

Electro-magnetic and -magnonic cooperativity

6

May 17th 2018 Martin P. Weides

University of Glasgow, UK Karlsruhe Institute of Technology (KIT), Germany Till 2017: Johannes Gutenberg University Mainz (JGU), Germany

Agenda

1. Analog quantum simulation of ultrastrong coupling

2. Spectroscopic data on YIG

- From RT to mK
- mK data
- Thin film YIG

3. Synchronizing magnons with photons

Avoided level crossing and linewidth

Quantum Rabi model

$$\frac{\hat{H}}{\hbar} = \omega_r \hat{a}^{\dagger} \hat{a} + \frac{\omega_q}{2} \hat{\sigma}_z + \boldsymbol{g} \left(\hat{\sigma}^+ + \hat{\sigma}^- \right) \left(\hat{a}^{\dagger} + \hat{a} \right)$$

• Ultra/ deep strong coupling regime: $g \approx \omega_r$, ω_q

Rabi PR 49 (1936); Rabi PR 51 (1937)

WMI 2010, Delft 2016, Waterloo 2017, Tokyo 2017...

Rabi model and coupling regimes

 Γ_r Fundamental light-matter interaction (Rabi) $\hat{H}/\hbar = \omega_r \hat{a}^{\dagger} \hat{a} + \frac{\omega_q}{2} \hat{\sigma}_z + g \left(\hat{\sigma}^+ + \hat{\sigma}^- \right) \left(\hat{a}^{\dagger} + \hat{a} \right)$ Creation (annihilation) operator for field mode $\hat{a}^{\dagger}, \hat{a}$ Qubit operators $\hat{\sigma}_z |\pm\rangle = \pm |\pm\rangle, \ \hat{\sigma}^{\pm} |\pm\rangle = |\mp\rangle, \ \hat{\sigma}_x = \hat{\sigma}^+ + \hat{\sigma}^-, \ \hat{\sigma}_y = -i \left(\hat{\sigma}^+ - \hat{\sigma}^-\right)$ **Coupling strength Experimental access** • Weak $g \ll \Gamma_r, \Gamma_q, \omega_r, \omega_q$ complexity • Strong $\Gamma_r, \Gamma_a \ll g \ll \omega_r, \omega_q$ • Ultra-strong $\Gamma_r, \Gamma_q, \omega_r/10, \omega_q/10 < g$ not exactly solvable (needs 2nd conserved quantity besides energy) • Deep-strong $\Gamma_r, \Gamma_q, \omega_r, \omega_q < g$ For small coupling $(g \ll \omega_r, \omega_q)$ interactions $\hat{\sigma}^+ \hat{a}^{\dagger}, \hat{\sigma}^- \hat{a}, \hat{\sigma}^+ \hat{a}, \hat{\sigma}^- \hat{a}^{\dagger}$ \rightarrow Jaynes-Cummings $\hat{H}/\hbar = \omega_r \hat{a}^{\dagger} \hat{a} + \frac{\omega_q}{2} \hat{\sigma}_z + g \left(\hat{a}^{\dagger} \hat{\sigma}^- + \hat{a} \hat{\sigma}^+ \right)$

From small to ultra / deep - strong coupling

$$|\Psi(t)\rangle = \alpha |R_{\rm g}g\rangle + \beta |R_{\rm e}e\rangle$$

Analog quantum simulation of ultra-strong coupling $\hat{H}/\hbar = \omega_r \hat{a}^{\dagger} \hat{a} + \frac{\omega_q}{2} \hat{\sigma}_z + g \left(\hat{a}^{\dagger} \hat{\sigma}^- + \hat{a} \hat{\sigma}^+ \right) + \hat{\sigma}_x \left(\eta_1 \cos \omega_1 t + \eta_2 \cos \omega_2 t \right)$ Add two microwave drives

