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spectral density g(ω) at the probed frequency ω  (BOX 2). The coupling between the spectral function of the 
material and the noise spectral density is described in momentum space by a characteristic form factor, D(k). 
Similar form factors play a major role in other kinds of spin-based magnetometers such as neutron scattering99, 
nuclear magnetic resonance6 and muon spectroscopy5. Form factors are crucial for understanding the sensitivity 
of a technique to spatial spin–spin fluctuations. For NV magnetometry, D(k) shows a peak36 at k = 1/d.  

Insight into the spectral properties of a spin system can be gained from the fluctuation-dissipation theorem, 
which in linear response theory relates the statistical thermal fluctuations to the imaginary part of the dynamical 
magnetic susceptibility χm,’’(k, ω)34,29. In this section, we describe experiments that have probed thermally 

 

Figure 3. Probing thermally excited spin systems. a| The schematic shows a flake of hexagonal boron nitride (h-BN) on 
top of a diamond containing shallow nitrogen-vacancy (NV) centres106. The NV centres were used to probe the 
nuclear spins in h-BN flakes down to a thickness of one monolayer.106 b| Schematic image showing an NV centre 
probing a long-wavelength spin fluctuation with momentum k in a collinear ferromagnet. c| Schematic illustration of 
the spectral functions and associated stray-field magnetic noise spectra for a paramagnetic spin bath (PM) and a 
correlated-electron spin system (FM). The red peak is the transverse spectral function S+,−

m(ω) = Sx,x
m(ω) = Sy,y

m(ω) for 
uncorrelated spins, showing a simple peak at the Larmor frequency for a bias field of 200 G. The green-shaded curve 
depicts the spectral function Sy,y

m(ω) for spins in a 20 nm magnetic yttrium iron garnet (YIG) film109 (y is the in-plane 
direction transverse to the magnetization). The energy minimum of the spectral function in this case does not 
coincide with that for paramagnetic spins owing to dipolar energies. The blue-shaded curve shows the stray field 
noise resulting from Sy,y

m(k, ω) after the filter functions in equation 7 have been used. The red and yellow lines 
represent the transition frequencies of the NV centre. d| The colour map shows the calculated power spectral 
density g(ω) of the magnetic field created by thermal spin waves in the YIG film at a distance d = 110 nm (the 
thickness of the film is 20 nm). The white dashed line indicates the bottom of the spin-wave band, which coincides 
with the ferromagnetic resonance. The measurements of the NV spin relaxation rates shown in the right panel 
quantify the power spectral density along the NV electron spin resonance frequencies109. Panel a is adapted from 
REF. 106. The right part of panel d is adapted from REF. 109. 

 

collective magnetic excitations 
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Fig. 1. Local control and measurement of the magnon chemical potential. (A) An NV spin 

locally probes the magnetic fields generated by magnons in a 20 nm-thick YIG film grown on a 

Gd3Ga5O12 ;GGG) substrate. (B) Sketch of the magnon dispersion and the magnon density at zero 

chemical potential, which falls off as 1/Energy (1/E) as indicated by the fading colors. (C) Driving 

at the ferromagnetic resonance increases the magnon chemical potential. The NV probes the 

magnon density at the electron spin resonance frequencies ɘേ. (D) Photoluminescence image 

showing a diamond nanobeam containing individually addressable nitrogen-vacancy sensor spins 

positioned on top of the YIG film. A 600 nm-thick Au stripline (false-colored yellow) provides 

microwave control of the magnon chemical potential and the NV spin states. A 10 nm-thick Pt 

stripline (false-colored grey) provides spin injection through the spin Hall effect. (E). Scanning 

electron microscope image of representative diamond nanobeams.  
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C. Du et al., Science 2017

Excites FMR mode interplay between coherent/incoherent spin dynamics
B. Flebus et al., PRB 2016 
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One-magnon relaxometry
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We find that two magnon-noise can probe :

dynamical phase transitions, such as magnon Bose-Einstein condensation

diffusive spin-wave bulk transport properties directly

Two-magnon relaxometry

! . 100 GHz
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Spin response 
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ẑ

fluctuation-dissipation theorem:

spin susceptibility

transverse (longitudinal) noise:

s(~r)

transverse fluctuations

longitudinal fluctuations

sz(~r) / s� a†(~r)a(~r)

one-magnon processes

two-magnon processes

equilibrium k ẑ
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Relaxation rate
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we focus on the regime in which two-magnon response dominates :
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Transport properties

Spin diffusion equation
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Figures 

  

Figure 1. Non-local measurement geometry. (a) Schematic representation of the experimental 
geometry. A charge current I through the left platinum strip (the injector) generates a spin accumulation 
at the Pt|YIG interface through the spin Hall effect. Via the exchange interaction at the interface, 
angular momentum is transferred to the YIG, exciting or annihilating magnons. The magnons then 
diffuse towards the right platinum strip (the detector), where they are absorbed and a spin 
accumulation is generated. Via the inverse spin Hall effect the spin accumulation is converted to a 
charge voltage V, which is measured. (b) Schematic of the magnon creation and absorption process. A 
conduction electron in the platinum scattering off the Pt|YIG interface transfers spin angular 
momentum to the YIG. This will flip its spin and create a magnon. The reciprocal process occurs for 
magnon absorption. (c) Optical microscope image of a typical device. The parallel vertical lines are the 
platinum injector and detector, which are contacted by gold leads. Current and voltage connections are 
indicated schematically. An external magnetic field B is applied under an angle a. The scale bar 
ƌĞƉƌĞƐĞŶƚƐ�ϮϬ�ʅŵ͘ 

