
resulting edge modes are likely to be heavily influenced by the addi-
tional degeneracy, particularly when many-body reconstructions of
the edge states are taken into account10,25.

To distinguish the roles of the edges and the bulk in this conduc-
tance transition, we also measure the capacitance between the graphene
and the graphite back gate under similar conditions. Capacitance (C)
measurements serve as a probe of the bulk density of states (D) via
C{1~C{1

G z Ae2Dð Þ{1, where CG is the geometric capacitance and A
is the sample area. Simultaneous capacitance and transport measure-
ments from a second graphene device show that quantized Hall states
within the zLL at n 5 0 and n 5 61 are associated with minima in the
density of states (Fig. 1b, c). As the total field is increased, the capacit-
ance dip at n 5 0 remains unaltered even as the conductance increases
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Figure 1 | QSH state in monolayer graphene in extreme tilted magnetic
fields. a, Conductance of device A at BH 5 1.4 T for different values of BT. As
BT increases, the insulating state at n 5 0 is gradually replaced by a high-
conductance state, with an accompanying inversion of the sign of hGcnp/hT
(additional data in Extended Data Figs 2 and 3). Inset, Gcnp as a function of BT

for device A:BH 5 0.75, 1.0, 1.4, 1.6, 2.0, 2.5, 3.0 and 4.0 T (left to right).
b, Capacitance (opaque lines) and dissipation (semi-opaque lines) of device B at

BH 5 2.5 T. The low dissipation confirms that the measurements are in the
low-frequency limit, such that the dips in capacitance can be interpreted as
corresponding to incompressible states. c, Conductance under the same
conditions. The absence of a detectable change in capacitance, even as the two-
terminal conductance undergoes a transition from an insulating state to a
metallic state (Extended Data Fig. 6), suggests that the conductance transition is
due to the emergence of gapless edge states.
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conductance measurements of device A for BH 5 1.4 T, colour-coded to match
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regime, Gcnp depends strongly on the number of floating contacts (see Extended
Data Fig. 4 for similar data for device C). Inset, atomic force microscope (AFM)
phase micrograph of device A; scale bar, 1mm. c, Gcnp for eighteen different
contact configurations based on cyclic permutations of the topologies shown in
a. Data are plotted against two model fits. In a numerical simulation based on a
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that the measured Gcnp never reaches the value predicted by the QSH model,
indicating either contact resistance or finite backscattering between the helical
edge states. d, Schematic diagram of bulk order and edge-state spin texture in
the fully polarized QSH regime. Arrows indicate the projection of the electron
spin on a particular sublattice, with the two sublattices indicated by open and
filled circles. The edge-state wavefunctions are evenly distributed on the two
sublattices and have opposite spin polarizations, at least for an idealized
armchair edge14.
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by several orders of magnitude. This implies that the high-field n 5 0
state has an incompressible bulk, consistent with the hypothesis of a
ferromagnetic QSH state with conducting edge states and a bulk gap.

We probe the nature of the edge states through non-local transport
measurements in which floating contacts are added along the sample
edges26. Unlike the chiral edge of a quantum Hall state, which carries
current in only one direction, the QSH edge can carry current either
way, with backscattering suppressed by the conservation of spin within
the helical edge states. Because the carriers do not maintain their spin
coherence within a metal contact, contacts equilibrate the counterpro-
pagating states such that each length of QSH edge between contacts
must be considered a single resistor of resistance h/e2. The two-terminal
conductance results from the parallel addition of the two edges con-
necting the measurement probes:

G~
e2

h
1

N1z1
z

1
N2z1

! "
ð1Þ

Here N1 and N2 are the respective numbers of floating contacts along
each edge. Figure 2b shows the results of non-local two-terminal con-
ductance measurements for the four distinct two-terminal measurement
geometries available in a four-terminal device (Fig. 2a). Repeating the
measurement for 18 cyclic permutations of the available contact con-
figurations, we find that the results are well fitted by the simple model
of equation (1) (Fig. 2c), despite large variations in the effective bulk
aspect ratio. Notably, Gcnp is always less than the value expected from
the QSH model, suggesting some small but finite amount of backscat-
tering or contact resistance. The combination of bulk incompressibility
and non-local transport signatures of counterpropagating edge states
leads us to conclude that the high-field metallic state observed indeed
displays a QSH effect.

The QSH state realized here is equivalent to two copies of the quantum
Hall effect, protected from mixing by the U(1) symmetry of spin rotations
in the plane perpendicular to the magnetic field. As such, it constitutes

a topologically non-trivial state that is clearly distinct in its edge-state
properties from the insulating state at fully perpendicular field. Capa-
citance measurements in the intermediate conductance regime reveal
that the bulk gap does not close as the total field is increased (Fig. 3a).
This rules out a conventional topological phase transition, in which
case the bulk gap is required to close27; the transition must thus occur
by breaking the spin symmetry on which the QSH effect relies. In fact, a
canted antiferromagnetic (CAF) state (Fig. 3b) that spontaneously breaks
this symmetry is among the theoretically allowed n 5 0 states11–13. In
this scenario, the canting angle is controlled by the ratio of the Zeeman
energy, gmBBT (g 5 2, bare gyromagnetic ratio; mB, Bohr magneton),
and the antiferromagnetic exchange coupling, which depends only on
BH. The observed conductance transition results from the edge gap
closing (Fig. 3c) as the spins on the two graphene sublattices are slowly
canted by the in-plane magnetic field, with the fully polarized QSH
state emerging above a critical value of BT (ref. 14). In the language of
SPT insulators, the antiferromagnetic instability breaks the spin sym-
metry below this critical field, allowing the counterpropagating edge
states to backscatter and acquire a gap28.

Experimentally, the subcritical field regime is characterized by high-
conductance peaks appearing symmetrically between n 5 0 and n 5 61.
We observe G . e2/h peaks in many samples with widely varying aspect
ratios (Extended Data Fig. 5), which is inconsistent with diffusive bulk
transport in a compressible Landau level29. Measurements at different
temperatures indicate that the peaks are metallic, even when the state at
n 5 0 is still strongly insulating (Fig. 4a). Moreover, the peaks exhibit
the non-local transport behaviour of counterpropagating edge states
(Fig. 4b); in particular, the peak conductance is always strictly less than
e2/h when the two edges are each interrupted by a floating contact.
These results indicate that the conductance peaks are due to edge-state
transport in the CAF state. The high conductance of these edge states,
despite proximity to the strongly disordered etched graphene edge, implies
that backscattering is at least partly suppressed. This is consistent with
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Figure 3 | Symmetry-driven quantum phase transition. a, Capacitance (top)
and conductance (bottom) of device A at BH 5 1.1 T. The central dip in
capacitance does not change with BT at any point during the transition,
implying that the bulk gap does not close. b, Bulk spin order in the three
transition regimes. The balls and arrows are respectively schematic
representations of the spin and sublattice textures of the ground-state
wavefunctions and do not represent individual electrons; the electron density
within the zLL at n 5 0 is two electrons per cyclotron guiding centre. Insets,
details of the relative alignment of the electron spins on the two sublattices. At
large BT, the bulk electron spins are aligned with the field (top panel), resulting
in an emergent U(1) spin-rotation symmetry in the plane perpendicular to BT.
As the total magnetic field is reduced below some critical value (with BH held
constant), the spins on opposite sublattices cant with respect to each other while

maintaining a net polarization in the direction of BT (middle panel). This state
spontaneously breaks the U(1) symmetry, rendering local rotations of the
electron spins energetically costly. For pure perpendicular fields (bottom
panel), the valley isospin anisotropy energy overwhelms the Zeeman energy
and the canting angle, h, is close to 90u, defining a state with antiferromagnetic
order. c, Low-energy band structure in the three phases14. e is the energy and x is
the in-plane coordinate perpendicular to the physical edge of the sample. The
intermediate CAF phase smoothly interpolates between the gapless edge states
of the QSH phase (top panel; FM, ferromagnetic) and the gapped edge of the
perpendicular-field phase (bottom panel; AF, antiferromagnetic) without
closing the bulk gap. Colour indicates the spin texture of the bands projected
onto the magnetic field direction: red, aligned; blue, antialigned; black, zero net
spin along the field direction.
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Halffillingofafourfold-degenerategrapheneLLprovides
anidealtestinggroundfortherelativestrengthofthespin
andvalleyanisotropieswithintheSU(4)isospinspace.Because
eachcyclotronguidingcentreisdoublyoccupied,Pauliexclusion
preventsthehalf-filledLLfromfullypolarizinginbothspin
andvalleysimultaneously.Asaresult,spinandvalleypolarizing
tendenciesnecessarilycompete,andtheresultinggroundstate
reflectstheresultofthiscompetition.Thefactthatdifferent
ordersprevailathalffillingforN=0andN6=0evenunder
identicalexperimentalconditions(B?andBT,whichtogether
fixtherelativemagnitudeoftherealspinanisotropy)suggests
thatthedifferencebetweenLLsisintrinsictographeneand
originatesinthevalleysector.Alikelyoriginlieswiththeunique
structureoftheZLLwavefunctions:whereasfortheN6=0LLs
wavefunctionsinasinglevalleyarespreadequallyoverthetwo
realspacesublattices,fortheZLLelectronsinasinglevalley
arelocalizedonasinglesublattice6.Long-rangeinteractions
donotdistinguishbetweensuchlatticescaleorbitalstructural
difference,butshort-rangeinteractionsdo,potentiallyleadingto
differentgroundstatesintheN=0andN6=0LLs(ref.23).
At⌫=0,theresultinginteractioninducedvalleyanisotropies
havebeenpredictedtodrivethesystemtooneofanumberof
sublattice-orderedgroundstates20,21,23,24,27,29,30,33,34,someofwhich
aredepictedinFig.2c.Theexperimentaldatapresentedhere
indicatethat,whereastheZeemaneffectwinsthecompetitionfor
theN6=0LLs,leadingtospinpolarizedstatesat⌫=�12,�8,

and�4,thevalleyanisotropiesdominatethezeroLL,leadingto
theformationofoneofthepossiblelatticescaledensitywaves
portrayedinFig.2c(ii)–(iv).Thelargesizeofthemeasured0�
gap,anditsinsensitivitytoin-planefields,suggestthatthevalley
anisotropiesmaybemorethantentimesstrongerthantheirnaive
scale,(1/`B)⇥EC,inlinewithrenormalizationgroup34,40and
numericalcalculations29.

Afurthernotablefeatureoftheexperimentaldataisthelinear
dependenceof0�onB?.The⌫=0insulatingstateisnotspin
polarized,precludinglinear-in-BTZeemancontributionstothe
excitationenergy(asinequation(2));consequently,thelinear
dependencemusthaveanorbitalorigin.Theoreticalmodelsbased
onCoulombinteractionswithinthecontinuumDiracmodel,
whereasconsistentwiththemagnitudeofthegaps,implicitly
predicta

p
B?scalingofthe⌫=0energygap,afactthatderives

fromthe
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B?dependenceofbothECandE0.Theoriesbased
onothermechanismsthatdopredictalineardependence18,26are
unabletoaccountforthelarge0�gapsizesobserved.

Motivatingfutureworkonthe⌫=0state,quantitativedata
(SupplementaryInformation)onthedecreaseofthegapinapplied
parallelfieldsuggestthattherealspinferromagnet,whichis
predicted22,25tobeananalogofthequantumspinHallstate41,may
beexperimentallyaccessibleinthebestsamplesathightiltanglesin
realisticmagneticfields(BT⇠<45T).