In reference frame rotating with ω_1

 $\hat{H}/\hbar = (\omega_r - \omega_1)\,\hat{a}^{\dagger}\hat{a} + \frac{\omega_q - \omega_1}{2}\hat{\sigma}_z + g\,\left(\hat{a}^{\dagger}\hat{\sigma}^- + \hat{a}\hat{\sigma}^+\right) + \frac{\eta_1}{2}\hat{\sigma}_x + \frac{\eta_2}{2}\left(\hat{\sigma}^+ e^{i(\omega_1 - \omega_2 t)} + \hat{\sigma}^- e^{-i(\omega_1 - \omega_2 t)}\right)$

- interaction picture in $\frac{\eta_1}{2}\hat{\sigma}_{\chi}$
- basis change via Hadamard transformation
- constraints: $\omega_1 \omega_2 = \eta_1$, $\omega_{eff} \equiv \omega_r \omega_1 \approx MHz$
- → effective Hamiltonian (ultra-strong /deep-strong)

$$\hat{H}_{\text{eff}}/\hbar = \omega_{\text{eff}} \hat{a}^{\dagger} \hat{a} + \frac{\eta_2}{2} \frac{\hat{\sigma}_z}{2} + \frac{g}{2} \left(\hat{\sigma}^+ + \hat{\sigma}^-\right) \left(\hat{a}^{\dagger} + \hat{a}\right)$$

$$\tilde{H}_{\text{Z}} = \tilde{H}_{\text{Z}} + \tilde{\sigma}_{\text{Z}} + \tilde{\sigma}_{$$

Ballester PRX 2 (2012)

Ultra-strong coupling in rotating frame!

$$\hat{H}_{\text{eff}}/\hbar = \underbrace{\omega_{\text{eff}}\hat{a}^{\dagger}\hat{a}}_{\text{~MHz}} + \underbrace{\frac{\eta_2}{2}\frac{\hat{\sigma}_z}{2}}_{\text{~MHz}} + \frac{g}{2}\left(\hat{\sigma}^+ + \hat{\sigma}^-\right)\left(\hat{a}^{\dagger} + \hat{a}\right)$$

bosonic mode

Braumüller et al. Nat. Commun. 8, 779 (2017)

Vacuum Rabi oscillations between qubit and bosonic mode

Martin P. Weides University of Glasgow

Extend to full quantum Rabi model (i.e. add qubit term)

Braumüller et al. Nat. Commun. 8, 779 (2017)

Agenda

1. Analog quantum simulation of ultrastrong coupling

2. Spectroscopic data on YIG

- From RT to mK
- mK data
- Thin film YIG

3. Synchronizing magnons with photons

Avoided level crossing and linewidth

Probing and manipulating single magnons?!

Quantum ground state (T=10 mK)

$$\hbar\omega_m \gg k_B T$$

- Single quanta spectroscopy, coherent coupling
- How to achieve?

Extend magnon to artificial spin!

QuantumMagnonics

Access magnon lifetime and coherence via coherent coupling

Single magnon creation and detection

Quantum-resolved broadband noise spectroscopy

From room temperature to milliKelvin

X. Zhang et al., Phys. Rev. Lett. 113, 156401 (2014)

Y. Tabuchi et al., Phys. Rev. Lett. 113, 083603 (2014)

Temperature dependence of hybridized cavity magnon system?

Study from 290 K down to 10mK

3d split ring resonator

Е

B

Е

В

resonator magnonic medium

Magnetic sphere (YIG) placed in center

Reentrant cavity: M. Goryachev et al., Phys. Rev. Appl. ,2, 054002 (2014)

Avoided crossing: Spectrum

Consider coupling to Kittel mode only

• **Cavity:** field independent

• **YIG:** field dependent

Sphere: $\omega_{res} = \gamma \mu_0 \overrightarrow{H_{eff}}$

• At resonance:
$$\omega_{res} = \omega_r = \omega_m$$

Magnon linewidth $\kappa_m(T)$

Rare earth impurity scattering

- Dominant peak at 43 K
- ,Broad shoulder' at 90 K
- Offset of ~1 MHz from intrinsic damping & surface scattering

Model well the temperature behaviour of our system

Boventer et al. Phys. Rev. B 97, 184420

Approaching the quantum regime

Non-linear system, anharmonic level structure

Coherent limitations and quantum applications?

