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CHARACTERISTIC DECAY TIMESCALE

» Finite quantum system.

Exponential decay and relaxation to

equilibrium with characteristic
timescale f o< 1/Ti-
I

I'

» What happens in the case of a large system with I,;;, — 0 in the thermodynamic
limit.

Open quantum critical system. No characteristic timescale.

» Here, atomic ensembles with light-matter interaction.
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» Atomic arrays, coupled to light modes.
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Appearance of strongly subradiant modes!, with I',,;;, — 0.

» Decay dynamics in the many-excitation limit. Emergence of a power-law decay
for various observables.

» Consequences for atomic lattice clocks?

Asenjo-Garcia, Moreno-Cardoner, Albrecht, Kimble, and Chang, PRX 7, 031024 (2017). Albrecht*, Henriet*,
Asenjo-Garcia, Dieterle, Painter and Chang, arxiv (2018)
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EFFECTS OF INTERACTIONS : SPIN MODEL

We integrate the photonic degrees of freedom in the Born-Markov approximation®,
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The effective Hamiltonian conserves the excitation number, while 7 describes
quantum jumps with excitation losses.
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SINGLE EXCITATION MANIFOLD
Hfﬁ( = Z?Im:1 ﬁglymo‘;‘ro',;,

» Complex symmetric Hamiltonian ’He(l), with eigenvectors
|w](1)> = Zszl a/’.UjJr |g) associated to eigenvalues \; = h(w; — iI';/2).

» In the limit of large N, a} x e /VN with k € [—m/d, 7/d[. In the following,
single-excitation eigenstates will be denoted |k).

» Subradiant modes for |k| > ko = wp/c. Wavevector of the field associated with
this excitation must verify k? + ki = (wp/c)%
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SINGLE EXCITATION MANIFOLD
Hfﬂ( = Z;\,]mzl hgl,malﬁ_ar;~
1)

» Complex symmetric Hamiltonian He » with eigenvectors

|1/)l<1)> = Z]-:1 oe]l.a;r |g) associated to eigenvalues \; = h(w; — iT';/2).

» In the limit of large N, a} x ¢ //N with k € [~ /d, 7/d[. In the following,
single-excitation eigenstates will be denoted |k).

» Subradiant modes for |k| > ko = wp/c. Wavevector of the field associated with
this excitation must verify k? + k% = (wp/c)?.
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SUBRADIANT EIGENSTATES WITH TWO EXCITATIONS

» For a bosonic Hamiltonian, (Sjub)2 19)-

Probability of having
atoms m and n excited

atom position m

atom position n
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SUBRADIANT EIGENSTATES WITH TWO EXCITATIONS
» Complex symmetric Hamiltonian ’HE(Z), with eigenvectors

(2)y _ §N=-1 5N I st gt
W’z ) = 1=1 Zm:l+1 Bz,mom L] Ig)-
» In the limit of large N, we have for the most subradiant states
Bl % [afl PR afz}, where oz;(l and afz are coefficients of subradiant

single-excitation states.
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» Complex symmetric Hamiltonian ?—ng), with eigenvectors
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SUBRADIANT EIGENSTATES WITH TWO EXCITATIONS
> Complex symmetnc Hamiltonian ’H(ff), with eigenvectors
[Py = SN S B o it 1)-
» In the limit of large N, we have for the most subradiant states
Bl S [al a]f,f - al,(,} afz} where a;.(l and a;.{z are coefficients of subradiant
smgle -excitation states.

Plot of the real part of ,B} =
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» Complex symmetric Hamiltonian ?—[E(f?, with eigenvectors

2 N-1 N
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» In the limit of large N, we have for the most subradiant states
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and a;(z are coefficients of subradiant
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» Two-excitation subradiant eigenstates can thus be written |k, k), with decay

rate ~ I'y, + Iy,.
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» Complex symmetric Hamiltonian ?—[E(f?, with eigenvectors

2 N-1 N
|'¢}[( )> = 1=1 m=I+1 6117"10',_;0'1-’— ‘g>
» In the limit of large N, we have for the most subradiant states

! ki ky ki ky ki
Bl,m X [0y iy — cu 0y*], where o

and a;(z are coefficients of subradiant
single-excitation states.
» Two-excitation subradiant eigenstates can thus be written |k, k), with decay

rate ~ I'y, + Iy,.
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SUBRADIANT EIGENSTATES WITH TWO EXCITATIONS
» Complex symmetric Hamiltonian ?—[E(f?, with eigenvectors
W) = SN Eoi B oo 1)
» In the limit of large N, we have for the most subradiant states

! ki ky ki ky ki
Bl,m X [0y iy — cu 0y*], where o

and a;(z are coefficients of subradiant
single-excitation states.

» Two-excitation subradiant eigenstates can thus be written |k, k), with decay
rate ~ I'y, + Iy,.

» This structure extends to higher number of excitations m < N.
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ATOMIC CLOCK PROTOCOL

Consider an atom with two well
isolated energy levels |g) and |e). |e>

Clock protocol : determination of wy.
§)————
Ramsey scheme:

» /2 pulse with an interrogating laser |g) — (|) + |e))/V/2.
> Free time evolution in the rotating frame, Ho = —hdo o™, with § = w — wy.

) +le) 1g) +ee)
N

» —m/2pulse

8) +e%e) _ (1+eNg) + (=1 +e%)e)
V2 2

Measurement of (%) = — cos(dt).
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» Many atoms with spontaneous emission, S = —N cos(dt)e~0/2
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> Central fringe — reference the laser frequency to
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= 10" > Central fringe — reference the laser frequency to
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& 0 N the atomic frequency § =0 .
S 10 ::
1<01(, 5 > Sensitivity, for N independent atoms,

Aw ~ vV FO/(NTan)
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Spontaneous emission represents a fundamental barrier for atom-light interactions.
But, with subradiant collective excitations

Asenjo-Garcia, Moreno-Cardoner, Albrecht, Kimble, and Chang, PRX 7, 031024 (2017). Albrecht*, Henriet*,
Asenjo-Garcia, Dieterle, Painter and Chang, arxiv (2018)
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CONCLUSIONS/PERSPECTIVES

Spontaneous emission represents a fundamental barrier for atom-light interactions.
But, with subradiant collective excitations

» Exponential improvements in photon storage fidelity when increasing the
system size®.

» Evade the limit of spontaneous emission for atomic lattice clocks.
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CONCLUSIONS/PERSPECTIVES

Spontaneous emission represents a fundamental barrier for atom-light interactions.
But, with subradiant collective excitations

» Exponential improvements in photon storage fidelity when increasing the
system size®.

» Evade the limit of spontaneous emission for atomic lattice clocks.

What can be done for other applications ? Photon gates, nonlinear optics, ...,

4 Asenjo-Garcia, Moreno-Cardoner, Albrecht, Kimble, and Chang, PRX 7, 031024 (2017). Albrecht*, Henriet*,
Asenjo-Garcia, Dieterle, Painter and Chang, arxiv (2018)
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