Despitetheroleofthesingle-particleZeemaneffectinsetting
theorderinthehigherLLs,tiltedfieldactivationgapsdemonstrate
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•possible spin unpolarized scenarios:
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canted  
antiferromagnet

charge density 
wave

Kekulé

•edge reconstruction in tilted magnetic field shows consistency with the canted 
antiferromagnetic (CAF) ground state scenario

deviceplane,heldconstant,theinitiallylowcharge-neutralitypoint
conductance(Gcnp)increasessteadilybeforefinallysaturatingat
G<1.8e2/hforthelargesttotalfieldapplied(e,electroncharge;h,
Planck’sconstant).Evidenceforasimilartransitionwasrecently
reportedinbilayergraphene24,wheretheadditionalorbitaldegeneracy

ofthezLLleadstoaconductanceof4e2/h.Wenotethatalthough
superficiallysimilar,thestructureandtransportpropertiesofthe
resultingedgemodesarelikelytobeheavilyinfluencedbytheaddi-
tionaldegeneracy,particularlywhenmany-bodyreconstructionsof
theedgestatesaretakenintoaccount10,25.

Todistinguishtherolesoftheedgesandthebulkinthisconduc-
tancetransition,wealsomeasurethecapacitancebetweenthegraphene
andthegraphitebackgateundersimilarconditions.Capacitance(C)
measurementsserveasaprobeofthebulkdensityofstates(D)via
C{1~C{1

GzAe2D ðÞ{1,whereCGisthegeometriccapacitanceandA
isthesamplearea.Simultaneouscapacitanceandtransportmeasure-
mentsfromasecondgraphenedeviceshowthatquantizedHallstates
withinthezLLatn50andn561areassociatedwithminimainthe
densityofstates(Fig.1b,c).Asthetotalfieldisincreased,thecapacit-
ancedipatn50remainsunalteredevenastheconductanceincreases
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b,Capacitance(opaquelines)anddissipation(semi-opaquelines)ofdeviceBat

BH52.5T.Thelowdissipationconfirmsthatthemeasurementsareinthe
low-frequencylimit,suchthatthedipsincapacitancecanbeinterpretedas
correspondingtoincompressiblestates.c,Conductanceunderthesame
conditions.Theabsenceofadetectablechangeincapacitance,evenasthetwo-
terminalconductanceundergoesatransitionfromaninsulatingstatetoa
metallicstate(ExtendedDataFig.6),suggeststhattheconductancetransitionis
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byseveralordersofmagnitude.Thisimpliesthatthehigh-fieldn50
statehasanincompressiblebulk,consistentwiththehypothesisofa
ferromagneticQSHstatewithconductingedgestatesandabulkgap.

Weprobethenatureoftheedgestatesthroughnon-localtransport
measurementsinwhichfloatingcontactsareaddedalongthesample
edges26.UnlikethechiraledgeofaquantumHallstate,whichcarries
currentinonlyonedirection,theQSHedgecancarrycurrenteither
way,withbackscatteringsuppressedbytheconservationofspinwithin
thehelicaledgestates.Becausethecarriersdonotmaintaintheirspin
coherencewithinametalcontact,contactsequilibratethecounterpro-
pagatingstatessuchthateachlengthofQSHedgebetweencontacts
mustbeconsideredasingleresistorofresistanceh/e2.Thetwo-terminal
conductanceresultsfromtheparalleladditionofthetwoedgescon-
nectingthemeasurementprobes:

G~
e2

h
1

N1z1
z

1
N2z1

!"
ð1Þ

HereN1andN2aretherespectivenumbersoffloatingcontactsalong
eachedge.Figure2bshowstheresultsofnon-localtwo-terminalcon-
ductancemeasurementsforthefourdistincttwo-terminalmeasurement
geometriesavailableinafour-terminaldevice(Fig.2a).Repeatingthe
measurementfor18cyclicpermutationsoftheavailablecontactcon-
figurations,wefindthattheresultsarewellfittedbythesimplemodel
ofequation(1)(Fig.2c),despitelargevariationsintheeffectivebulk
aspectratio.Notably,Gcnpisalwayslessthanthevalueexpectedfrom
theQSHmodel,suggestingsomesmallbutfiniteamountofbackscat-
teringorcontactresistance.Thecombinationofbulkincompressibility
andnon-localtransportsignaturesofcounterpropagatingedgestates
leadsustoconcludethatthehigh-fieldmetallicstateobservedindeed
displaysaQSHeffect.

TheQSHstaterealizedhereisequivalenttotwocopiesofthequantum
Halleffect,protectedfrommixingbytheU(1)symmetryofspinrotations
intheplaneperpendiculartothemagneticfield.Assuch,itconstitutes

atopologicallynon-trivialstatethatisclearlydistinctinitsedge-state
propertiesfromtheinsulatingstateatfullyperpendicularfield.Capa-
citancemeasurementsintheintermediateconductanceregimereveal
thatthebulkgapdoesnotcloseasthetotalfieldisincreased(Fig.3a).
Thisrulesoutaconventionaltopologicalphasetransition,inwhich
casethebulkgapisrequiredtoclose27;thetransitionmustthusoccur
bybreakingthespinsymmetryonwhichtheQSHeffectrelies.Infact,a
cantedantiferromagnetic(CAF)state(Fig.3b)thatspontaneouslybreaks
thissymmetryisamongthetheoreticallyallowedn50states11–13.In
thisscenario,thecantingangleiscontrolledbytheratiooftheZeeman
energy,gmBBT(g52,baregyromagneticratio;mB,Bohrmagneton),
andtheantiferromagneticexchangecoupling,whichdependsonlyon
BH.Theobservedconductancetransitionresultsfromtheedgegap
closing(Fig.3c)asthespinsonthetwographenesublatticesareslowly
cantedbythein-planemagneticfield,withthefullypolarizedQSH
stateemergingaboveacriticalvalueofBT(ref.14).Inthelanguageof
SPTinsulators,theantiferromagneticinstabilitybreaksthespinsym-
metrybelowthiscriticalfield,allowingthecounterpropagatingedge
statestobackscatterandacquireagap28.

Experimentally,thesubcriticalfieldregimeischaracterizedbyhigh-
conductancepeaksappearingsymmetricallybetweenn50andn561.
WeobserveG.e2/hpeaksinmanysampleswithwidelyvaryingaspect
ratios(ExtendedDataFig.5),whichisinconsistentwithdiffusivebulk
transportinacompressibleLandaulevel29.Measurementsatdifferent
temperaturesindicatethatthepeaksaremetallic,evenwhenthestateat
n50isstillstronglyinsulating(Fig.4a).Moreover,thepeaksexhibit
thenon-localtransportbehaviourofcounterpropagatingedgestates
(Fig.4b);inparticular,thepeakconductanceisalwaysstrictlylessthan
e2/hwhenthetwoedgesareeachinterruptedbyafloatingcontact.
Theseresultsindicatethattheconductancepeaksareduetoedge-state
transportintheCAFstate.Thehighconductanceoftheseedgestates,
despiteproximitytothestronglydisorderedetchedgrapheneedge,implies
thatbackscatteringisatleastpartlysuppressed.Thisisconsistentwith
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the hopping of the bosons can directly be controlled by varying
the strength of an optical lattice. The interaction can also be
controlled via a Feshbach resonance, enabling us in principle to
design our pet hamiltonian. In spin systems the parameters can
be changed only in a limited way by the application of pressure
or by changing the chemical composition. EVorts in quantum
chemistry have produced good realizations of three-, two- and one-
dimensional dimer materials, for example TlCuCl3, BaCuSi2O6 and
(C5H12N)2CuBr4, respectively. In addition, by the very nature of
the mapping from spins to bosons, spin systems oVer a definite
advantage in reaching the limit of strong on-site repulsion as well
as the eVects of interactions between nearest neighbours (see the
next section). Spin systems are therefore an optimal starting point
to study situations for which these ingredients are important.

The cold atomic systems have the important advantage that the
phase U (1) symmetry is exact. In the magnets, the corresponding
O(2) symmetry in the plane perpendicular to the magnetic
field can be broken by weak anisotropic interactions (crystalline
anisotropies, spin–orbit coupling and dipolar interactions). As
a matter of fact, they may always be present in real magnetic

materials at some, preferably low, energy scale (compared with
interactions Jmnij)31,57,58, or it may be challenging experimentally to
apply the magnetic field exactly along a symmetry direction. Even
when symmetry-breaking terms are weak, they become important
at low temperatures and modify the physics in the vicinity of
the QCP. Although such additional terms in the spin hamiltonian
should be part of any detailed experimental characterization,
many of the currently studied magnetic materials provide a
clean experimental window where critical exponents, eVects of
dimensionality and so on can be investigated in the anticipated
physical limits8,37,38,57. The physics of BEC may also be altered in
the presence of coupling between spins and lattice distortions.
Fortunately, a thorough understanding of BEC in O(2)-symmetric
magnets enables us to treat theoretically small deviations from the
idealized case30,32,33,59–62.

Finally, these spin systems provide an excellent opportunity to
study the critical behaviour in the immediate vicinity of a QCP
because the high degree of homogeneity in boson density oVered
by crystalline solids is diYcult to attain in the presence of a trap
potential confining an atomic gas.
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Pumped condensates

• Parametric microwave pumping (probed by BLS)
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Figure 1 | Magnon spectrum. Magnon spectrum of a 5.6-µm-thick YIG film
magnetized in plane by a bias magnetic field H= 1,690 Oe, shown for the
wavevector q perpendicular (left) and parallel (right) to the applied field.
For both wavevector directions the first 31 thickness modes are shown. The
red arrow illustrates the magnon injection process by means of parallel
parametric pumping. Np, total number of parametrically excited magnons
at !p/2; Nc, number of BEC magnons at !c =!min; Nb, number of gaseous
magnons near !min and qmin; Ng, number of magnons in the parametrically
overpopulated gas of magnons below !p/2. The inset schematically shows
the geometry of the in-plane magnon wavevector q, the bias field H , and
the pumping microwave magnetic field.

two symmetricminima in the frequency spectrum!(q) at q=±qmin
(with qmin kH ) and, consequently, in the fact that a system of two
BECs is created38. Similar to other systems with coexisting BEC
states (see, for example, ref. 39), the physics of this BEC system is
much richer then the physics of the majority of BECs of particles
having only one spectral minimum at q= 0. Currently, the study
of the two-valley BEC is still in its infancy stage (see, for example,
refs 24,38,40).

The experimental set-up, which consists of a YIG film, a
microwave circuit and a wavevector- and time-resolved BLS system
(see Methods), is schematically shown in Fig. 2a. The microwave
pumping circuit comprises a microwave source, a switch, and an

amplifier. This circuit drives a 50-µm-wide microstrip resonator,
which is placed below the YIG film. The resonator concentrates the
applied microwave energy and induces a microwave Oersted field
oriented along the bias magnetic field H , thus realizing conditions
for the parallel parametric pumping mechanism. The pumping
pulses of ⌧P = 2 µs duration are applied with a repetition time of
1ms, allowing for magnetic and temperature equilibration of the
YIG film.

In our experiment, a focused laser beam combines the role of
the magnon probe in the BLS experiment with the role of the
local sample heater. The heating time is adjusted by chopping
the probing laser beam using an acousto-optic modulator (AOM).
The laser pulse duration ⌧L is varied between 6 µs and 80 µs. By
changing ⌧L, the set-up allows one to change the heating time
interval before the application of the microwave pumping pulse
and, consequently, to control the sample temperature in the probing
point (see Fig. 2b). The modulated probing beam is focused onto
the surface of the YIG film in the middle of the microstrip resonator
(see Fig. 2a,c), where it has a maximum peak power of 9.5mW. The
focal spot has a radius R⇡ 10µm and, thus, is approximately half
the size of the 50-µm-wide parametric pumping area. The scattered
light is deflected by the beam splitter to the tandem Fabry–Pérot
interferometer, which selects the frequency-shifted components of
the scattered light. The intensity of the inelastically scattered light,
which is proportional to the magnon density in the probing point,
is detected and analysed in time (see Methods).

