Many-body sub radiant decay dynamics in 1D light-matter systems

Loïc Henriet

ICFO, in the group of Darrick Chang. Ana Asenjo Garcia, Mariona Moreno Cardoner, Andreas Albrecht, James Douglas, Jeff Kimble, Paul Dieterle, Oskar Painter

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CHARACTERISTIC DECAY TIMESCALE

Finite quantum system.

Exponential decay and relaxation to equilibrium with characteristic timescale $t \propto 1/\Gamma_{min}$.

CHARACTERISTIC DECAY TIMESCALE

Finite quantum system.

Exponential decay and relaxation to equilibrium with characteristic timescale $t \propto 1/\Gamma_{min}$.

• What happens in the case of a large system with $\Gamma_{min} \rightarrow 0$ in the thermodynamic limit.

CHARACTERISTIC DECAY TIMESCALE

► Finite quantum system.

Exponential decay and relaxation to equilibrium with characteristic timescale $t \propto 1/\Gamma_{min}$.

• What happens in the case of a large system with $\Gamma_{min} \rightarrow 0$ in the thermodynamic limit.

Open quantum critical system. No characteristic timescale.

CHARACTERISTIC DECAY TIMESCALE

► Finite quantum system.

Exponential decay and relaxation to equilibrium with characteristic timescale $t \propto 1/\Gamma_{min}$.

• What happens in the case of a large system with $\Gamma_{min} \rightarrow 0$ in the thermodynamic limit.

Open quantum critical system. No characteristic timescale.

► Here, atomic ensembles with light-matter interaction.

OUTLINE

• Atomic arrays, coupled to light modes.

¹ Asenjo-Garcia, Moreno-Cardoner, Albrecht, Kimble, and Chang, PRX 7, 031024 (2017). Albrecht*, Henriet*,

Asenjo-Garcia, Dieterle, Painter and Chang, arxiv (2018)

² Nicholson, et al., Nature Communications 6, 6896 (2015).

• Atomic arrays, coupled to light modes.

Appearance of strongly subradiant modes¹, with $\Gamma_{min} \rightarrow 0$.

Asenjo-Garcia, Dieterle, Painter and Chang, arxiv (2018)

¹ Asenjo-Garcia, Moreno-Cardoner, Albrecht, Kimble, and Chang, PRX 7, 031024 (2017). Albrecht*, Henriet*,

² Nicholson, et al., Nature Communications **6**, 6896 (2015).

^{▲□▶▲}圖▶▲≣▶▲≣▶ ≣ の�?

N A · · 1 1

Atomic arrays, coupled to light modes.

Appearance of strongly subradiant modes¹, with $\Gamma_{min} \rightarrow 0$.

 Decay dynamics in the many-excitation limit. Emergence of a power-law decay for various observables.

Asenjo-Garcia, Dieterle, Painter and Chang, arxiv (2018)

¹ Asenjo-Garcia, Moreno-Cardoner, Albrecht, Kimble, and Chang, PRX 7, 031024 (2017). Albrecht*, Henriet*,

² Nicholson, et al., Nature Communications **6**, 6896 (2015).

OUTLINE

Atomic arrays, coupled to light modes.

Appearance of strongly subradiant modes¹, with $\Gamma_{min} \rightarrow 0$.

- Decay dynamics in the many-excitation limit. Emergence of a power-law decay for various observables.
- Consequences for atomic lattice clocks²

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Asenjo-Garcia, Moreno-Cardoner, Albrecht, Kimble, and Chang, PRX 7, 031024 (2017). Albrecht*, Henriet*,

Asenjo-Garcia, Dieterle, Painter and Chang, arxiv (2018)

2 Nicholson, et al., Nature Communications 6, 6896 (2015).

EFFECTS OF INTERACTIONS : BASIC PROCESSES

We trace out the electromagnetic degrees of freedom.

Coherent exchange of an excitation

EFFECTS OF INTERACTIONS : BASIC PROCESSES

We trace out the electromagnetic degrees of freedom.

Coherent exchange of an excitation

EFFECTS OF INTERACTIONS : BASIC PROCESSES

We trace out the electromagnetic degrees of freedom.

Coherent exchange of an excitation

EFFECTS OF INTERACTIONS : BASIC PROCESSES

We trace out the electromagnetic degrees of freedom.

Coherent exchange of an excitation

Correlated decay

EFFECTS OF INTERACTIONS : BASIC PROCESSES

We trace out the electromagnetic degrees of freedom.

Coherent exchange of an excitation

Correlated decay

EFFECTS OF INTERACTIONS : SPIN MODEL

We integrate the photonic degrees of freedom in the Born-Markov approximation³,

$$\dot{\rho} = \underbrace{-(i/\hbar) \left(\mathcal{H}_{eff} \rho - \rho \mathcal{H}_{eff}^{\dagger} \right)}_{\mathcal{K}[\rho]} + \underbrace{\sum_{l,m=1}^{N} \Gamma_{m,n} \sigma_{l}^{-} \rho \sigma_{m}^{+}}_{\mathcal{J}[\rho]},$$
$$\mathcal{H}_{eff} = \sum_{l,m=1}^{N} \hbar g_{l,m} \sigma_{l}^{+} \sigma_{m}^{-}$$

³Gross, Haroche, Phys. Rep. 93, 301 (1982), or Buhmann, Welsch Prog. Quantum Electron. 31±51 (2007), etc...± 🔊 ດ (~

EFFECTS OF INTERACTIONS : SPIN MODEL

We integrate the photonic degrees of freedom in the Born-Markov approximation³,

$$\dot{\rho} = \underbrace{-(i/\hbar) \left(\mathcal{H}_{eff}\rho - \rho\mathcal{H}_{eff}^{\dagger}\right)}_{\mathcal{K}[\rho]} + \underbrace{\sum_{l,m=1}^{N} \Gamma_{m,n}\sigma_{l}^{-}\rho\sigma_{m}^{+}}_{\mathcal{J}[\rho]},$$
$$\mathcal{H}_{eff} = \sum_{l,m=1}^{N} \hbar g_{l,m}\sigma_{l}^{+}\sigma_{m}^{-}$$

The effective Hamiltonian conserves the excitation number, while ${\cal J}$ describes quantum jumps with excitation losses.