Experimental setup

• Yttrium iron garnet ($Y_3Fe_5O_{12}$, YIG) sphere,

 $\emptyset = 0.5 \,\mathrm{mm}$

3d copper cavity resonator

 $\omega_{\mathrm{TE102}}/2\pi = 5.24\,\mathrm{GHz}$

 Static magnetic field: tune magnon frequency

•
$$S_{11}(\omega) = -1 + \frac{2\kappa_{\rm e}}{\mathrm{i}(\omega_{\rm r}-\omega)+\kappa_{\rm l}+\frac{g^2}{\mathrm{i}(\omega_{\rm m}-\omega)+\kappa_{\rm m}}}$$

Cryogenic wiring

Martin P. Weides University of Glasgow

Spectroscopic measurement; 60 mK, -140 dBm

Magnon linewidth: temperature dependence

Martin P. Weides University of Glasgow

Magnon linewidth: power dependence

Martin P. Weides University of Glasgow

Two-Level system (TLS) model

Y. Tabuchi et al., Phys. Rev. Lett. 113, 083603 (2014)

Magnon linewidth below 1.5 K

Magnon linewidth below 1.5 K

Martin P. Weides University of Glasgow

Fresh data: qubit coupled to YIG

Transmon qubit

 \rightarrow (de) couple from qubit

Go thin film

- Sputtered NbN (150 nm) on Si substrate
- Frequency division mux'ed lumped element resonators
- Flip-chip: 310nm YIG/GGG (Carsten Dubs, Innovent, LPE) face-down on (some) resonators and transmission line
- \rightarrow Resonator loss, YIG loss and coupling g

Measurement results: at cryogenic temperatures

Martin P. Weides University of Glasgow

Thin film YIG on NbN transmission line / resonator

- YIG resonance strongly damped
- Superconducting resonator strongly damped
- → Weak coupling. Keep sampling different magnets....

Agenda

1. Analog quantum simulation of ultrastrong coupling

- 2. Spectroscopic data on YIG
 - From RT to mK
 - mK data
 - Thin film YIG

3. Synchronizing magnons with photons

Avoided level crossing and linewidth

Synchronized spin-photon coupling in a microwave cavity

Martin P. Weides University of Glasgow

3dimensional approach

Experimental setup

Isabelle Boventer Tim Wolz Christine Dörflinger (missing) Bimu Yao (Hu group)

Raw data for 3d cavity

Raw data for 3d cavity, 9dB higher YIG drive

Cavity and Magnon frequencies

 \rightarrow Synchronization appears

Dispersion data of polariton modes

Avoided level gap set by phase and relative amplitude

QKIT software

Open-source software QKIT

https://github.com/qkitgroup/qkit

- Python notebooks
- hdf5 data storage
- Instrument drivers, fitting classes
- Flexible data viewer
- Live plotting of measurement data
- Incl. circle fit (Probst et al., Rev. Sci. Instr. 2015)

www.phi.kit.edu/weides / www.gla.ac.uk/schools/engineering/staff/martinweides/

Martin P. Weides

Jochen Braumüller **Christine Dörflinger** Stefan Letzelter **Marco Pfirrmann Tomislav Piskor** Lucas Radtke Steffen Schlör Andre Schneider Alex Stehli **Tim Wolz** Ping Yang

University of Glasgow

Summary

- Analog simulation of ultra-strong coupling dynamics YIG sphere – cavity from 300K to 10mK
- Power and temperature sweeps indicate additional loss at mK
- Thin film YIG/GGG strongly damped (resonator and FM) Controlled synchronization of spin-photon coupling demonstrated
- In progress

Effective qubit pop

Coherent coupling to qubit