To understand the dynamics of the magnon BEC, one first
needs to separate the e�ects caused by the spatially uniform change
of the sample temperature from those caused by the formation
of a temperature gradient. Therefore, in a first experiment, we
combined BLS probing at low laser power with an uniform heating
of the YIG sample by a hot air flow. Figure 3a shows the typical
dynamics of the magnon BEC in this case. During the action
of the pump pulse the magnon density increases and saturates.
After the parametric pumping is switched o�, the magnon density
jumps up due to the previously reported intensification of the
BEC formation in the freely evolving magnon gas30. Afterwards the
magnon density exponentially decreases due to the conventional
spin–lattice relaxation mechanisms. This behaviour is common for
all temperatures in our experiment. Some decrease in the steady-
statemagnondensity observed at higher temperatures can be related
both to higher magnon damping29 and to lower e�ciency of the
parametric pumping in this case. The latter e�ect is straightforward:
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Figure 2 | Experimental set-up. a, Schematic illustration of the experimental set-up. The upper part of the figure shows the microwave circuit, consisting of
a microwave source, a switch and an amplifier. This circuit drives a microstrip resonator, which is placed below the in-plane magnetized YIG film. Light from
a solid-state laser (�L =532nm) is chopped by an acousto-optic modulator (AOM) and guided to the YIG film. There it is scattered inelastically from
magnons, and the frequency-shifted component of the scattered light is selected by the tandem Fabry–Pérot interferometer, detected, and analysed in time.
b, Time diagram presenting the relative timing of the microwave pump pulse, the laser pulse, and the detected BLS signal. c, Infrared photo of the YIG
sample, showing the hot spot in the focus of the probing laser beam. d, Schematic illustration of a supercurrent flowing in the magnon BEC subject to a
thermal gradient. Red arrows—outflow of the thermally induced supercurrent JT from the hot focal spot. Blue arrows—contraflow of the dispersive current
Jdis. !c and !0

c , magnon BEC phases in the hot and in the cold parts of the sample, respectively. �', temperature induced phase accumulation in the
magnon BEC; R, radius of the hot spot.
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Figure 1 | Magnon spectrum. Magnon spectrum of a 5.6-µm-thick YIG film
magnetized in plane by a bias magnetic field H= 1,690 Oe, shown for the
wavevector q perpendicular (left) and parallel (right) to the applied field.
For both wavevector directions the first 31 thickness modes are shown. The
red arrow illustrates the magnon injection process by means of parallel
parametric pumping. Np, total number of parametrically excited magnons
at !p/2; Nc, number of BEC magnons at !c =!min; Nb, number of gaseous
magnons near !min and qmin; Ng, number of magnons in the parametrically
overpopulated gas of magnons below !p/2. The inset schematically shows
the geometry of the in-plane magnon wavevector q, the bias field H , and
the pumping microwave magnetic field.

two symmetricminima in the frequency spectrum!(q) at q=±qmin
(with qmin kH ) and, consequently, in the fact that a system of two
BECs is created38. Similar to other systems with coexisting BEC
states (see, for example, ref. 39), the physics of this BEC system is
much richer then the physics of the majority of BECs of particles
having only one spectral minimum at q= 0. Currently, the study
of the two-valley BEC is still in its infancy stage (see, for example,
refs 24,38,40).

The experimental set-up, which consists of a YIG film, a
microwave circuit and a wavevector- and time-resolved BLS system
(see Methods), is schematically shown in Fig. 2a. The microwave
pumping circuit comprises a microwave source, a switch, and an

amplifier. This circuit drives a 50-µm-wide microstrip resonator,
which is placed below the YIG film. The resonator concentrates the
applied microwave energy and induces a microwave Oersted field
oriented along the bias magnetic field H , thus realizing conditions
for the parallel parametric pumping mechanism. The pumping
pulses of ⌧P = 2 µs duration are applied with a repetition time of
1ms, allowing for magnetic and temperature equilibration of the
YIG film.

In our experiment, a focused laser beam combines the role of
the magnon probe in the BLS experiment with the role of the
local sample heater. The heating time is adjusted by chopping
the probing laser beam using an acousto-optic modulator (AOM).
The laser pulse duration ⌧L is varied between 6 µs and 80 µs. By
changing ⌧L, the set-up allows one to change the heating time
interval before the application of the microwave pumping pulse
and, consequently, to control the sample temperature in the probing
point (see Fig. 2b). The modulated probing beam is focused onto
the surface of the YIG film in the middle of the microstrip resonator
(see Fig. 2a,c), where it has a maximum peak power of 9.5mW. The
focal spot has a radius R⇡ 10µm and, thus, is approximately half
the size of the 50-µm-wide parametric pumping area. The scattered
light is deflected by the beam splitter to the tandem Fabry–Pérot
interferometer, which selects the frequency-shifted components of
the scattered light. The intensity of the inelastically scattered light,
which is proportional to the magnon density in the probing point,
is detected and analysed in time (see Methods).

To understand the dynamics of the magnon BEC, one first
needs to separate the e�ects caused by the spatially uniform change
of the sample temperature from those caused by the formation
of a temperature gradient. Therefore, in a first experiment, we
combined BLS probing at low laser power with an uniform heating
of the YIG sample by a hot air flow. Figure 3a shows the typical
dynamics of the magnon BEC in this case. During the action
of the pump pulse the magnon density increases and saturates.
After the parametric pumping is switched o�, the magnon density
jumps up due to the previously reported intensification of the
BEC formation in the freely evolving magnon gas30. Afterwards the
magnon density exponentially decreases due to the conventional
spin–lattice relaxation mechanisms. This behaviour is common for
all temperatures in our experiment. Some decrease in the steady-
statemagnondensity observed at higher temperatures can be related
both to higher magnon damping29 and to lower e�ciency of the
parametric pumping in this case. The latter e�ect is straightforward:
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Figure 2 | Experimental set-up. a, Schematic illustration of the experimental set-up. The upper part of the figure shows the microwave circuit, consisting of
a microwave source, a switch and an amplifier. This circuit drives a microstrip resonator, which is placed below the in-plane magnetized YIG film. Light from
a solid-state laser (�L =532nm) is chopped by an acousto-optic modulator (AOM) and guided to the YIG film. There it is scattered inelastically from
magnons, and the frequency-shifted component of the scattered light is selected by the tandem Fabry–Pérot interferometer, detected, and analysed in time.
b, Time diagram presenting the relative timing of the microwave pump pulse, the laser pulse, and the detected BLS signal. c, Infrared photo of the YIG
sample, showing the hot spot in the focus of the probing laser beam. d, Schematic illustration of a supercurrent flowing in the magnon BEC subject to a
thermal gradient. Red arrows—outflow of the thermally induced supercurrent JT from the hot focal spot. Blue arrows—contraflow of the dispersive current
Jdis. !c and !0

c , magnon BEC phases in the hot and in the cold parts of the sample, respectively. �', temperature induced phase accumulation in the
magnon BEC; R, radius of the hot spot.
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magnon spectrum near its bottom33 shows (see also Methods) that
at our experimental conditions Dx ' 21Dy and, thus, Jx � Jy . This
allows us to neglect Jy in the global balance of the magnon numbers
and to simplify the problem to a one-dimensional (1D) case along
the x-axis (see Fig. 2d).

There are two reasons for the x-dependence of the BEC phase '
in our experiment. The first is the already mentioned temperature
dependence of !c. Within the hot spot of radius R centred at
x=0 (that is, for |x|<R) the temperature T (x) is higher than the
temperature T0 of the rest of the film (see Fig. 2d). Since in an
in-plane magnetized YIG film d!c(T )/dT <0, the BEC frequency
in the spot is smaller than outside: �!c(x)=!c(T (x))�!c(T0)<0.
Correspondingly, the phase accumulation �'(x)= �!c(x)t inside
of the spot is smaller than in the surrounding cold film. Therefore,
the phase gradient @�'(x)/@x is positive for x > 0 and negative
for x<0. It means that a thermally induced supercurrent flows out
from the spot (mostly in x-direction), as is shown by the red arrows
in Fig. 2d:

JT =NcDx
@(�!ct)

@x
(3)

This outflow decreases the magnon BEC density Nc(x) in the spot,
|x|<R, with respect to that in the cold film, where Nc(x�R)=N 0

c .
Spatial deviations in the densityNc(x) of themagnon condensate

constitute the second reason for the variation of its phase @'/@x 6=0.
It results in an additional contribution to the supercurrent, given
by equation (1), which can be named a ‘dispersive’ current Jdis.
To estimate Jdis notice that the 1D Gross–Pitaevskii equation
has the self-similar solution C(x , t) = F(⇠), with ⇠ = x2/(Dxt),
where the function F(⇠) satisfies the ordinary di�erential equation
⇠dF/d⇠ = i(dF/d⇠ +2⇠d2F/d⇠ 2). It describes the well known
phenomenon of dispersive spreading of a wavepacket with the width
�x = p

Dxt permanently increasing in time. It is worth noticing
that exactly the same law is satisfied by the di�usion process with
the di�usion current Jdif =Dx(@Nc(x)/@x). Ignoring the di�erence
between the self-similar profiles in the dispersion and the di�usion
processes (it is well below the resolution of our experiment), we can
estimate the dispersive current Jdis by its di�usion counterpart:

Jdis(x)'�Dx
@Nc

@x
(4)

This current is directed to the lower N (x) region—that is, towards
the hot spot—as shown in Fig. 2d by blue arrows.

A consistent description of the evolution of a parametrically
driven magnon system towards BEC may be achieved in the
framework of the theory of weak wave turbulence43, which was
further developed in ref. 41 to describe the spin-wave turbulence
under parametric excitation. Themain tool of this theory is a kinetic
equation for the occupation numbers n(q) of waves (magnons in
our case) presented, for example, in ref. 9. Here we restrict ourselves
to the analysis of a crucially simplified version of the kinetic
equations—by rate equations for the total number of magnons
in particularly chosen parts of the q-space shown in Fig. 1. The
first part is the BEC with density Nc (orange dot in Fig. 1). The
second part is the magnon gas with density Nb at the bottom
of the magnon spectrum in close vicinity to the BEC (blue area
Rb surrounding the orange BEC point in Fig. 1). These parts are
directly coupled via four-magnon scattering processes (Rb !BEC)
and are simultaneously detected due to the finite resolution of the
frequency- and wavenumber-resolved BLS set-up. The third part is
given by the magnon gas areaRg aboveRb. In our simplified model,
which is schematically shown in Fig. 5, the parametrically injected
magnons of density Np (magenta dot in Fig. 1) first populate the
gas area Rg (Np !Rg), and afterwards move to the bottom part Rb
of the magnon spectrum due to four-magnon scattering processes
between these areas (Rg�Rb).
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Figure 5 | Theoretically calculated magnon dynamics in a thermal
gradient. Theoretical dependencies (coloured lines) of the observable
magnon densities (Nc +Nb) calculated according to equations (5)–(7) for
di�erent temperature-dependent shifts �!c(T) of the BEC frequency !c are
shown in comparison with the corresponding experimental data (grey
curves). The upper diagram demonstrates magnon transitions between the
q-space parts defined in Fig. 1 (yellow arrows), magnon relaxation (blue
arrows) to the phonon bath and a supercurrent outflow (red arrow) from
the locally heated magnon BEC described by equations (5)–(7). The inset
shows the calculated temporal behaviour of Nc, Nb and Ng for the case of
the strongest heating of the magnon BEC.