³Gross, Haroche, Phys. Rep. 93, 301 (1982), or Buhmann, Welsch Prog. Quantum Electron. 31 51 (2007), etc... 🗉 🔊 🔍 🖓

EFFECTS OF INTERACTIONS : SPIN MODEL

We integrate the photonic degrees of freedom in the Born-Markov approximation³,

The effective Hamiltonian conserves the excitation number, while ${\cal J}$ describes quantum jumps with excitation losses.

< □ > < @ > < E > < E > E のQ@

SINGLE EXCITATION MANIFOLD $\mathcal{H}_{eff} = \sum_{l,m=1}^{N} \hbar g_{l,m} \sigma_l^+ \sigma_m^-.$

• Complex symmetric Hamiltonian $\mathcal{H}_{eff}^{(1)}$, with eigenvectors $|\psi_l^{(1)}\rangle = \sum_{j=1}^N \alpha_l^j \sigma_j^+ |g\rangle$ associated to eigenvalues $\lambda_l = \hbar(\omega_l - i\Gamma_l/2)$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

SINGLE EXCITATION MANIFOLD $\mathcal{H}_{eff} = \sum_{l,m=1}^{N} \hbar g_{l,m} \sigma_l^+ \sigma_m^-.$

- Complex symmetric Hamiltonian $\mathcal{H}_{eff}^{(1)}$, with eigenvectors $|\psi_l^{(1)}\rangle = \sum_{j=1}^N \alpha_j^l \sigma_j^+ |g\rangle$ associated to eigenvalues $\lambda_l = \hbar(\omega_l - i\Gamma_l/2)$.
- ► In the limit of large N, $\alpha_j^l \propto e^{ikx_j}/\sqrt{N}$ with $k \in [-\pi/d, \pi/d[$. In the following, single-excitation eigenstates will be denoted $|k\rangle$.

SINGLE EXCITATION MANIFOLD $\mathcal{H}_{eff} = \sum_{l,m=1}^{N} \hbar g_{l,m} \sigma_l^+ \sigma_m^-.$

- Complex symmetric Hamiltonian $\mathcal{H}_{eff}^{(1)}$, with eigenvectors $|\psi_l^{(1)}\rangle = \sum_{j=1}^N \alpha_j^l \sigma_j^+ |g\rangle$ associated to eigenvalues $\lambda_l = \hbar(\omega_l - i\Gamma_l/2)$.
- ► In the limit of large N, $\alpha_j^l \propto e^{ikx_j}/\sqrt{N}$ with $k \in [-\pi/d, \pi/d[$. In the following, single-excitation eigenstates will be denoted $|k\rangle$.
- Subradiant modes for $|k| > k_0 = \omega_0/c$. Wavevector of the field associated with this excitation must verify $k^2 + \mathbf{k}_{\perp}^2 = (\omega_0/c)^2$.

SINGLE EXCITATION MANIFOLD $\mathcal{H}_{eff} = \sum_{l=m-1}^{N} \hbar g_{l,m} \sigma_{l}^{+} \sigma_{m}^{-}.$

• Complex symmetric Hamiltonian $\mathcal{H}_{eff}^{(1)}$, with eigenvectors

 $|\psi_l^{(1)}\rangle = \sum_{j=1}^N \alpha_j^l \sigma_j^+ |g\rangle$ associated to eigenvalues $\lambda_l = \hbar(\omega_l - i\Gamma_l/2)$.

- ► In the limit of large N, $\alpha_j^l \propto e^{ikx_j}/\sqrt{N}$ with $k \in [-\pi/d, \pi/d[$. In the following, single-excitation eigenstates will be denoted $|k\rangle$.
- Subradiant modes for $|k| > k_0 = \omega_0/c$. Wavevector of the field associated with this excitation must verify $k^2 + \mathbf{k}_{\perp}^2 = (\omega_0/c)^2$.

•
$$\Gamma_j \propto \Gamma_0 j^2 / N^3$$
.

• For a bosonic Hamiltonian, $(S_{sub}^{\dagger})^2 |g\rangle$.

• For a bosonic Hamiltonian, $(S_{sub}^{\dagger})^2 |g\rangle$.

Probability of having atoms m and n excited

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

SUBRADIANT EIGENSTATES WITH TWO EXCITATIONS

- ► Complex symmetric Hamiltonian $\mathcal{H}_{eff}^{(2)}$, with eigenvectors $|\psi_l^{(2)}\rangle = \sum_{l=1}^{N-1} \sum_{m=l+1}^N \beta_{l,m}^l \sigma_m^+ \sigma_l^+ |g\rangle.$
- In the limit of large *N*, we have for the most subradiant states $\beta_{l,m}^l \propto [\alpha_l^{k_1} \alpha_m^{k_2} \alpha_m^{k_1} \alpha_l^{k_2}]$, where $\alpha_j^{k_1}$ and $\alpha_j^{k_2}$ are coefficients of subradiant single-excitation states.

