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CHARACTERISTIC DECAY TIMESCALE

I Finite quantum system.

System Exponential decay and relaxation to
equilibrium with characteristic
timescale t ∝ 1/Γmin.

I What happens in the case of a large system with Γmin → 0 in the thermodynamic
limit.

Open quantum critical system. No characteristic timescale.
I Here, atomic ensembles with light-matter interaction.
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OUTLINE
I Atomic arrays, coupled to light modes.

le>

lg>

Appearance of strongly subradiant modes1, with Γmin → 0.
I Decay dynamics in the many-excitation limit. Emergence of a power-law decay

for various observables.
I Consequences for atomic lattice clocks2

1
Asenjo-Garcia, Moreno-Cardoner, Albrecht, Kimble, and Chang, PRX 7, 031024 (2017). Albrecht*, Henriet*,

Asenjo-Garcia, Dieterle, Painter and Chang, arxiv (2018)
2

Nicholson, et al., Nature Communications 6, 6896 (2015).
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EFFECTS OF INTERACTIONS : BASIC PROCESSES

We trace out the electromagnetic degrees of freedom.
I Coherent exchange of an excitation

le> le>

lg> lg>

I decay

+
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EFFECTS OF INTERACTIONS : SPIN MODEL
We integrate the photonic degrees of freedom in the Born-Markov approximation3,

ρ̇ = −(i/~)
(
Heff ρ− ρH

†
eff

)
︸ ︷︷ ︸

K[ρ]

+
N∑

l,m=1

Γm,nσ
−
l ρσ

+
m︸ ︷︷ ︸

J [ρ]

,

Heff =
N∑

l,m=1

~gl,mσ
+
l σ
−
m

The effective Hamiltonian conserves the excitation number, while J describes
quantum jumps with excitation losses.

3 exc.

2 exc.

1 exc

0 exc

3
Gross, Haroche, Phys. Rep. 93, 301 (1982), or Buhmann, Welsch Prog. Quantum Electron. 31, 51 (2007), etc...
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SINGLE EXCITATION MANIFOLD
Heff =

∑N
l,m=1 ~gl,mσ

+
l σ
−
m .

I Complex symmetric HamiltonianH(1)
eff , with eigenvectors

|ψ(1)
l 〉 =

∑N
j=1 α

l
jσ

+
j |g〉 associated to eigenvalues λl = ~(ωl − iΓl/2).

I In the limit of large N, αl
j
∝∼ eikxj/

√
N with k ∈ [−π/d, π/d[. In the following,

single-excitation eigenstates will be denoted |k〉.
I Subradiant modes for |k| > k0 = ω0/c. Wavevector of the field associated with

this excitation must verify k2 + k2
⊥ = (ω0/c)2.

I Γj ∝ Γ0j2/N3.
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SUBRADIANT EIGENSTATES WITH TWO EXCITATIONS
I For a bosonic Hamiltonian, (S†sub)

2|g〉.

I Complex symmetric HamiltonianH(2)
eff , with eigenvectors

|ψ(2)
l 〉 =

∑N−1
l=1

∑N
m=l+1 β

l
l,mσ

+
m σ

+
l |g〉.

I In the limit of large N, we have for the most subradiant states
βl

l,m
∝∼ [α

k1
l α

k2
m − α

k1
mα

k2
l ], where αk1

j and αk2
j are coefficients of subradiant

single-excitation states.
I Two-excitation subradiant eigenstates can thus be written |k1, k2〉, with decay

rate ∼ Γk1
+ Γk2 .

I This structure extends to higher number of excitations m� N.
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”SINGLE-EXCITATION” EIGENSTATES OF L
L[ρ] = K[ρ] + J [ρ] = −(i/~)

(
Heff ρ− ρH

†
eff

)
+
∑

l,m Γl,mσ
−
l ρσ

+
m

Effect of coherent and jump terms:

K|k〉〈k| = −Γk|k〉〈k|
J |k〉〈k| = c|g〉〈g|

Eigenelements:

Zk = |k〉〈k|+ α|g〉〈g|
LZk = −ΓkZk

3 exc.