In the rate equations for the magnon numbers Ng, Nb and Nc
we have to account that the kinetic equations for the four-magnon
scattering processes conserve the total number of magnons and that
the leading term for themagnon flux from the j to the i sub-system is
proportional toN 3

j and, thus, can be written as AijN 3
j , with Aij being

dimensional (s�1) phenomenological constants.
Thus, the rate equations take the following form:

@Ng

@t
=�0gNg +0gNpe�00t �AgbN 3

g +AbgN 3
b (5)

@Nb

@t
=�0bNb +AgbN 3

g �AbgN 3
b � Abc(N 3

b �N 3
cr)2(Nb �Ncr) (6)

@Nc

@t
=�0cNc +Abc(N 3

b �N 3
cr)2(Nb �Ncr)�

@J
@x

(7)

Here 0g, 0b and 0c are relaxation frequencies of corresponding
magnons in the processes that do not conserve magnon numbers
(mainly caused by spin–orbit interaction). The second term on the
right-hand side of equation (5) represents the external magnon
source, and is proportional to the number of parametrically pumped
magnonsNp. The factor exp(�00t)models the processes ofmagnon
thermalization after the end of the pump pulse. The terms /Aij in
equations (5)–(7) describe the magnon fluxes between the chosen
spectral areas, leading finally to the population of the BEC state. The
fluxRb !BEC contains the Heaviside function2(Nb �Ncr), which
involves Ncr—a critical number of magnons at which the chemical
potentialµ of the magnon gas reaches !min. It is2(Nb �Ncr)=1 for
Nb �Ncr >0 and 0 otherwise. Therefore, forNb Ncr there is no flux
of magnons to the condensate. ForNb >Ncr this flux appears and an
excess of magnons Nb �Ncr populates the condensate.
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Thermal pumping in thin films

Bender, Duine, and YT, PRL (2012) and PRB (2014)

• Inject energy and spin from the hot electron side

• Extract energy from the cold electron side

• Supposing the magnons equilibrate internally 
sufficiently fast, the oversaturated thermal cloud 
precipitates at a critical thermal bias
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regime, in which the length scale of magnetization texture such as 
the domain-wall width is much larger than the scattering mean 
free path or Fermi wavelength, as appropriate for most transition 
metal ferromagnets. In spite of initial controversies, the importance 
of dissipation in the adiabatic regime51 is now generally appreci-
ated. In analogy to the Gilbert damping factor α, the dissipation 
under an applied current is governed by a material parameter 
βc that for itinerant magnetic materials is of the same order as α 
(ref. 51; for a review see ref. 52). In the presence of electron–hole 
asymmetry at the Fermi energy, the adiabatic thermal spin trans-
fer torque10 is associated with a dissipative βT correction53,54, which 
has been explicitly calculated for GaMnAs (ref. 55). Non-adiabatic 
corrections to the thermal spin-transfer torque in fast-pitch ballis-
tic domain walls have been calculated by first-principles56. Laser-
induced domain-wall pinning might give clues for heat current 
effects on domain-wall motion57.

Spin waves can move domain walls, leading to domain-wall 
motion in the opposite direction to the spin-wave propagation58,59. 
Recently, this topic has been addressed in the modern context of 
heat-current-induced domain-wall motion in magnetic insulators 
that induces motion to the hotter edge of the wire60–63.

Spin Seebeck effect. The spin Seebeck effect is the transverse elec-
tromotive force in a paramagnetic contact to a ferromagnet by a 
temperature bias, as illustrated in Fig. 3d and e for the two princi-
pal sample geometries. This effect is interpreted in terms of a spin 
current injected into the normal metal by the ferromagnet64 that is 
transformed into an electric voltage by the inverse spin Hall effect 

(ISHE)65–67 (Fig. 3c). The ISHE is caused by the bending of electron 
orbits of up and down spins into opposite directions normal to their 
group velocity, owing to the spin–orbit interaction. It generates a 
relatively large voltage for heavy metals such as Pt while being virtu-
ally absent for Cu, and it has the advantage of scaling linearly with 
the wire length (for details see Jungwirth et al. in this issue68).

The spin Seebeck effect was discovered first in permalloy64, and 
later in electrically insulating yttrium iron garnet (YIG)69, ferro-
magnetic semiconductors (GaMnAs)70 and Heusler alloys71, with 
very similar phenomenology. Its physics is completely different 
from the spin-dependent Seebeck effect discussed above, because 
the conduction electron contribution is negligible72 (see, however, 
ref. 73). This became obvious only after the observation of the spin 
Seebeck effect generated by an insulating ferromagnet69 (Fig. 3f,g). 
The spin current is the result of a thermal non-equilibrium at the 
interface between the ferromagnet and the normal conductor, as 
explained in the following in terms of an imbalance of the ther-
mally excited spin currents over the interface by spin pumping74  
and spin torques47.

Consider first a ferromagnet at thermal equilibrium with an 
attached normal metal contact (Fig. 4a). When the ferromagnet is 
thermally excited, by its time dependence the magnetization m(t) 
‘pumps’ a net spin current into the normal metal74

 Js (t) m(t) dm(t)
dt× = ħgr

4π
pump

 
 (3)

where gr is the real part of the (dimensionless) spin-mixing 
conductance of the FM|NM interface. On the other hand, 
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Electron/magnon-torque instabilities

Bender, Duine, and YT, PRL (2012) and PRB (2014)
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Spin-caloritronic nano-oscillator
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FIG. 1: YIG/Pt nanowire magneto-resistance and microwave signal generation. a Sketch of the YIG/Pt nanowire
STO illustrating the flow of spin Hall and spin Seebeck currents perpendicular to the YIG/Pt interface. b Magnetoresistance
of the YIG/Pt nanowire measured at low (Idc = 0.15mA) and high (Idc = 2.75mA) direct current bias for a magnetic field
applied in the sample plane at � = 90� to the wire axis. c Spin Seebeck voltage VSSE induced in the nanowire by a large
microwave current (microwave power Prf = 2 dBm) as a function of magnetic field. d Microwave power generated by the
nanowire at 3.2GHz as a function of magnetic field and direct current bias.

� = 70�. In contrast to conventional measurements of
the microwave power emitted by STO as a function of
frequency at fixed H [16], we measure the emitted power
at a fixed frequency (3.2GHz in Fig. 1d) as a function of
H. As discussed in the Supplementary Information, this
novel STO characterization method greatly improves the
signal-to-noise ratio in comparison to the conventional
method and allows us to measure low power microwave
signals generated by nanomagnetic devices.
In order to gauge the relative contributions of the spin

Hall and spin Seebeck currents to the excitation of the
auto-oscillatory dynamics, we make measurements of the
critical current for the onset of the auto-oscillations as a

function of the in-plane magnetic field direction �. In-
plane rotation of the YIG magnetization changes its di-
rection with respect to the polarization of spin Hall cur-
rent, which leads to a 1/ sin� dependence of the critical
current when the spin Hall current is acting alone [6]. In
contrast, the spin Seebeck current polarization is always
parallel to the direction of the YIG magnetization. Thus,
the critical current due to the spin Seebeck current cou-
pled to magnetic precession is expected to be only weakly
dependent on � as long as the auto-oscillation frequency
is fixed [25] as in our measurements.
Figure 2 shows the angular dependence of the critical

current measured for our YIG/Pt nanowire in the range
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� = 70�. In contrast to conventional measurements of
the microwave power emitted by STO as a function of
frequency at fixed H [16], we measure the emitted power
at a fixed frequency (3.2GHz in Fig. 1d) as a function of
H. As discussed in the Supplementary Information, this
novel STO characterization method greatly improves the
signal-to-noise ratio in comparison to the conventional
method and allows us to measure low power microwave
signals generated by nanomagnetic devices.
In order to gauge the relative contributions of the spin

Hall and spin Seebeck currents to the excitation of the
auto-oscillatory dynamics, we make measurements of the
critical current for the onset of the auto-oscillations as a

function of the in-plane magnetic field direction �. In-
plane rotation of the YIG magnetization changes its di-
rection with respect to the polarization of spin Hall cur-
rent, which leads to a 1/ sin� dependence of the critical
current when the spin Hall current is acting alone [6]. In
contrast, the spin Seebeck current polarization is always
parallel to the direction of the YIG magnetization. Thus,
the critical current due to the spin Seebeck current cou-
pled to magnetic precession is expected to be only weakly
dependent on � as long as the auto-oscillation frequency
is fixed [25] as in our measurements.
Figure 2 shows the angular dependence of the critical

current measured for our YIG/Pt nanowire in the range

Safranski, Barsukov, YT, Wu, Krivorotov et al., Nature Comm. (2017)



Detecting magnon pumping by NV-center relaxometry
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Fig. 1. Local control and measurement of the magnon chemical potential. (A) An NV spin 

locally probes the magnetic fields generated by magnons in a 20 nm-thick YIG film grown on a 

Gd3Ga5O12 (GGG) substrate. (B) Sketch of the magnon dispersion and the magnon density at zero 

chemical potential, which falls off as 1/Energy (1/E) as indicated by the fading colors. (C) Driving 

at the ferromagnetic resonance increases the magnon chemical potential. The NV probes the 

magnon density at the electron spin resonance frequencies ω±. (D) Photoluminescence image 

showing a diamond nanobeam containing individually addressable nitrogen-vacancy sensor spins 

positioned on top of the YIG film. A 600 nm-thick Au stripline (false-colored yellow) provides 

microwave control of the magnon chemical potential and the NV spin states. A 10 nm-thick Pt 

stripline (false-colored grey) provides spin injection through the spin Hall effect. (E). Scanning 

electron microscope image of representative diamond nanobeams.  ϭϰ�
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Control and local measurement of the
spin chemical potential in a
magnetic insulator
Chunhui Du,1* Toeno van der Sar,1* Tony X. Zhou,1,2* Pramey Upadhyaya,3

Francesco Casola,1,4 Huiliang Zhang,1,4 Mehmet C. Onbasli,5,6 Caroline A. Ross,5

Ronald L. Walsworth,1,4 Yaroslav Tserkovnyak,3 Amir Yacoby1,2†

The spin chemical potential characterizes the tendency of spins to diffuse. Probing this
quantity could provide insight into materials such as magnetic insulators and spin liquids and
aid optimization of spintronic devices. Here we introduce single-spin magnetometry as a
generic platform for nonperturbative, nanoscale characterization of spin chemical potentials.
We experimentally realize this platform using diamond nitrogen-vacancy centers and use
it to investigate magnons in a magnetic insulator, finding that the magnon chemical potential
can be controlled by driving the system’s ferromagnetic resonance.We introduce a symmetry-
based two-fluid theory describing the underlying magnon processes, measure the local
thermomagnonic torque, and illustrate the detection sensitivity using electrically controlled
spin injection. Our results pave the way for nanoscale control and imaging of spin transport in
mesoscopic systems.

C
ontrol and measurement of the chemical
potential of a spin system can be used to
explore phenomena ranging from quan-
tum phase transitions (1, 2) to Bose-Einstein
condensation (3, 4) and spin transport in

gases and solid-state systems (5–11). In recent
decades, a large scientific effort has focused
on harnessing spin transport for low-dissipation
information processing (7, 12–14). In contrast to
charge, spin is not a conserved quantity and
naturally decays on the nanoscale for a wide
range of materials, including typical metals
(15, 16), calling for a local detection technique.
Compared to the centuries-old techniques for
studying charge transport, methods for probing
spin chemical potentials have only been devel-
oped recently, with leading methods based on
the coupling between spin and charge transport
(6, 13, 14, 17) and inelastic light scattering (3, 18).
Here we introduce a fundamentally different
approach, which uses a single sensor spin to
measure the local magnetic field fluctuations
generated by a thermal spin bath. This approach

is nonperturbative and provides spatial access
to the spin chemical potential on a scale determined
by the distance between the sensor spin and the

system under study, opening the door to imaging
spin transport phenomena with resolutions down
to the few-nanometer scale.
Because spin chemical potential is inherently

related to spin fluctuations, it can be quantita-
tively determined by measuring the magnetic
fields generated by these fluctuations. We dem-
onstrate this principle using the excellent magnetic
field sensitivity of the S = 1 electronic spin
associated with the nitrogen-vacancy (NV) center
in diamond (19, 20). We measure the chemical
potential of magnons—the elementary spin excita-
tions of magnetic materials (12)—in a 20-nm-thick
film of the magnetic insulator yttrium-iron-garnet
(YIG) on a ~100-nm-length scale ( F1Fig. 1A). Our
measurements reveal that the magnon chemical
potential can be effectively controlled by exciting
the system’s ferromagnetic resonance (FMR)
(Fig. 1, B and C).
Locally probing the weak magnetic fields

generated by the fluctuations of a spin system
requires nanometer proximity of a magnetic
field sensor to the system. We ensure such prox-
imity by positioning diamond nanobeams (21)
that contain individually addressable NV centers
onto the YIG surface (Fig. 1, D and E). We use a
scanning confocal microscope to optically lo-
cate the NV centers and address their spin state
(22, 23). A photoluminescence image (Fig. 1D)
provides an overview of the system, showing an
NV center (NV1) in a nanobeam that is located
within a few micrometers from the gold and
platinum striplines used to excite magnons in
the YIG.