- ► Complex symmetric Hamiltonian $\mathcal{H}_{eff}^{(2)}$, with eigenvectors $|\psi_l^{(2)}\rangle = \sum_{l=1}^{N-1} \sum_{m=l+1}^N \beta_{l,m}^l \sigma_m^+ \sigma_l^+ |g\rangle.$
- In the limit of large *N*, we have for the most subradiant states $\beta_{l,m}^l \propto [\alpha_l^{k_1} \alpha_m^{k_2} \alpha_m^{k_1} \alpha_l^{k_2}]$, where $\alpha_j^{k_1}$ and $\alpha_j^{k_2}$ are coefficients of subradiant single-excitation states.

Plot of the real part of $\beta_{i,i}^l$.

- Complex symmetric Hamiltonian $\mathcal{H}_{eff}^{(2)}$, with eigenvectors $|\psi_l^{(2)}\rangle = \sum_{l=1}^{N-1} \sum_{m=l+1}^N \beta_{l,m}^l \sigma_m^+ \sigma_l^+ |g\rangle.$
- In the limit of large *N*, we have for the most subradiant states $\beta_{l,m}^l \propto [\alpha_l^{k_1} \alpha_m^{k_2} \alpha_m^{k_1} \alpha_l^{k_2}]$, where $\alpha_j^{k_1}$ and $\alpha_j^{k_2}$ are coefficients of subradiant single-excitation states.

Plot of the real part of $\beta_{i,i}^l$.

シック・ ボー・ボット ボリット

- Complex symmetric Hamiltonian $\mathcal{H}_{eff}^{(2)}$, with eigenvectors $|\psi_l^{(2)}\rangle = \sum_{l=1}^{N-1} \sum_{m=l+1}^N \beta_{l,m}^l \sigma_m^+ \sigma_l^+ |g\rangle.$
- In the limit of large *N*, we have for the most subradiant states $\beta_{l,m}^l \propto [\alpha_l^{k_1} \alpha_m^{k_2} \alpha_m^{k_1} \alpha_l^{k_2}]$, where $\alpha_j^{k_1}$ and $\alpha_j^{k_2}$ are coefficients of subradiant single-excitation states.

Plot of the real part of $\beta_{i,i}^l$.

・ロト・(中・・モト・モー・)の(の)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

SUBRADIANT EIGENSTATES WITH TWO EXCITATIONS

- ► Complex symmetric Hamiltonian $\mathcal{H}_{eff}^{(2)}$, with eigenvectors $|\psi_l^{(2)}\rangle = \sum_{l=1}^{N-1} \sum_{m=l+1}^N \beta_{l,m}^l \sigma_m^+ \sigma_l^+ |g\rangle.$
- In the limit of large *N*, we have for the most subradiant states $\beta_{l,m}^l \propto [\alpha_l^{k_1} \alpha_m^{k_2} \alpha_m^{k_1} \alpha_l^{k_2}]$, where $\alpha_j^{k_1}$ and $\alpha_j^{k_2}$ are coefficients of subradiant single-excitation states.
- Two-excitation subradiant eigenstates can thus be written $|k_1, k_2\rangle$, with decay rate $\sim \Gamma_{k_1} + \Gamma_{k_2}$.

- ► Complex symmetric Hamiltonian $\mathcal{H}_{eff}^{(2)}$, with eigenvectors $|\psi_l^{(2)}\rangle = \sum_{l=1}^{N-1} \sum_{m=l+1}^N \beta_{l,m}^l \sigma_m^+ \sigma_l^+ |g\rangle.$
- In the limit of large *N*, we have for the most subradiant states $\beta_{l,m}^l \propto [\alpha_l^{k_1} \alpha_m^{k_2} \alpha_m^{k_1} \alpha_l^{k_2}]$, where $\alpha_j^{k_1}$ and $\alpha_j^{k_2}$ are coefficients of subradiant single-excitation states.
- Two-excitation subradiant eigenstates can thus be written $|k_1, k_2\rangle$, with decay rate $\sim \Gamma_{k_1} + \Gamma_{k_2}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

SUBRADIANT EIGENSTATES WITH TWO EXCITATIONS

- ► Complex symmetric Hamiltonian $\mathcal{H}_{eff}^{(2)}$, with eigenvectors $|\psi_l^{(2)}\rangle = \sum_{l=1}^{N-1} \sum_{m=l+1}^N \beta_{l,m}^l \sigma_m^+ \sigma_l^+ |g\rangle.$
- ► In the limit of large *N*, we have for the most subradiant states $\beta_{l,m}^l \propto [\alpha_l^{k_1} \alpha_m^{k_2} \alpha_m^{k_1} \alpha_l^{k_2}]$, where $\alpha_j^{k_1}$ and $\alpha_j^{k_2}$ are coefficients of subradiant single-excitation states.
- ► Two-excitation subradiant eigenstates can thus be written $|k_1, k_2\rangle$, with decay rate ~ $\Gamma_{k_1} + \Gamma_{k_2}$.
- This structure extends to higher number of excitations $m \ll N$.

$$\mathcal{L}[
ho] = \mathcal{K}[
ho] + \mathcal{J}[
ho] = -(i/\hbar) \left(\mathcal{H}_{e\!f\!f}
ho -
ho \mathcal{H}_{e\!f\!f}^{\dagger}
ight) + \sum_{l,m} \Gamma_{l,m} \sigma_l^-
ho \sigma_m^+$$