L. Cornelissen et al., 
Nat. Phys. 2015
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Magnon Bose-Einstein condensation
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Antiferromagnetic domain-wall
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Spectroscopic imaging spin textures Relaxometry

Relaxation rate Spin susceptibility

Scanning probe 

Spin susceptibility of DW Goldstone modes 



experimental evidence of low-lying 
energy modes hosted by DWs

Hollander et al, arXiv:1806.02646
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Dynamic imaging of an antiferromagnetic domain wall via quantum relaxometry

B. Flebus,1 H. Ochoa,1 P. Upadhyaya,2 and Y. Tserkovnyak1

1
Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

2
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907

While spin textures in materials exhibiting zero net magnetization, such as antiferromagnetic
domain walls (DW), have attracted much interest lately due to their robustness against external
magnetic noise, their detection via conventional magnetometry remains a challenging task. Here,
we propose quantum relaxometry as a new route to image spin textures by probing the collective
spin modes harbored by them. We investigate the Goldstone modes hosted by an antiferromagnetic
domain wall and assess the relaxation rate of a quantum-spin sensor interacting with them. We
show that, for reasonable material parameters, such modes, and thus the domain-wall position, can
be detected via relaxometry. Moreover, based on symmetry considerations, we propose a simple
protocol to relate the experimental signal with the individual dynamics of each mode.

Introduction. Over the last few decades, ferromagnets
have provided the dominant platform for exploring spin-
based phenomena and devices [1]. Recently, antiferro-
magnets have emerged as the next-generation systems
for constructing denser and faster spintronic devices [2].
Antiferromagnets derive their advantage from the fact
that the Néel order parameter encoding the information
is composed of a set of oppositely-oriented spins. This
results in a vanishing net magnetic moment, which makes
the information robust against external magnetic noise.
Consequently, compute elements composed of antiferro-
magnets can be packed closer than their ferromagnetic
counterparts without dipolar interaction-induced unde-
sired cross-talks, giving a route to higher density. Sec-
ondly, the inherent spin dynamics is governed by the ex-
change coupling between the oppositely oriented spins
and lies in the THz regime (as opposed to GHz frequen-
cies in ferromagnets), paving the way for faster com-
putation. In order to achieve this goal, phenomena al-
lowing for imaging the Néel order parameter down to
nanoscale in a non-invasive manner and operating in am-
bient conditions will play a crucial role. However, the
absence of net magnetic moment presents a significant
challenge in adapting the widely-used nanoscale imag-
ing techniques for ferromagnets to antiferromagnets [3].
In particular, imaging techniques to characterize domain
walls in a generic antiferromagnet are needed, as they
will provide the basis for building antiferromagnet-based
single-domain and domain-wall-based devices [4].

On another front, atomic-sized quantum spin systems
have recently surfaced as precision sensors of nanoscale
magnetic fields in a variety of solid-state systems [5].
Among these, quantum-impurity (QI) spins hosted by
the Nitrogen-vacancy (NV) defects in diamond are par-
ticularly interesting owing to their ability to operate at
room temperature [5, 6]. Notably, NVs have been re-
cently deployed to image domains and spin cycloids in
antiferromagnets Cr2O3 [7] and BiFeO3 [3], respectively.
However, in these demonstrations, NVs sense the Néel
order via imaging the static magnetic fields emanating
from a non-zero magnetic moment, which is locked to

the Néel order parameter due to magnetoelectric cou-
pling [10]. These demonstrations are thus limited to the
special case of magnetoelectric antiferromagnets. In con-
trast to the modality of imaging static magnetic fields,
a scheme to sense the magnetic noise generated by col-
lective spin modes has been recently demonstrated [12].
Within this method, referred to as relaxometry, fluctu-
ating magnetic fields resonant with the NVs spin transi-
tions are detected by monitoring the change in relaxation
rate caused by the magnetic noise. In this Letter, invok-
ing relaxometry, we present a new scheme for mitigating
the challenge of imaging domain walls in a generic antifer-
romagnet. The proposed imaging method, schematically
depicted in Fig. 1 (a), amounts to record the relaxation

FIG. 1. (a) Detection scheme proposed in the text. The color
expresses the ẑ-component of the Néel order, lz. The anti-
ferromagnet hosts a DW along the x-axis (dashed red line).
Within the DW width �, the order parameter (black arrow)
lies within the xy plane. Its dynamics engenders the spin den-
sity m. The associated stray field is detected by the QI. (b)
Collective field variables representing the soft modes of the
DW. (c) Dispersion relations of the string and spin superfluid

modes of the DW. For the former, the dispersion relation devi-
ates from ! = ck at k ⇠ �

�1 due to the bending sti↵ness. The
dashed line corresponds to the spin waves on top of l = ±ẑ.
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Antiferromagnetic DW detection
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Check 
How to rule out other contributions to the signal?

U(1) symmetry 
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Conclusions

Quantum-impurity spin relaxometry 

in terms of one- and two-magnon processes

as a non-intrusive probe of spin-wave transport properties

 detection of BEC at frequencies lower than the spin-wave gap

dynamical detection of an antiferromagnetic domain-wall