RESEARCH

SCIENCE sciencemag.org 00 MONTH 2017 • VOL 000 ISSUE 0000 1

1Department of Physics, Harvard University, 17 Oxford Street,
Cambridge, MA 02138, USA. 2John A. Paulson School of
Engineering and Applied Sciences, Harvard University,
Cambridge, MA 02138, USA. 3Department of Physics and
Astronomy, University of California, Los Angeles, 475 Portola
Plaza, Los Angeles, CA 90095, USA. 4Harvard-Smithsonian
Center for Astrophysics, 60 Garden Street, Cambridge, MA
02138, USA. 5Department of Materials Science and
Engineering, Massachusetts Institute of Technology, 77
Massachusetts Avenue, Cambridge, MA 02139, USA. 6Koç
University, Department of Electrical and Electronics
Engineering, Sarıyer, 34450 Istanbul, Turkey.
*These authors contributed equally to this work.
†Corresponding author. Email: yacoby@physics.harvard.edu

Fig. 1. Local control and measurement of the magnon chemical potential. (A) Sketch of an NV spin
locally probing the magnetic fields generated by magnons in a 20-nm-thick YIG film grown on a
Gd3Ga5O 12 (GGG) substrate. (B) Sketch of the magnon dispersion and the magnon density, which
falls off as 1/energy (1/E), as indicated by the fading colors, at zero chemical potential. (C) Driving at the
FMR increases the magnon chemical potential. The NV probes the magnon density at the NV ESR
frequencies wT. (D) Photoluminescence image showing a diamond nanobeam containing individually
addressable NV sensor spins positioned on top of the YIG film. A 600-nm-thick Au stripline (false-
colored yellow) provides MW control of the magnon chemical potential and the NV spin states. A
10-nm-thick Pt stripline (false-colored gray) provides spin injection through the spin Hall effect.
(E) Scanning electron microscope image of representative diamond nanobeams.
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Long-ranged magnetoresistance

Circulating current through two metal films in series (a) spins the order, 
reducing the overall dissipation

In the parallel configuration, the torques are balanced, and the magnet remains 
stationary, causing more net friction

⇢m = � #2

g"# + g↵/2
⇢m = 0

Takei and YT, PRL (2015)
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AC transresistance

While the DC spin supercurrent (and corresponding drag) can be quenched 
by an in-plane anisotropy, the AC transresistance is still fully operative on spin-
wave resonances:

3

the interfaces, providing the boundary conditions for the mag-
netic dynamics in the bulk. The electromotive forces in Eq. (3)
(which enter in the modified Ohm’s law) quantify the feed-
back applied by the magnet on the external electric circuit.
Together these ingredients constitute self-consistent magneto-
electric dynamics, which we systematically address below.

Nonlocal magnetoresistance.—Our metallic contacts are
integrated into an external electrical circuit such that in the
series configuration [see Fig. 1(a)] the two metals have cur-
rents running in the opposite directions, while in the parallel
configuration [see Fig. 1(b)] they run in the same direction.
For a time-independent E, the hydrodynamic variables take,
according to Eqs. (1), a steady-state form: '(x, t) = f (x) + ⌦t
and nz = const [3], where '̇ ⌘ ⌦ is the uniform global pre-
cession frequency of the magnetic texture [to be determined
self-consistently from Eqs. (1) and the boundary conditions
(see below)]. Matching the torques (2) with the spin currents
in the magnet near the two boundaries, we arrive at the fol-
lowing boundary conditions for f (x):

�A f 0(0) = ẑ · ⌧ 0l , �A f 0(L) = �ẑ · ⌧ 0r . (4)

For the series configuration, we have jl = �jr = jŷ. By
inserting the steady-state form for ' and nz into Eqs. (1) and
(4), the rotation frequency within linear response becomes

⌦ =
#

�"# + �↵/2
j , (5)

with �↵ ⌘ ↵sL. This result is analogous to that obtained in
Ref. [3], but now recast in terms of spin Hall phenomenol-
ogy. In linear response, "l,r = ±#⌦ŷ, so that the modified
Ohm’s law gains an additional magnetoresistive contribution
(⇢ + ⇢m) j = E, where we obtain |El| = |Er | ⌘ E under the as-
sumption of identical metals and symmetrical interfaces, with

⇢m = �
#2

�"# + �↵/2
. (6)

The spin superfluidity thus reduces the e↵ective resistivity
of the circuit, implying that magnetic dynamics reduces net
power dissipation, for a fixed current.

For the parallel configuration, jl = jlŷ and jr = jrŷ, and
the rotation frequency becomes, within linear response,

⌦ =
#

�"# + �↵/2
jl � jr

2
. (7)

Since the electrical circuit is parallel, El = Er. Solving for
the charge currents flowing in the metals, we obtain jl = jr =
E/⇢, so that the magnetic texture is static, ⌦ = 0, a result
consistent with the mirror symmetry about the x = L/2 plane.
The resistivity of the electric circuit is not modified in this
configuration. SSMR can be distinguished from the spin Hall
magnetoresistance (SMR) recently discussed in the context of
ferromagnet-metal interfaces [7–12]. SMR generates longi-
tudinal corrections to electrical resistivity of order ✓2�N/tN
(when tN > �N , the electron spin di↵usion length) for both
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FIG. 2. Dynamic transresistance for L = 100` as a function of ac
frequency !. Here, we set ↵ = 10�3 and �"#/s` = 10�3. The solid
line corresponds to the case without inplane anisotropy, while for the
dashed line we use /K = 4 ⇥ 10�4.

circuit configurations [7, 12], contrasting with SSMR, which
is nonzero only for the series configuration.

Coherent ac spin transport.—The ac regime can be ex-
plored by driving the metallic contacts by oscillating electric
fields, i.e., El,r(t) = E(0)

l,r e�i!t. In this section, we introduce
the in-plane [U(1)-breaking] magnetic anisotropy by adding a
free energy density term Fa = '2/2 (with  ⌧ K), which
augments Eq. (1) to

'̇ =
K
s

nz + ↵ṅz , ṅz =
A
s
'00 � ↵'̇ � 

s
' . (8)

In the steady state, within linear response, the relevant hydro-
dynamic variables should oscillate at the ac frequency, such
that '(x, t) = f (x)e�i!t and nz(x, t) = g(x)e�i!t. The functions
f and g can then be obtained using Eqs. (4) and (8). Through-
out this section, we set jl(t) = j(t)ŷ and jr = 0. Assuming
a large eccentricity of precession, so that the ratio of torque
coe�cients is |#/⌘| � |g/ f |, the electromotive force induced
in the detector (right) contact reads "r(t) = i#! f (L)e�i!t. We
then evaluate the transresistance as ⇢t = "r(t)/ j(t).

There are two notable lengths scales, which determine the
loss of spin transmission due to Gilbert damping. Previously,
it was shown that a spin current carried by the zero-frequency
mode (the superfluid component) decays algebraically as a
function of system size L, and that the role of Gilbert damp-
ing becomes negligible for L ⌧ L↵ ⌘ �"#/↵s [3]. For the
easy-plane ferromagnet, spin current carried by a coherent
finite-frequency spin wave should decay exponentially at dis-
tances larger than `↵ = v⌧↵�1 ⌘ `↵�1, where v =

p
AK/s

and ⌧�1 = K/s are the spin-wave velocity and easy-plane
anisotropy, respectively. Since it is reasonable to assume
�"#/s` ⌧ 1, we have L↵ ⌧ `↵. When L � `↵, all spin-
wave modes are strongly damped and the transresistance sig-
nal is exponentially small. We will therefore assume L ⌧ `↵.
In the ac regime, a series of resonance peaks appears in the
(modulus of the) transresistance as a function of frequency
(see Fig. 2). For zero in-plane anisotropy (i.e.,  = 0) and
a fixed L, these resonances occur at ! = n⇡v/L, with inte-
ger n, such that the spin-wave velocity can be extracted from
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FIG. 1. (color online) Schematics of the series (a) and parallel (b)
configurations, as detailed in the text.

peak (at ! = !0) gives a direct measure of the gap. Further-
more, measurements of peak heights and widths allow one to
extract the e↵ective spin Hall angle and spin-mixing conduc-
tance at the interfaces. We show that finite-frequency spin
waves can still transmit spin currents as e↵ectively as a su-
perfluid, the transmission decaying algebraically as a function
of sample length. Therefore, the ac transport studies should
not only serve as a simpler route to realizing nonequilbrium
coherent spin transport, but also as a useful way to charac-
terize the magnetic system and a meaningful precursor to the
ultimate realization of the dc superfluid spin transport.

General considerations.—Consider a magnetic insulator
sandwiched by two normal metals as sketched in Fig. 1. Our
focus is on magnets well below the magnetic ordering temper-
ature, which, in the long-wavelength limit, is characterized by
a slow continuum variable, the U(1) order parameter n(x, t),
encoding magnetic state in the (easy) xy plane. Specifically,
recall that for a ferromagnetic insulator, n corresponds to the
direction of the local spin density, and the U(1) easy plane
can generally be defined by the shape anisotropy [3]. For
an isotropic antiferromagnet, n is the direction of the local
Néel order, and the U(1) plane is defined to be normal to a
uniform external magnetic field [4]. For the axially symmet-
ric magnetic state, the spin density polarized along the z axis
is a hydrodynamic quantity that is approximately conserved.
(Its relaxation is in practice governed by spin-orbit impurities,
which microscopically break the symmetry.) For simplicity,
we take the normal metals and the interfaces to be identical
on the two sides. The metals, treated here as di↵usive films
of thickness tN lying parallel to the yz plane, possess strong
spin-orbit coupling with an e↵ective spin Hall angle ✓ at the
interfaces.

The left (l) and right (r) interfaces, located at x = 0 and
x = L, respectively, break translational symmetry along the x
direction, but full translational symmetry is assumed parallel
to the interface (yz) plane. The entire heterostructure can thus
be described using three coarse-grained hydrodynamic fields:

the U(1) phase '(x, t) and out-of-plane spin density sz(x, t) in
the magnet and the 2D charge current densities in the left and
right normal metals, jl(t) ⌘ ( jyl , jzl ) and jr(t) ⌘ ( jyr , jzr). For
concreteness, we hereafter focus on an easy-plane ferromag-
net [3]: n ⌘ s/s, in this case, being the direction of the local
spin density s ⇡ (s cos', s sin', sz), where s is the magnitude
of the equilibrium spin density associated with the magnetic
order. The formalism is su�ciently general that it can be read-
ily extended to other magnets supporting spin superfluidity;
it is straightforward to show, in particular, that the case of a
Heisenberg antiferromagnet is closely analogous [4]. The dy-
namics of an isolated easy-plane ferromagnet is given by [3]

'̇ =
K
s

nz + ↵ṅz , ṅz =
A
s
'00 � ↵'̇ , (1)

where A and K parameterize the exchange sti↵ness and the
easy-plane magnetic anisotropy, respectively, and ↵ is the
Gilbert damping parameter. The primes (dots) denote di↵er-
entiation with respect to x (time). Recognizing the second
equation in Eq. (1) a the continuity equation for sz ⌘ snz, the
z-polarized spin current (hereafter referred to as simply spin
current) reads js(x, t) = �A'0(x, t).