Effect of coherent and jump terms:

$$\begin{split} \mathcal{K}|k\rangle\langle k| &= -\Gamma_k |k\rangle\langle k| \\ \mathcal{J}|k\rangle\langle k| &= c|g\rangle\langle g| \end{split}$$

$$\mathcal{L}[
ho] = \mathcal{K}[
ho] + \mathcal{J}[
ho] = -(i/\hbar) \left(\mathcal{H}_{e\!f\!f}
ho -
ho \mathcal{H}_{e\!f\!f}^{\dagger}
ight) + \sum_{l,m} \Gamma_{l,m} \sigma_l^-
ho \sigma_m^+$$

Effect of coherent and jump terms:

$$\begin{split} \mathcal{K}|k\rangle\langle k| &= -\Gamma_k |k\rangle\langle k| \\ \mathcal{J}|k\rangle\langle k| &= c|g\rangle\langle g| \end{split}$$

Eigenelements:

$$Z_{k} = |k\rangle\langle k| + \alpha |g\rangle\langle g|$$
$$\mathcal{L}Z_{k} = -\Gamma_{k}Z_{k}$$

$$\mathcal{L}[
ho] = \mathcal{K}[
ho] + \mathcal{J}[
ho] = -(i/\hbar) \left(\mathcal{H}_{eff}
ho -
ho \mathcal{H}_{eff}^{\dagger}
ight) + \sum_{l,m} \Gamma_{l,m} \sigma_l^-
ho \sigma_m^+$$

Effect of coherent and jump terms:

$$\begin{split} \mathcal{K}|k\rangle\langle k| &= -\Gamma_k |k\rangle\langle k| \\ \mathcal{J}|k\rangle\langle k| &= c|g\rangle\langle g| \end{split}$$

Eigenelements:

$$Z_k = |k\rangle \langle k| - |g\rangle \langle g|$$
$$\mathcal{L}Z_k = -\Gamma_k Z_{\Gamma_k}$$

$$\mathcal{L}[
ho] = \mathcal{K}[
ho] + \mathcal{J}[
ho] = -(i/\hbar) \left(\mathcal{H}_{e\!f\!f}
ho -
ho \mathcal{H}_{e\!f\!f}^{\dagger}
ight) + \sum_{l,m} \Gamma_{l,m} \sigma_l^-
ho \sigma_m^+$$

Effect of coherent and jump terms:

$$\begin{split} \mathcal{K}|k\rangle\langle k| &= -\Gamma_k |k\rangle\langle k| \\ \mathcal{J}|k\rangle\langle k| &= c|g\rangle\langle g| \end{split}$$

Eigenelements:

$$Z_k = |k\rangle \langle k| - |g\rangle \langle g|$$
$$\mathcal{L}Z_k = -\Gamma_k Z_{\Gamma_k}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\rho_0 = |k\rangle \langle k| = Z_k + |g\rangle \langle g|$

$$\mathcal{L}[\rho] = \mathcal{K}[\rho] + \mathcal{J}[\rho] = -(i/\hbar) \left(\mathcal{H}_{eff}\rho - \rho \mathcal{H}_{eff}^{\dagger} \right) + \sum_{l,m} \Gamma_{l,m} \sigma_l^- \rho \sigma_m^+$$

Effect of coherent and jump terms:

$$\begin{split} \mathcal{K}|k\rangle\langle k| &= -\Gamma_k |k\rangle\langle k| \\ \mathcal{J}|k\rangle\langle k| &= c|g\rangle\langle g| \end{split}$$

Eigenelements:

$$Z_k = |k\rangle \langle k| - |g\rangle \langle g|$$
$$\mathcal{L}Z_k = -\Gamma_k Z_{\Gamma_k}$$

$$\begin{split} \rho_0 &= |k\rangle \langle k| = Z_k + |g\rangle \langle g| \\ \rho(t) &= Z_k e^{-\Gamma_k t} + |g\rangle \langle g| = e^{-\Gamma t} |k\rangle \langle k| + (1 - e^{-\Gamma t}) |g\rangle \langle g| \end{split}$$

$$\mathcal{L}[\rho] = \mathcal{K}[\rho] + \mathcal{J}[\rho] = -(i/\hbar) \left(\mathcal{H}_{eff}\rho - \rho \mathcal{H}_{eff}^{\dagger} \right) + \sum_{l,m} \Gamma_{l,m} \sigma_{l}^{-} \rho \sigma_{m}^{\dagger}$$

Effect of coherent and jump terms:

$$\begin{split} \mathcal{K}|k_1,k_2\rangle\langle k_1,k_2| &= -(\Gamma_{k_1}+\Gamma_{k_2})|k_1,k_2\rangle\langle k_1,k_2\\ \mathcal{J}|k_1,k_2\rangle\langle k_1,k_2| &= \sum_{k,q} c_{k,q}|k\rangle\langle q| \end{split}$$

< ロト < 団ト < 注ト < 注ト - 注一

$$\mathcal{L}[\rho] = \mathcal{K}[\rho] + \mathcal{J}[\rho] = -(i/\hbar) \left(\mathcal{H}_{eff}\rho - \rho \mathcal{H}_{eff}^{\dagger} \right) + \sum_{l,m} \Gamma_{l,m} \sigma_{l}^{-} \rho \sigma_{m}^{\dagger}$$

Effect of coherent and jump terms:

$$\begin{split} \mathcal{K}|k_1,k_2\rangle\langle k_1,k_2| &= -(\Gamma_{k_1}+\Gamma_{k_2})|k_1,k_2\rangle\langle k_1,k_2|\\ \mathcal{J}|k_1,k_2\rangle\langle k_1,k_2| &\sim c_{k_1}|k_1\rangle\langle k_1|+c_{k_2}|k_2\rangle\langle k_2| \end{split}$$