2 exc.

1 exc

0 exc
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”DOUBLE-EXCITATION” EIGENSTATES OF L
L[ρ] = K[ρ] + J [ρ] = −(i/~)

(
Heff ρ− ρH

†
eff

)
+
∑

l,m Γl,mσ
−
l ρσ

+
m

Effect of coherent and jump terms:

K|k1, k2〉〈k1, k2| = −(Γk1
+ Γk2 )|k1, k2〉〈k1, k2|

J |k1, k2〉〈k1, k2| =
∑
k,q

ck,q|k〉〈q|

Eigenelements:

Zk1,k2 = |k1, k2〉〈k1, k2|+
∑

k

αk|k〉〈k|+ β|g〉〈g|

LZk1,k2 = −(Γk1
+ Γk2 )Zk1,k2

3 exc.

2 exc.

1 exc

0 exc

ρ0 = |k1, k2〉〈k1, k2|
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POWER-LAW BEHAVIOR AT LONG TIMES
I Simple picture for the decay structure with a rate model.
I Consequences on observables, p̂ =

∑
j σ

+
j σ
−
j and Ĉ =

∑
i,j σ

+
j σ

+
i σ
−
j σ
−
i .

Example of an initially highly excited state ρ0 = |ee..e〉〈ee..e| =
∑

Λ∈sp(L) cΛZΛ :

〈p̂〉(t) =
∑

Λ∈sp(L)

cΛTr [ZΛp̂] e−Λt
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ATOMIC CLOCK PROTOCOL

Consider an atom with two well
isolated energy levels |g〉 and |e〉.

Clock protocol : determination of ω0.

Ramsey scheme:

I π/2 pulse with an interrogating laser |g〉 → (|g〉+ |e〉)/
√

2.

I Free time evolution in the rotating frame,H0 = −~δσ+σ−, with δ = ωL − ω0.

|g〉+ |e〉
√

2
→
|g〉+ eiδt|e〉
√

2

I −π/2 pulse
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√
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→
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2

I −π/2 pulse

|g〉+ eiδt|e〉
√
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→

(1 + eiδt)|g〉+ (−1 + eiδt)|e〉
2

Measurement of 〈σz〉 = − cos(δt).
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Ramsey scheme:

I π/2 pulse with an interrogating laser |g〉 → (|g〉+ |e〉)/
√
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I Free time evolution in the rotating frame,H0 = −~δσ+σ−, with δ = ωL − ω0.
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I Many atoms with spontaneous emission, S = −N cos(δt)e−Γ0t/2
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0.0

0.8

1.6

ln
|S
| I Central fringe→ reference the laser frequency to

the atomic frequency δ = 0 .

I Sensitivity, for N independent atoms,
∆ω ∼

√
Γ0/(NTavg)

I 1D Atomic lattice clock with subradiant modes, S ∼ cos(δmt)(Γ0t)−0.5

I Central fringe→ reference the laser frequency
toward the frequency of the most subradiant
modes δ ∼ ω(1)

j=1 .

I Sensitivity independent of Γ0
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CONCLUSIONS/PERSPECTIVES

Spontaneous emission represents a fundamental barrier for atom-light interactions.
But, with subradiant collective excitations

I Exponential improvements in photon storage fidelity when increasing the
system size4.

I Evade the limit of spontaneous emission for atomic lattice clocks.

What can be done for other applications ? Photon gates, nonlinear optics, ...,

4
Asenjo-Garcia, Moreno-Cardoner, Albrecht, Kimble, and Chang, PRX 7, 031024 (2017). Albrecht*, Henriet*,

Asenjo-Garcia, Dieterle, Painter and Chang, arxiv (2018)
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