In the presence of an external electric field E, a uniform
current-carrying state of an isolated metal is governed by
Ohm’s law ⇢j(t) = E(t), where ⇢ is its (2D) resistivity. In
the presence of spin-orbit coupling at metal|magnet interfaces,
current in the metal can induce a torque ⌧ on the adjacent
ferromagnetic moments, and, inversely, the ferromagnetic dy-
namics would induce an electromotive force in the adjacent
metal. According to spin Hall phenomenology [7], the torques
at the left and right interfaces can be written as

⌧l,r = ±(⌘ + #nl,r⇥)(x̂ ⇥ jl,r) ⇥ nl,r , (2)

the upper (lower) sign corresponding to the left (right) in-
terface, and constants ⌘ and # quantifying the field-like and
damping-like torques, respectively. Here, nl(t) ⌘ n(x = 0, t)
and nr(t) ⌘ n(x = L, t). The coe�cient for the damping-like
torque can be related to the e↵ective interfacial spin Hall an-
gle ✓ via # ⌘ ~ tan ✓/2etN [7]. By the Onsager reciprocity,
the torque in Eq. (2) gives rise to an electromotive force "l,r
in the adjacent metals, thereby modifying the Ohm’s law to
⇢jl,r = El,r + "l,r, where

"l,r = ±[(⌘ + #nl,r⇥)ṅl,r] ⇥ x̂ . (3)

In the following, we will retain only the y components of these
electromotive forces, as the z components are counteracted by
an electrostatic buildup along the z axis (supposing the mag-
netic dynamics are slow compared to the relevant RC time of
the metallic terminals).

In addition, a physical contact to the adjacent metals gives
rise to an interfacial contribution to Gilbert damping for the
ferromagnet. This damping modifies the torques to ⌧l,r !
⌧ 0l,r ⌘ ⌧l,r � �"#nl,r ⇥ ṅl,r, where �"# ⌘ ~g"#/4⇡ and g"# is the
e↵ective (interfacial) spin-mixing conductance. The torques
⌧ 0l,r reflect the spin currents entering the ferromagnet at each of

derivative of the amplitude of the microwave voltage across the
sample, (dVω/dB)Bmod, as the magnetic field is swept along differ-
ent in-plane directions. At ferromagnetic resonance, a resonance
also appears in Vω , which indicates that a microwave electrical
signal is generated within the sample by the precessing
magnetization.

Magnonic charge pumping is proportional to the rate of change
of magnetization, so the induced microwave amplitude should be
linearly dependent on the precessional amplitude. To check this
characteristic we measured voltage Vω as a function of the preces-
sional amplitude A for a fixed direction of the magnetic field. The
amplitude was controlled by the value of the applied microwave
current. Figure 2d clearly demonstrates a linear dependence on
the amplitude. This excludes the possibility that Vω originates
from mixing between the microwave current and the modulated
resistance during precession, because such higher-order terms

depend nonlinearly on the amplitude (see Supplementary
Information).

Next, we demonstrate that the measured signal is reciprocal to the
SOT. To this end, we modelled charge pumping using equations (3)
and (4) (see Supplementary Section 1E for further details).
Using the Onsager reciprocity relations, the measured SOT fields
hso
y and hso

x determine the values of ΛR
(r) and ΛD

(r), respectively,
while the measured hso

z component determines ΛR
(d) and ΛD

(d). The
expression for ∂m/∂t is found from the solution of the Landau–
Lifshitz–Gilbert (LLG) equation. The resulting voltage signal
across the bar is given by the total current pumped along the bar
direction multiplied by the resistance. Figure 3a,b presents the mag-
nitude of the symmetric and antisymmetric components of the inte-
grated resonances with respect to the field direction. The theoretical
curves are represented by continuous lines and show agreement
with the experimental data in both symmetry and amplitude. This
verifies that the measured voltage signal satisfies its reciprocal
relationship to the SOT. The different symmetries found for the
[100] and [010] bar directions further confirm the crystal, and
therefore SOC-related origin of the effect, and exclude the Oersted
field and artefacts in the measuring set-up as possible origins.
Also, a variation of the impedance matching following the a.c.
change in magnetic susceptibility during precession cannot justify
the resonance in Vω , as in this case the symmetry would be domi-
nated by the symmetry of the anisotropic magneto-resistance (see
Supplementary Information). The slight discrepancy between the
experimental and theoretical curves arises from higher-order
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Figure 2 | Charge-pumping experiment. a, Schematics of the measuring set-up. A 7 GHz microwave signal (red arrow) is launched towards a (Ga,Mn)As
bar via an impedance-matching circuit. The microwave current passed through the bar excites magnetization precession via SOT when an in-plane magnetic
field B is swept through the resonance. The orientation of the field is defined with respect to the bar direction, as shown on the Cartesian plot. The
microwave voltage generated in (Ga,Mn)As by magnonic charge pumping (blue arrow) is transmitted through the same impedance matcher to the
microwave circuitry, where the amplitude of the signal is amplified and detected. A low-frequency lock-in field-modulation technique is used, with a 3.3 mT
oscillating magnetic field Bmod applied at 45° from the bar direction. A directional coupler separates the incoming signal used to excite magnetic precession
from the outgoing signal generated both by magnonic charge pumping and the microwave signal reflected from the circuit. The impedance-matching circuit
also includes a bias tee that allows the rectified voltage along the bar to be measured. b, Derivative of the rectified voltage along the a [100]-oriented bar,
(dVdc/dB)Bmod, measured by a field-modulation lock-in technique as the magnetic field is swept along different in-plane directions. c, Derivative of the
microwave voltage along a [100]-oriented bar, (dVω/dB)Bmod, induced by magnonic charge pumping for the same field directions as in b. d, Amplitude of
microwave voltage Vω as a function of precessional amplitude A. The value of A (in mrad) is obtained from the amplitude of the rectified voltage |Vdc| = |I|
RAMRA/2, where I is the microwave current passing through the bar and RAMR is the anisotropic magneto-resistance coefficient.

Table 1 | Coefficients of SOT measured for samples with
current along the [100] and [010] directions, normalized to
a current density of 1 × 106 A cm−2.

μ0hso
x μ0hso

y μ0hso
z sinθ term μ0hso

z cosθ term
[100] −6.1 −8.7 8.5 −13.6
[010] 5.2 −5.5 −5.5 −6.9

All values are in μT. The first-order (sinθ and cosθ) harmonic components of hso
z are extracted from

fits to the experimental data.
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Spin-mediated transresistance of Strontium Ruthenate
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Cooper-Pair Spin Current in a Strontium Ruthenate Heterostructure

Suk Bum Chung,1, 2, 3, ⇤ Se Kwon Kim,4, † Ki Hoon Lee,2, 3 and Yaroslav Tserkovnyak4
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It has been recognized that the condensation of spin-triplet Cooper pairs requires not only the
broken gauge symmetry but also the spin ordering as well. One consequence of this is the possibility
of the Cooper-pair spin current analogous to the magnon spin current in magnetic insulators, the
analogy also extending to the existence of the Gilbert damping of the collective spin-triplet dynamics.
The recently fabricated heterostructure of the thin film of the itinerant ferromagnet SrRuO3 on
the bulk Sr2RuO4, the best-known candidate material for the spin-triplet superconductor, o↵ers a
promising platform for generating such spin current. We will show how such heterostructure allows
us to not only realize the long-range spin valve but also electrically drive the collective spin mode
of the spin-triplet order parameter. Our proposal represents both a new realization of the spin
superfluidity and a transport signature of the spin-triplet superconductivity.

x̂

ŷ φ

Jzsp

(a) d̂

φ

Jzsp

n̂
J ↑↑

J ↓↓

(b) (c)

FIG. 1. Schematic illustration of the analogy between the
magnetic insulator and the spin-triplet superconductor. (a)
The planar spiraling of the magnetic order parameter n̂ leads
to spin current. (b) The same phenomena occurs for that of
the spin component d̂ of the spin-triplet superconductor order
parameter, (c) the dual picture of which is the counterflow of
the spin up-up and down-down pairs.

Introduction: Harnessing spin rather than charge in
electronic devices has been a major topic in solid state
physics, which not only has been utilized for various
memory devices but is also expected to play a key role
in processing quantum information [1]. In order for vari-
ous spin devices to function robustly, the long-range spin
transport needs to be achieved. Metallic wires, however,
typically do not transport spins beyond the spin-di↵usion
length due to the single electron spin relaxation [2].

In recent years, it has been shown that the exponential
damping can be circumvented in the spin transport via
collective magnetic excitations. For example, easy-plane
(ferro- and antiferro-)magnetic insulators, as the U(1)
order parameter can characterize them, may be consid-
ered analogous to the conventional superfluid [3–5]. As
Fig. 1 (a) illustrates schematically, the planar spiraling
of the magnetic order parameter in such magnetic insu-
lators can give rise to the spin supercurrent, just as the
phase gradient of the conventional superfluid gives rise
to the mass supercurrent; in this sense these magnetic
insulators can be regarded as spin superfluids [6].

Interestingly, there exists a class of superfluids and su-
perconductors which can support both mass and spin su-
percurrent. Such superfluids and superconductors would

need to involve both spin ordering and gauge symme-
try breaking. This occurs in the condensate of both
the spin-1 bosons [7] and the spin-triplet Cooper pairs
of 3He atoms [8, 9] or electrons [10, 11]; in the latter
case, the dissipationless spin current would be carried by
the Cooper pairs. While the vortices with spin supercur-
rent circulation have been observed in all theses systems
[12, 13], the bulk spin supercurrent has not been detected
in the superconductor.

In this Letter, we will show how this existence of spin
superfluidity in the spin-triplet superconductor allows
not only the long-range spin current but also electrically
exciting the spin wave in the bulk. For realizing these
phenomena, we propose a two-terminal setup with volt-
age bias between ferromagnetic metal leads in contact
with the spin-triplet superconductor. While the static
order-parameter case [14] can be essentially reduced to
the Blonder-Tinkham-Klapwijk type formalism [15] for
the interfacial transport, here we need to complement
it with the appropriate equations of motion for the col-
lective spin dynamics in the superconductor. Recently,
a thin film of the itinerant ferromagnet SrRuO3 has
been epitaxially deposited on the bulk Sr2RuO4, the best
known candidate material for the spin-triplet supercon-
ductor [16], yielding, due to their structural compatibil-
ity, an atomically smooth and highly conductive interface
[17] with a strong Andreev conductance [18]. This makes
Sr2RuO4 and SrRuO3 the most suitable candidate mate-
rials for the bulk and the leads, respectively, of our setup
[19]. For the remainder of this paper, we will first show
how the simplest e↵ective spin Hamiltonian for the spin-
triplet superconductor and the resulting spin dynamics
are analogous to those of the antiferromagnetic insula-
tor; then, we will discuss the magnetoresistance for the
DC bias voltage and the coupling between the AC bias
voltage and the spin wave.

General considerations: We first point out the close
analogy between the spin order parameter of the antifer-
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FIG. 2. The setup for the DC voltage bias for the spin valve
(upper) and the AC bias voltage for the spin-wave detection
(lower), where x̂, ŷ, ẑ coincide with the crystalline a, b, c-axes,
respectively. For the upper figure, the lead magnetization is
along the c-axis, with the applied magnetic field Ha � 200 G
along the c-axis giving us the easy plane d-vector configura-
tion on the ab-plane, hence the spiraling in the ab-plane. For
the lower figure, the lead magnetization is along the a-axis; as
the easy-axis d-vector anisotropy favors the alignment along
the c-axis, in the absence of an applied filed, the AC bias volt-
age gives us the low-frequency standing wave of the d-vector
oscillating around the c-axis in the bc-plane.