ヘロト 人間 ト 人 田 ト 人 田 ト

= 900

$$\mathcal{L}[\rho] = \mathcal{K}[\rho] + \mathcal{J}[\rho] = -(i/\hbar) \left(\mathcal{H}_{eff}\rho - \rho \mathcal{H}_{eff}^{\dagger} \right) + \sum_{l,m} \Gamma_{l,m} \sigma_{l}^{-} \rho \sigma_{m}^{\dagger}$$

Effect of coherent and jump terms:

$$\begin{split} \mathcal{K}|k_1,k_2\rangle\langle k_1,k_2| &= -(\Gamma_{k_1}+\Gamma_{k_2})|k_1,k_2\rangle\langle k_1,k_2|\\ \mathcal{J}|k_1,k_2\rangle\langle k_1,k_2| \sim c_{k_1}|k_1\rangle\langle k_1| + c_{k_2}|k_2\rangle\langle k_2| \end{split}$$

Eigenelements:

$$\begin{split} Z_{k_1,k_2} &= |k_1,k_2\rangle \langle k_1,k_2| + \sum_k \alpha_k |k\rangle \langle k| + \beta |g\rangle \langle g| \\ \mathcal{L}Z_{k_1,k_2} &= -(\Gamma_{k_1} + \Gamma_{k_2}) Z_{k_1,k_2} \end{split}$$

< ロト < 団ト < 注ト < 注ト - 注一

$$\mathcal{L}[
ho] = \mathcal{K}[
ho] + \mathcal{J}[
ho] = -(i/\hbar) \left(\mathcal{H}_{eff}
ho -
ho \mathcal{H}_{eff}^{\dagger}
ight) + \sum_{l,m} \Gamma_{l,m} \sigma_l^-
ho \sigma_m^+$$

Effect of coherent and jump terms:

$$\begin{split} \mathcal{K}|k_1,k_2\rangle\langle k_1,k_2| &= -(\Gamma_{k_1}+\Gamma_{k_2})|k_1,k_2\rangle\langle k_1,k_2|\\ \mathcal{J}|k_1,k_2\rangle\langle k_1,k_2| \sim c_{k_1}|k_1\rangle\langle k_1| + c_{k_2}|k_2\rangle\langle k_2| \end{split}$$

Eigenelements:

$$\begin{split} &Z_{k_1,k_2} \sim |k_1,k_2\rangle \langle k_1,k_2| - |k_1\rangle \langle k_1| - |k_2\rangle \langle k_2| + |g\rangle \langle g| \\ &\mathcal{L}Z_{k_1,k_2} = -(\Gamma_{k_1} + \Gamma_{k_2})Z_{k_1,k_2} \end{split}$$

ヘロト 人間ト 人注ト 人注ト 二注一

$$\mathcal{L}[
ho] = \mathcal{K}[
ho] + \mathcal{J}[
ho] = -(i/\hbar) \left(\mathcal{H}_{eff}
ho -
ho \mathcal{H}_{eff}^{\dagger}
ight) + \sum_{l,m} \Gamma_{l,m} \sigma_l^-
ho \sigma_m^+$$

Effect of coherent and jump terms:

$$\begin{split} \mathcal{K}|k_1,k_2\rangle\langle k_1,k_2| &= -(\Gamma_{k_1}+\Gamma_{k_2})|k_1,k_2\rangle\langle k_1,k_2|\\ \mathcal{J}|k_1,k_2\rangle\langle k_1,k_2| \sim c_{k_1}|k_1\rangle\langle k_1| + c_{k_2}|k_2\rangle\langle k_2| \end{split}$$

Eigenelements:

$$\begin{split} Z_{k_1,k_2} &\sim |k_1,k_2\rangle \langle k_1,k_2| - |k_1\rangle \langle k_1| - |k_2\rangle \langle k_2| + |g\rangle \langle g| \\ \mathcal{L}Z_{k_1,k_2} &= -(\Gamma_{k_1} + \Gamma_{k_2}) Z_{k_1,k_2} \end{split}$$

イロト イ理ト イヨト イヨト

 $\rho_0 = |k_1, k_2\rangle \langle k_1, k_2|$

$$\mathcal{L}[\rho] = \mathcal{K}[\rho] + \mathcal{J}[\rho] = -(i/\hbar) \left(\mathcal{H}_{e\!f\!f} \rho - \rho \mathcal{H}_{e\!f\!f}^{\dagger} \right) + \sum_{l,m} \Gamma_{l,m} \sigma_l^- \rho \sigma_m^+$$

Effect of coherent and jump terms:

$$\begin{split} \mathcal{K}|k_1,k_2\rangle\langle k_1,k_2| &= -(\Gamma_{k_1}+\Gamma_{k_2})|k_1,k_2\rangle\langle k_1,k_2|\\ \mathcal{J}|k_1,k_2\rangle\langle k_1,k_2| \sim c_{k_1}|k_1\rangle\langle k_1| + c_{k_2}|k_2\rangle\langle k_2| \end{split}$$

Eigenelements:

$$\begin{split} &Z_{k_1,k_2} \sim |k_1,k_2\rangle \langle k_1,k_2| - |k_1\rangle \langle k_1| - |k_2\rangle \langle k_2| + |g\rangle \langle g| \\ &\mathcal{L}Z_{k_1,k_2} = -(\Gamma_{k_1} + \Gamma_{k_2}) Z_{k_1,k_2} \end{split}$$

$$\rho_0 = |k_1, k_2\rangle \langle k_1, k_2|$$

POWER-LAW BEHAVIOR AT LONG TIMES

- Simple picture for the decay structure with a rate model.
- Consequences on observables, $\hat{p} = \sum_{i} \sigma_{i}^{+} \sigma_{i}^{-}$ and $\hat{C} = \sum_{i,j} \sigma_{i}^{+} \sigma_{i}^{+} \sigma_{i}^{-} \sigma_{i}^{-}$.

POWER-LAW BEHAVIOR AT LONG TIMES

- Simple picture for the decay structure with a rate model.
- Consequences on observables, $\hat{p} = \sum_{j} \sigma_{j}^{+} \sigma_{j}^{-}$ and $\hat{C} = \sum_{i,j} \sigma_{j}^{+} \sigma_{i}^{+} \sigma_{j}^{-} \sigma_{i}^{-}$.

$$\langle \hat{p} \rangle(t) = \sum_{\Lambda \in sp(\mathcal{L})} c_{\Lambda} \operatorname{Tr} \left[Z_{\Lambda} \hat{p} \right] e^{-\Lambda t}$$

POWER-LAW BEHAVIOR AT LONG TIMES

- Simple picture for the decay structure with a rate model.
- Consequences on observables, $\hat{p} = \sum_{j} \sigma_{j}^{+} \sigma_{j}^{-}$ and $\hat{C} = \sum_{i,j} \sigma_{j}^{+} \sigma_{i}^{+} \sigma_{j}^{-} \sigma_{i}^{-}$.

$$\langle \hat{p} \rangle (t) = \sum_{\Lambda \in sp(\mathcal{L})} c_{\Lambda} \operatorname{Tr} \left[Z_{\Lambda} \hat{p} \right] e^{-\Lambda t}$$

 $\sim \sum_{j} c_{j} e^{-\Gamma_{j} t}$

POWER-LAW BEHAVIOR AT LONG TIMES

- Simple picture for the decay structure with a rate model.
- Consequences on observables, $\hat{p} = \sum_{j} \sigma_{j}^{+} \sigma_{j}^{-}$ and $\hat{C} = \sum_{i,j} \sigma_{j}^{+} \sigma_{i}^{+} \sigma_{j}^{-} \sigma_{i}^{-}$.

$$\langle \hat{p}
angle(t) = \sum_{\Lambda \in sp(\mathcal{L})} c_{\Lambda} \operatorname{Tr} \left[Z_{\Lambda} \hat{p} \right] e^{-\Lambda t}$$

 $\sim \sum_{j} c_{j} e^{-\Gamma_{j} t} \propto \sum_{j} e^{-aj^{2} \Gamma_{0} t}$

POWER-LAW BEHAVIOR AT LONG TIMES

- Simple picture for the decay structure with a rate model.
- Consequences on observables, $\hat{p} = \sum_{j} \sigma_{j}^{+} \sigma_{j}^{-}$ and $\hat{C} = \sum_{i,j} \sigma_{j}^{+} \sigma_{i}^{+} \sigma_{j}^{-} \sigma_{i}^{-}$.

$$\begin{split} \langle \hat{p} \rangle(t) &= \sum_{\Lambda \in sp(\mathcal{L})} c_{\Lambda} \mathrm{Tr} \left[Z_{\Lambda} \hat{p} \right] e^{-\Lambda t} \\ &\sim \sum_{j} c_{j} e^{-\Gamma_{j} t} \propto \sum_{j} e^{-a j^{2} \Gamma_{1D} t} \sim (\Gamma_{0} t)^{-0.5} \end{split}$$

POWER-LAW BEHAVIOR AT LONG TIMES

- Simple picture for the decay structure with a rate model.
- Consequences on observables, $\hat{p} = \sum_j \sigma_j^+ \sigma_j^-$ and $\hat{C} = \sum_{i,j} \sigma_j^+ \sigma_i^- \sigma_j^-$.

$$\begin{split} \langle \hat{p} \rangle(t) &= \sum_{\Lambda \in sp(\mathcal{L})} c_{\Lambda} \mathrm{Tr} \left[Z_{\Lambda} \hat{p} \right] e^{-\Lambda t} \\ &\sim \sum_{j} c_{j} e^{-\Gamma_{j} t} \propto \sum_{j} e^{-a j^{2} \Gamma_{1D} t} \sim (\Gamma_{0} t)^{-0.5} \end{split}$$

POWER-LAW BEHAVIOR AT LONG TIMES

- Simple picture for the decay structure with a rate model.
- Consequences on observables, $\hat{p} = \sum_j \sigma_j^+ \sigma_j^-$ and $\hat{C} = \sum_{i,j} \sigma_j^+ \sigma_i^- \sigma_j^-$.

$$\begin{split} \langle \hat{p} \rangle(t) &= \sum_{\Lambda \in sp(\mathcal{L})} c_{\Lambda} \mathrm{Tr} \left[Z_{\Lambda} \hat{p} \right] e^{-\Lambda t} \\ &\sim \sum_{j} c_{j} e^{-\Gamma_{j} t} \propto \sum_{j} e^{-a j^{2} \Gamma_{1D} t} \sim (\Gamma_{0} t)^{-0.5} \end{split}$$

POWER-LAW BEHAVIOR AT LONG TIMES

- Simple picture for the decay structure with a rate model.
- Consequences on observables, $\hat{p} = \sum_{j} \sigma_{j}^{+} \sigma_{j}^{-}$ and $\hat{C} = \sum_{i,j} \sigma_{j}^{+} \sigma_{i}^{+} \sigma_{j}^{-} \sigma_{i}^{-}$.