�/↵nh̄�
2
e from Eq. (4) through deriving @tSz +r ·Jsp

z =
�↵nh̄�

2
eSz/�, where Jsp

z = �Ar�z. It is also impor-
tant to note here that the magnitude of the d-vector
anisotropy K has no e↵ect on the in-plane d-vector pre-
cession, which allows us to ignore the fact that our ap-
plied field gives us the Abrisokov vortices in the spin-
triplet superconductor and hence a non-uniform K.

We consider the spin-up current and the spin-down
current to be independent at the interface:

I
�
L,R = ±g

��
L,R(VL,R � h̄@t'�/2e), (5)

where g
��
L,R’s are the conductances for the �-spin, IL,R

the �-spin current into (out of) the left (right) lead, and
VL,R the bias voltage of the left (right) lead; this is due
to the spin-triplet superconductor having the equal spin
pairing axis collinear with the lead magnetization and
taking g

"# = 0. From Eq. (1), we see that the overall
(or charge) phase of the superconductor is given by the
average of the spin up-up and the spin down-down con-
densate phase, �c =

P
� '�/2, while �z of Eq. (4) is given

by �z =
P

� �'�/2. We are interested here in the steady-
state solution, i.e., @t'� = const, for which we define the
constant precession rate of !c ⌘

P
� @t'�/2 for the over-

all phase �c and ⌦s ⌘
P

� �@t'�/2 for �z. For such
solution, the following continuity conditions can be ap-

plied to the charge and spin supercurrents, respectively:
X

�

(I�L � I
�
R)=0,

X

�

�(I�L � I
�
R)=2↵ne⌦sSL (6)

(S is the bulk cross section area and L the spacing be-
tween the two leads), the former from the charge con-
servation and the latter from applying the steady-state
condition on Eq. (4), along with the spin current loss
/ ↵L in the superconductior.

The current through the Sr2RuO4 bulk can be ob-
tained from the interface boundary conditions and the
continuity conditions above, with the larger magni-
tude for the parallel magnetization than the antipar-
allel magnetization. We define the total conductance
gL,R ⌘

P
� g

��
L,R and the conductance polarization

pL,R ⌘
P

� �g
��
L,R/gL,R, which defines the relevant trans-

port spin polarization. Applying the continuity condi-
tions Eq. (6) on the interface boundary conditions Eq. (5)
and setting VL = �VR = V/2, we obtain
✓

gL+gR pLgL+pRgR

pLgL+pRgR gL+gR+g↵

◆✓
!c

⌦s

◆
=

eV

h̄

✓
gL�gR

pLgL�pRgR

◆
,

(7)

where g↵ ⌘ 4↵ne2SL
h̄ . We can now obtain the dependence

of the charge current on the conductance polarization:

I
c=

X

�

I
�=I0


1� gLgR(pL�pR)2

(gL+gR)(gL+gR+g↵)� (pLgL+pRgR)2

�
,

(8)
where I0 ⌘ gLgRV/(gL + gR). Note that I

c is max-
imized at pL = pR, when the steady-state angle �z re-
mains static. Di↵erent spin polarizations at the two ends,
on the other hand, would trigger spin dynamics and re-
sult in a nonzero dissipation rate of R = 1

2↵nh̄⌦
2
s =

R0(1 � I
c
/I0)2/(pL � pR)2 per volume of the supercon-

ducting bulk, where R0 = 8↵n(eV )2/h̄. Given that pL,R

change sign on the magnetization reversal, the above re-
sults e↵ectively give us the spin-valve magnetoresistance
of our heterostructure, i.e., a larger conductance for the
parallel magnetizations than for the antiparallel. Any
e↵ect that the spin-triplet pairing may have on the mag-
netization, hence the conductance polarization, can be
ignored when the Curie temperature of SrRuO3 (⇠ 160K)
[30] is two orders of magnitude higher than the supercon-
ducting critical temperature (⇠ 1.5K) Sr2RuO4.
We emphasize that the above magnetoresistance re-

sult is obtain solely for the current carried by Cooper
pairs. At a finite-temperature, quasiparticle contribu-
tion would generally result in an exponentially-decaying
magnetoresistance, negligible for the lead spacing be-
yond the spin-di↵usion length. By contrast, the cur-
rent of Eq. (8), which is carried by the Cooper pairs,
gives us the ⇠ 1/L behavior for the large spacing limit.
Therefore, any magnetoresistance beyond the quasipar-
ticle spin-di↵usion length should arise only below the su-
perconducting transition at Tc, upon the emergence of
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FIG. 3. Charge current versus frequency plotted for g̃ = 0.5,
L̃ = 2, �/!0 = 0.1 and Ã = 0.2, with the orange curve
representing pL = pR = p and the blue pL = �pR = p. Note
that p = 0.8 for the top plot and p = 0.2 for the bottom plot.

a Cooper-pair condensate. For our Sr2RuO4 / SrRuO3

heterostructure, detection of magnetoresistance in the su-
perconducting state for the lead spacing larger than the
Sr2RuO4 spin-di↵usion length can be taken as a trans-
port evidence for the spin-triplet superconductivity. The
value of the spin-di↵usion length itself can be extracted
by measuring the exponential decay of the (normal) mag-
netoresistance, both above and below the transition.

Electrically driven spin collective mode: For the case of
the easy-axis anisotropy of the d-vector, hence K < 0 in
Eq. (2),the spin collective excitation of the Cooper pairs
[8, 9, 31, 32] will modify the supercurrent transport under
the AC bias voltage. We shall still continue to consider
the case where Eq. (5) would be valid, i.e., the equal spin
pairing axis of the spin-triplet superconductor collinear
to the lead magnetizations. One way to satisfy this con-
dition would be to have the lead magnetizations collinear
to the a-axis, with no applied magnetic field; that would
leave the a-axis as the equal spin pairing axis, with the
d-vector moving on the the bc-plane. The equations of
motion, corresponding to spin injection polarized along
the x-direction, are then modified to

@t�x=
�
2
e

�
Sx, @tSx=Ar2

�x�!2
0
�

�2
e

cos�xsin�x�↵h̄@t�x,

(9)
where �x is conjugate to Sx and !

2
0 ⌘ |K|�2

e/� is
the spin-wave energy gap. For the AC voltage bias
V = V0 exp(�i!t), the steady-state solution for the

spin phase �x(x, t) = f(x) exp(�i!t) and the charge
phase �c(x, t) = g(x) exp(�i!t) behave di↵erently, fo-
cusing on the frequencies far below the plasma fre-
quency. Hence the spin equations of motion Eq. (9)
gives us f(x) = C+ coshx + C� sinhx, where v

2

2 =

!
2 � !

2
0 � i!�, with v ⌘ �e

p
A/� (the d̂-vector sti↵-

ness A defined in Eq. (2)) being the spin-wave veloc-
ity and � ⌘ ↵nh̄�

2
e/� the damping rate. By contrast,

the charge current J
c(x, t) = �⇢@x�c, where ⇢ is the

�c sti↵ness, should be uniform, which means we can set
�c(x, t) = const. � x(Jc

0/⇢) exp(�i!t), with a constant
J
c
0 . By imposing consistency between the current ob-

tained from the boundary conditions of Eq. (5) and the
dynamics of Eq. (9), we can solve for Jc

0 and C±; Fig. 3
shows the numerical results for Ic = J

c
0S for the case of

both pL = pR and pL = �pR.
Our numerical results show that magnetoresistance be-

comes significant at ! >⇠ !0, where the collective spin
mode of the Cooper pairs is activated. For simplicity
we have set gL = gR = g and used the dimensionless
parameters g̃ ⌘ gh̄v/2eA, L̃ ⌘ !0L/2v, and Ã = A/⇢.
For ! < !0, in addition to barely noticeable magnetore-
sistance, the charge current amplitude does not oscillate
with frequency; it remains close to the DC value I0, which
contrasts with the complete transport suppression ob-
tained for the magnetic insulator [3]. In contrast, for
! > !0, we see an oscillation with the !/!0 period of
about ⇡/L̃, where the current amplitude maxima for the
antiparallel lead magnetization occur at the current am-
plitude minima for the parallel lead magnetization and
vice versa. As in the ferromagnetic insulator [3], we ex-
pect that for L̃ ⌧ 1 (while L is still larger than the quasi-
particle spin-di↵usion length), the magnetoresistance of
Eq. (8) is recovered for the static bias, i.e., ! ! 0.

We point out that the detection of the oscillation
shown in Fig. 3 would determine the yet-unknown energy
parameters for the spin-triplet pairing of Sr2RuO4. From
the e↵ective Hamiltonian of Eq. (2), if we had known
accurately the field Hc along the c-axis that would ex-
actly restore the d-vector isotropy, the gap frequency !0

should be just the electron Larmor frequency of this field
from the spin equations of motion of Eq. (9). However,
we know no more than the upper bound Hc < 200 G,
hence only !0 < �e ⇥ 200 G = 3.5 GHz, while the AC
bias experiment, as shown in in Fig. 3, would allow us to
definitely identify the spin collective mode gap.

Conclusion and discussion: We have studied the DC
and AC current transport between the itinerant ferro-
magnetic lead with collinear magnetization through the
spin-triplet superconductor. We showed here that mag-
netoresistance can arise for both cases due to the Cooper-
pair spin transport. For the DC bias, the persistence
of magnetoresistance for the lead spacing larger than
the quasiparticle spin-di↵usion length can be taken as
a transport evidence for the spin-triplet pairing. For
the AC bias, the activation of magnetoresistance and
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FIG. 2. The setup for the DC voltage bias for the spin valve
(upper) and the AC bias voltage for the spin-wave detection
(lower), where x̂, ŷ, ẑ coincide with the crystalline a, b, c-axes,
respectively. For the upper figure, the lead magnetization is
along the c-axis, with the applied magnetic field Ha � 200 G
along the c-axis giving us the easy plane d-vector configura-
tion on the ab-plane, hence the spiraling in the ab-plane. For
the lower figure, the lead magnetization is along the a-axis; as
the easy-axis d-vector anisotropy favors the alignment along
the c-axis, in the absence of an applied filed, the AC bias volt-
age gives us the low-frequency standing wave of the d-vector
oscillating around the c-axis in the bc-plane.

�/↵nh̄�
2
e from Eq. (4) through deriving @tSz +r ·Jsp

z =
�↵nh̄�

2
eSz/�, where Jsp

z = �Ar�z. It is also impor-
tant to note here that the magnitude of the d-vector
anisotropy K has no e↵ect on the in-plane d-vector pre-
cession, which allows us to ignore the fact that our ap-
plied field gives us the Abrisokov vortices in the spin-
triplet superconductor and hence a non-uniform K.

We consider the spin-up current and the spin-down
current to be independent at the interface:

I
�
L,R = ±g

��
L,R(VL,R � h̄@t'�/2e), (5)

where g
��
L,R’s are the conductances for the �-spin, IL,R

the �-spin current into (out of) the left (right) lead, and
VL,R the bias voltage of the left (right) lead; this is due
to the spin-triplet superconductor having the equal spin
pairing axis collinear with the lead magnetization and
taking g

"# = 0. From Eq. (1), we see that the overall
(or charge) phase of the superconductor is given by the
average of the spin up-up and the spin down-down con-
densate phase, �c =

P
� '�/2, while �z of Eq. (4) is given

by �z =
P

� �'�/2. We are interested here in the steady-
state solution, i.e., @t'� = const, for which we define the
constant precession rate of !c ⌘

P
� @t'�/2 for the over-

all phase �c and ⌦s ⌘
P

� �@t'�/2 for �z. For such
solution, the following continuity conditions can be ap-

plied to the charge and spin supercurrents, respectively:
X

�

(I�L � I
�
R)=0,

X

�

�(I�L � I
�
R)=2↵ne⌦sSL (6)

(S is the bulk cross section area and L the spacing be-
tween the two leads), the former from the charge con-
servation and the latter from applying the steady-state
condition on Eq. (4), along with the spin current loss
/ ↵L in the superconductior.

The current through the Sr2RuO4 bulk can be ob-
tained from the interface boundary conditions and the
continuity conditions above, with the larger magni-
tude for the parallel magnetization than the antipar-
allel magnetization. We define the total conductance
gL,R ⌘

P
� g

��
L,R and the conductance polarization

pL,R ⌘
P

� �g
��
L,R/gL,R, which defines the relevant trans-

port spin polarization. Applying the continuity condi-
tions Eq. (6) on the interface boundary conditions Eq. (5)
and setting VL = �VR = V/2, we obtain
✓

gL+gR pLgL+pRgR

pLgL+pRgR gL+gR+g↵

◆✓
!c

⌦s

◆
=

eV

h̄

✓
gL�gR

pLgL�pRgR

◆
,

(7)

where g↵ ⌘ 4↵ne2SL
h̄ . We can now obtain the dependence

of the charge current on the conductance polarization:

I
c=

X

�

I
�=I0


1� gLgR(pL�pR)2

(gL+gR)(gL+gR+g↵)� (pLgL+pRgR)2

�
,

(8)
where I0 ⌘ gLgRV/(gL + gR). Note that I

c is max-
imized at pL = pR, when the steady-state angle �z re-
mains static. Di↵erent spin polarizations at the two ends,
on the other hand, would trigger spin dynamics and re-
sult in a nonzero dissipation rate of R = 1

2↵nh̄⌦
2
s =

R0(1 � I
c
/I0)2/(pL � pR)2 per volume of the supercon-

ducting bulk, where R0 = 8↵n(eV )2/h̄. Given that pL,R

change sign on the magnetization reversal, the above re-
sults e↵ectively give us the spin-valve magnetoresistance
of our heterostructure, i.e., a larger conductance for the
parallel magnetizations than for the antiparallel. Any
e↵ect that the spin-triplet pairing may have on the mag-
netization, hence the conductance polarization, can be
ignored when the Curie temperature of SrRuO3 (⇠ 160K)
[30] is two orders of magnitude higher than the supercon-
ducting critical temperature (⇠ 1.5K) Sr2RuO4.
We emphasize that the above magnetoresistance re-

sult is obtain solely for the current carried by Cooper
pairs. At a finite-temperature, quasiparticle contribu-
tion would generally result in an exponentially-decaying
magnetoresistance, negligible for the lead spacing be-
yond the spin-di↵usion length. By contrast, the cur-
rent of Eq. (8), which is carried by the Cooper pairs,
gives us the ⇠ 1/L behavior for the large spacing limit.
Therefore, any magnetoresistance beyond the quasipar-
ticle spin-di↵usion length should arise only below the su-
perconducting transition at Tc, upon the emergence of



“SU(2) superfluidity” in spin glasses

winding dynamics in the plane perpendicular to spin injection
YT and Ochoa, PRB (2017); Ochoa, Zarzuela, and YT, arXiv (2018)
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FIG. 2: Two-terminal geometry for the generation and detection of coherent spin transport in amorphous magnets. The electric
current in the detector induces a spin accumulation µ (green arrows) via the spin Hall e↵ect. The spin-transfer torque triggers
the dynamics of the spin texture in the CGS state (red arrows), which take the form of a uniform precession of the order
parameter in the steady state. The latter is depicted as a rotating triad of vectors, which represents the internal spin frame
of the texture adapted to the instantaneous state of the magnet. The direction of the z axis (black arrow) is fixed by (and
collinear with) the spin accumulation. The spin dynamics pumps angular momentum into the metal, which is detected as a
voltage in the second terminal via the inverse spin-Hall e↵ect. Two possible set-ups are considered: (a) lateral terminals and
(b) top terminals. They di↵er in the sign of the drag signal (negative and positive, respectively), since the current flows in
opposite/parallel direction to the injected current, respectively. In the former case (a), there is a nonlocal correction to the
e↵ective resistivity of the metals when the external circuit is closed in series. In case (b), the magnetoresistance arises when
the circuit is closed in parallel.

locity; here L̂ denotes the vector of SO(3) generators,
[L̂↵]�� = �i✏↵�� , with the usual convention for the Levi-
Civita symbol. For consistency we require m ⌧ s ⌘
~S/ad, where S is the length of the spin operators in
Eq. (1). The remaining terms represent the free-energy
cost of smooth deviations from the ground state. Inte-
grating out the slave variable m in Eq. (2) generates the
Lagrangian of a O(4) nonlinear �-model, which describes
also the macroscopic dynamics of multi-lattice antiferro-
magnets in frustrated lattices [31–33]. The model yields
three independent branches of spin waves with sound ve-
locity c =

p
A/� [29, 30].

Dissipation can be introduced by means of a Rayleigh
function R: In the spirit of Gilbert damping [34], we cast
the power density dissipated in the bulk of the magnet
as a quadratic form in !, Pbulk = 2Rbulk = ↵s!2. The
dimensionless parameter ↵ can be assumed to be close
to the Gilbert damping constant in the parent crystallo-
graphic material. We also consider spin-transfer torques
and enhanced dissipation at the interface with a normal
metal. The interfacial dissipation rate per unit of area
can be generically written as P̄int = !T

ĝ!, where ĝ is a
symmetric 3⇥3 matrix parametrizing the heat flow from
the magnet into the metal [35]. This matrix can be di-
agonalized to give three non-negative damping param-
eters associated with the rotations along the principal
axes of the interface, which defines a natural laboratory
frame to study the spin dynamics. In the case of (anti-

)ferromagnets, at least one of them is guaranteed to be
zero since rotations along the collinear order leave the
state of the magnet invariant, and therefore there is no
heat pumping associated with it. In the CSG state, how-
ever, the three parameters are di↵erent from zero in gen-
eral, reflecting that the non-collinear texture breaks the
full SO(3) symmetry of macroscopic spin rotations. The
eigenvalues of the kernel ĝ generalize the concept of spin-
mixing conductance and, like in the case of collinear mag-
nets, they admit a microscopic expression in terms of the
reflection coe�cients of the interface [35]. In the presence
of a nonequilibrium spin accumulation µ, the energy flow
across the interface is modified by the work exerted by
itinerant electrons on the magnetic system: We have to
substitute ! by ! � µ/~ in the expression for P̄int, so
when ~! = µ the system is in a state of mutual dynamic
equilibrium [36]. In the limit of exchange-dominated in-
teractions we assume isotropy in spin space (as in Eq. 2),
ĝ = g1̂, and hence the interfacial Rayleigh function for
the CSG state becomes

R̄int =
~g
8⇡

⇣
! � µ

~

⌘2

. (3)

The Euler-Lagrange equations read

! = �
�1 m, (4)

ṁ�A~r · ~⌦+ ↵s! =
g

4⇡
(µ� ~!) � (x) . (5)

/ µ
/ r'

/ @t'

2

FIG. 1: Possible spin textures in amorphous magnets be-
low the freezing temperature Tf . a) When �dw < Ra, the
spins (red arrows) remain pinned to the anisotropy axes
(dashed lines) defined by the local atomic arrangement. Col-
lective spin rotations cost energy. b) In the opposite regime,
�dw > Ra, exchange interactions stabilize a smooth spin
texture on the scale of the grain size, forming a coherent
spin glass (CSG). Collective spin rotations correspond to soft
modes, parametrized by SO(3) matrices. At the bottom, we
show the hierarchy of length scales in the CSG state.

Fig. 1(a). These textures received the name of spero-
magnet [21]. In the opposite limit, �dw > Ra, the spin
texture is smooth on the scale of the correlation length
Rc ⇠ Ra (�dw/Ra)4/(4�d)

> Ra (here d is the dimen-
sionality of the system). This texture is named corre-
lated or coherent spin glass (CSG) [22]. As depicted in
Fig. 1(b), a uniform, collective rotation of the CSG tex-
ture connects physically distinguishable states with ap-
proximately the same energy. On the contrary, rotations
of the speromagnet always cost energy.

We are thus interested in the CSG regime generically
appearing at intermediate temperatures below Tf , for
which the magnetic medium is expected to respond elas-
tically to external perturbations [23, 24]. The spin cur-
rent can be understood as the coherent response to a
nonuniform rotation triggered by spin accumulations at
the boundaries. We consider the device geometry usu-
ally utilized in nonlocal transport measurements [15, 25].
As depicted in Fig. 2, we focus on two specific configu-
rations defined by whether the heavy-metal contacts are
deposited on the lateral sides of the magnet [panel (a)]

or on top of it [panel (b)]. We find that for open geome-
tries the precession of the spin texture manifests itself
as a drag signal decaying algebraically with the length
of the film. This is a characteristic signature of coher-
ent spin transport, in contrast to the exponential de-
cay of (incoherent) magnon currents [25]. Our estimates
for the nonlocal voltage signals in Pt|(amorphous)YIG
heterostructures are compatible with those measured in
the experiments of Ref. 15 after the subtraction of the
heat-induced contribution. In close geometries (inset),
the coherent spin dynamics induces a nonlocal correc-
tion to the resistivity of Pt contacts that depends on
the configuration of the external circuit. The resultant
magnetoresistance is about 10% of the Pt resistivity at
room temperature. Furthermore, we argue that in short
enough devices the spin currents are stable due to the
topology of the order-parameter manifold, the group of
proper rotations. Nevertheless, supercurrents are only
stabilized in the thermodynamic limit by additional easy-
plane anisotropies, i.e., when the random anisotropy
axes ⇣ lie predominantly within the plane of the film.
This anisotropy may arise due to the growth procedure,
geometrical (crystallographic) constrains or long-ranged
magnetostatic (dipolar) interactions. The spin supercur-
rents decay through thermally activated 4⇡-phase slips.
For the rest of the manuscript, we derive the hydrody-
namics of spin in amorphous magnets and the manifes-
tations in nonlocal transport measurements.
The dynamics in the CSG state is glassy, characterized

by a rough landscape of free-energy minima [26]. We are
interested only in nonequilibrium macroscopic deviations
for which the system remains within a given minimum
basin. The latter is defined by the initial state of (mu-
tual) equilibrium of the magnet in contact with metallic
reservoirs and negligible macroscopic magnetization. Fol-
lowing the standard program in hydrodynamics [27], we
consider macroscopic deviations generated by the sym-
metry operations that connect physically distinguishable
spin configurations with the same energy [28], the group
of proper rotations in this case. The order-parameter
manifold consists of smoothly varying (in the scale of Rc)
SO(3) matrices R̂ (t,~r). The Lagrangian density govern-
ing the dynamics of this order parameter can be coarse-
grained from the Hamiltonian in Eq. (1), adhering to the
hierarchy of length scales sketched in Fig. 1. It reads

L = m · ! � A
4
Tr

h
@iR̂ @iR̂

i
� |m|2

2�
, (2)

where m is the nonequilibrium spin density, � ⇡
~2(Rc/Ra)d/2/Da

d is the spin susceptibility of the CSG
[22], and A is the sti↵ness of the SO(3) order parameter,
ultimately related to Tf (and therefore corresponding to
a fraction of Ja

2�d). The first term results from the
canonical conjugacy between R̂ and m, where the latter
is the generator of infinitesimal spin rotations [29, 30],
and ! ⌘ iTr[R̂T L̂ @tR̂]/2 is the (vectorial) angular ve-



Boundary energy transfer for rigid rotations
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Take-home messages

• Coherent (spin) order-parameter textures as solid-state transport medium

• Hydrodynamics that is rooted in the winding topology

• Thermoelectric and quantum means to pump and couple to the condensate

• Engineering microwave “cavities” based on exchange-dominated dynamics

Thank you!