$$\langle \hat{C} \rangle(t) = \sum_{\Lambda \in sp(\mathcal{L})} c_{\Lambda} \operatorname{Tr} \left[Z_{\Lambda} \hat{C} \right] e^{-\Lambda t}$$

POWER-LAW BEHAVIOR AT LONG TIMES

- Simple picture for the decay structure with a rate model.
- Consequences on observables, $\hat{p} = \sum_{j} \sigma_{j}^{+} \sigma_{j}^{-}$ and $\hat{C} = \sum_{i,j} \sigma_{j}^{+} \sigma_{i}^{+} \sigma_{j}^{-} \sigma_{i}^{-}$.

$$\langle \hat{C} \rangle(t) = \sum_{\Lambda \in sp(\mathcal{L})} c_{\Lambda} \operatorname{Tr} \left[Z_{\Lambda} \hat{C} \right] e^{-\Lambda t}$$

POWER-LAW BEHAVIOR AT LONG TIMES

- Simple picture for the decay structure with a rate model.
- Consequences on observables, $\hat{p} = \sum_{j} \sigma_{j}^{+} \sigma_{j}^{-}$ and $\hat{C} = \sum_{i,j} \sigma_{j}^{+} \sigma_{i}^{+} \sigma_{j}^{-} \sigma_{i}^{-}$.

$$\begin{split} \langle \hat{C} \rangle(t) &= \sum_{\Lambda \in sp(\mathcal{L})} c_{\Lambda} \mathrm{Tr} \left[Z_{\Lambda} \hat{C} \right] e^{-\Lambda t} \\ &\sim \sum_{i,j} c_{i,j} e^{-(\Gamma_i + \Gamma_j)t} \end{split}$$

POWER-LAW BEHAVIOR AT LONG TIMES

- Simple picture for the decay structure with a rate model.
- Consequences on observables, $\hat{p} = \sum_{j} \sigma_{j}^{+} \sigma_{j}^{-}$ and $\hat{C} = \sum_{i,j} \sigma_{j}^{+} \sigma_{i}^{+} \sigma_{j}^{-} \sigma_{i}^{-}$.

$$\begin{split} \langle \hat{C} \rangle(t) &= \sum_{\Lambda \in sp(\mathcal{L})} c_{\Lambda} \operatorname{Tr} \left[Z_{\Lambda} \hat{C} \right] e^{-\Lambda t} \\ &\sim \sum_{i,j} c_{i,j} e^{-(\Gamma_i + \Gamma_j)t} \propto \sum_n e^{-an\Gamma_0 t} \end{split}$$

POWER-LAW BEHAVIOR AT LONG TIMES

- Simple picture for the decay structure with a rate model.
- Consequences on observables, $\hat{p} = \sum_{j} \sigma_{j}^{+} \sigma_{j}^{-}$ and $\hat{C} = \sum_{i,j} \sigma_{j}^{+} \sigma_{i}^{+} \sigma_{j}^{-} \sigma_{i}^{-}$.

$$\begin{split} \langle \hat{C} \rangle(t) &= \sum_{\Lambda \in sp(\mathcal{L})} c_{\Lambda} \mathrm{Tr} \left[Z_{\Lambda} \hat{C} \right] e^{-\Lambda t} \\ &\sim \sum_{i,j} c_{i,j} e^{-(\Gamma_i + \Gamma_j)t} \propto \sum_n e^{-an\Gamma_0 t} \sim (\Gamma_0 t)^{-1} \end{split}$$

POWER-LAW BEHAVIOR AT LONG TIMES

- Simple picture for the decay structure with a rate model.
- Consequences on observables, $\hat{p} = \sum_{j} \sigma_{j}^{+} \sigma_{j}^{-}$ and $\hat{C} = \sum_{i,j} \sigma_{j}^{+} \sigma_{i}^{+} \sigma_{j}^{-} \sigma_{i}^{-}$.

POWER-LAW BEHAVIOR AT LONG TIMES

- Simple picture for the decay structure with a rate model.
- Consequences on observables, $\hat{p} = \sum_{j} \sigma_{j}^{+} \sigma_{j}^{-}$ and $\hat{C} = \sum_{i,j} \sigma_{j}^{+} \sigma_{i}^{+} \sigma_{j}^{-} \sigma_{i}^{-}$.

Consider an atom with two well isolated energy levels $|g\rangle$ and $|e\rangle$.

Clock protocol : determination of ω_0 .

Consider an atom with two well isolated energy levels $|g\rangle$ and $|e\rangle$.

Clock protocol : determination of ω_0 .

Ramsey scheme:

• $\pi/2$ pulse with an interrogating laser $|g\rangle \rightarrow (|g\rangle + |e\rangle)/\sqrt{2}$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider an atom with two well isolated energy levels $|g\rangle$ and $|e\rangle$.

Clock protocol : determination of ω_0 .

Ramsey scheme:

- $\pi/2$ pulse with an interrogating laser $|g\rangle \rightarrow (|g\rangle + |e\rangle)/\sqrt{2}$.
- Free time evolution in the rotating frame, $\mathcal{H}_0 = -\hbar \delta \sigma^+ \sigma^-$, with $\delta = \omega_L \omega_0$.

$$rac{|g
angle+|e
angle}{\sqrt{2}}
ightarrow rac{|g
angle+e^{i\delta t}|e
angle}{\sqrt{2}}$$

▲□▶▲@▶▲≧▶▲≣▶ = 差 = のへで

Long-time dynamics

ATOMIC CLOCK PROTOCOL

Consider an atom with two well isolated energy levels $|g\rangle$ and $|e\rangle$.

Clock protocol : determination of ω_0 .

Ramsey scheme:

- $\pi/2$ pulse with an interrogating laser $|g\rangle \rightarrow (|g\rangle + |e\rangle)/\sqrt{2}$.
- Free time evolution in the rotating frame, $\mathcal{H}_0 = -\hbar \delta \sigma^+ \sigma^-$, with $\delta = \omega_L \omega_0$.

$$rac{|g
angle+|e
angle}{\sqrt{2}}
ightarrow rac{|g
angle+e^{i\delta t}|e
angle}{\sqrt{2}}$$

• $-\pi/2$ pulse

$$\frac{|g\rangle + e^{i\delta t}|e\rangle}{\sqrt{2}} \rightarrow \frac{(1 + e^{i\delta t})|g\rangle + (-1 + e^{i\delta t})|e\rangle}{2}$$

Measurement of $\langle \sigma^z \rangle = -\cos(\delta t)$.

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ○</p>

Consider an atom with two well isolated energy levels $|g\rangle$ and $|e\rangle$.

Clock protocol : determination of ω_0 .

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Ramsey scheme:

- $\pi/2$ pulse with an interrogating laser $|g\rangle \rightarrow (|g\rangle + |e\rangle)/\sqrt{2}$.
- Free time evolution in the rotating frame, $\mathcal{H}_0 = -\hbar \delta \sigma^+ \sigma^-$, with $\delta = \omega_L \omega_0$.

$$rac{|g
angle+|e
angle}{\sqrt{2}}
ightarrow rac{|g
angle+e^{i\delta t}|e
angle}{\sqrt{2}}$$

• $-\pi/2$ pulse

Measurement of $S = -\cos(\delta t)e^{-\Gamma_0 t/2}$.

Consider an atom with two well isolated energy levels $|g\rangle$ and $|e\rangle$.

Clock protocol : determination of ω_0 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ramsey scheme:

- $\pi/2$ pulse with an interrogating laser $|g\rangle \rightarrow (|g\rangle + |e\rangle)/\sqrt{2}$.
- Free time evolution in the rotating frame, $\mathcal{H}_0 = -\hbar \delta \sigma^+ \sigma^-$, with $\delta = \omega_L \omega_0$.

$$rac{|g
angle+|e
angle}{\sqrt{2}}
ightarrow rac{|g
angle+e^{i\delta t}|e
angle}{\sqrt{2}}$$

• $-\pi/2$ pulse

Measurement of $S = -N \cos(\delta t) e^{-\Gamma_0 t/2}$.

 10^{-1} $\overline{\mathbf{S}}$

 $10^{-2} \\ 10^{-3}$

 10^{-4}

10

5 7.5

 $< 10^{-5}$

0.0

-0.5

-1.0

-1.5

-2.8

2.5

 $\Gamma_0 t$

• Central fringe \rightarrow reference the laser frequency to the atomic frequency $\delta = 0$.

イロト イロト イヨト イヨト ニヨー

590

• Sensitivity, for *N* independent atoms, $\Delta \omega \sim \sqrt{\Gamma_0/(NT_{avg})}$

• 1D Atomic lattice clock with subradiant modes, $S \sim \cos(\delta_m t)(\Gamma_0 t)^{-0.5}$

• Central fringe \rightarrow reference the laser frequency toward the frequency of the most subradiant modes $\delta \sim \omega_{j=1}^{(1)}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▶ 1D Atomic lattice clock with subradiant modes, $S \sim \cos(\delta_m t) (\Gamma_0 t)^{-0.5}$

• Central fringe \rightarrow reference the laser frequency toward the frequency of the most subradiant modes $\delta \sim \omega_{i=1}^{(1)}$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• Sensitivity independent of Γ_0

Spontaneous emission represents a fundamental barrier for atom-light interactions. But, with subradiant collective excitations

⁴ Asenjo-Garcia, Moreno-Cardoner, Albrecht, Kimble, and Chang, PRX 7, 031024 (2017). Albrecht^{*}, Henriet^{*}, Asenjo-Garcia, Dieterle, Painter and Chang, arxiv (2018) $\Box \rightarrow \langle \overline{\Box} \rangle \land \langle$

Spontaneous emission represents a fundamental barrier for atom-light interactions. But, with subradiant collective excitations

 Exponential improvements in photon storage fidelity when increasing the system size⁴.

⁴ Asenjo-Garcia, Moreno-Cardoner, Albrecht, Kimble, and Chang, PRX 7, 031024 (2017). Albrecht*, Henriet*, Asenjo-Garcia, Dieterle, Painter and Chang, arxiv (2018)

Spontaneous emission represents a fundamental barrier for atom-light interactions. But, with subradiant collective excitations

- Exponential improvements in photon storage fidelity when increasing the system size⁴.
- Evade the limit of spontaneous emission for atomic lattice clocks.

⁴ Asenjo-Garcia, Moreno-Cardoner, Albrecht, Kimble, and Chang, PRX 7, 031024 (2017). Albrecht*, Henriet*, Asenjo-Garcia, Dieterle, Painter and Chang, arxiv (2018)

Spontaneous emission represents a fundamental barrier for atom-light interactions. But, with subradiant collective excitations

- Exponential improvements in photon storage fidelity when increasing the system size⁴.
- Evade the limit of spontaneous emission for atomic lattice clocks.

What can be done for other applications ? Photon gates, nonlinear optics, ...,

⁴ Asenjo-Garcia, Moreno-Cardoner, Albrecht, Kimble, and Chang, PRX 7, 031024 (2017). Albrecht*, Henriet*, Asenjo-Garcia, Dieterle, Painter and Chang, arxiv (2018)