Exploring higher-dimensional topological physics with ultracold atoms (and photons)

Hannah Price University of Birmingham, UK

In collaboration with:

Martin Wimmer (Erlangen/Jena)

Ulf Peschel (Jena)

Michael Lohse (Munich)

Christian Schweizer Immanuel Bloch (Munich) (Munich)

Tomoki Ozawa (Trento)

Iacopo Carusotto (Trento)

Oded Zilberberg (Zurich)

Nathan Goldman (Brussels)

Outline

1. Introduction to 2D Quantum Hall Systems

2. Topological Physics in Four Dimensions

- 3. Exploring Higher Dimensions with Cold Atoms (or Photons):
 - Synthetic Dimensions
 - Topological Pumping

2D Quantum Hall Systems

- Very robust as topological invariants can only change if gap closes
- Bulk-boundary correspondence links topological invariants to no/ edge states

Topology from geometry

$$\psi_{n,\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n,k}(\mathbf{r})$$
$$\hat{H}_{\mathbf{k}}u_{n,\mathbf{k}} = \mathcal{E}_n(\mathbf{k})u_{n,\mathbf{k}}$$

Geometrical properties:

Berry connection $\mathcal{A}_n(\mathbf{k}) = i \langle u_{n,\mathbf{k}} | \frac{\partial}{\partial \mathbf{k}} | u_{n,\mathbf{k}} \rangle$

Berry curvature $\Omega_n(\mathbf{k}) =
abla imes \mathcal{A}_n(\mathbf{k})$

Topological properties:

First Chern number

$$\nu_1^n = \frac{1}{2\pi} \int_{BZ} \mathrm{d}^2 \mathbf{k} \cdot \Omega_n(\mathbf{k})$$

(Analogy with Gauss-Bonnet theorem for closed surfaces:)

$$\int_{\mathcal{S}_{\text{tot}}} \kappa \mathrm{d}S = 4\pi (1-g)$$

2D Quantum Hall Effect

[Also derivation from Kubo formula] Thouless et al., Phys. Rev. Lett. 49, 405,1982 Quantized conductance:

What do we need for a 2D QH system?

In the continuum:

$$\mathcal{H} = \frac{(\hat{\mathbf{p}} - q\mathbf{A}(\hat{\mathbf{r}}))^2}{2M}$$

In the tight-binding regime e.g. Harper-Hofstadter model:

Hofstadter, PRB, 14, 2239, 1976

Cold atom experiments:

Aidelsburger et al., PRL, 111, 185301 (2013), Miyake et al, PRL, 111, 185302 (2013), Aidelsburger et al., Nat. Phys, 11,162. (2015)

What do we need for a 2D QH system?

Minimal two-band model, e.g. spinless atoms on lattice with two-site unit cell:

$$H(\mathbf{k}) = \varepsilon(\mathbf{k})\hat{I} + \mathbf{d}(\mathbf{k}) \cdot \sigma \qquad \qquad E_{\pm} = \varepsilon(\mathbf{k}) \pm \sqrt{\mathbf{d}(\mathbf{k}) \cdot \mathbf{d}(\mathbf{k})}$$

$$\nu_1^- = \frac{1}{2\pi} \int_{\mathrm{BZ}} \mathrm{d}^2 \mathbf{k} \cdot \Omega_- = \frac{1}{4\pi} \int_{\mathrm{BZ}} \mathrm{d}^2 \mathbf{k} \epsilon^{abc} \hat{d}_a \partial_{k_x} \hat{d}_b \partial_{k_y} \hat{d}_c$$

How can we make these bands topological?

Need to close and then re-open a band-gap

What do we need for a 2D QH system?

Berry curvature flips sign across transition as $d_3 = -m \rightarrow d_3 = m$

Type 1: d_1, d_2 same signs —> increases Ω_- **Type 2:** d_1, d_2 opposite signs —> decreases Ω_-

see e.g. Bernevig & Hughes, "Topological Insulators and Topological Superconductors"

Time-reversal symmetry

Time-reversal symmetry for **spinless** particles

$$\mathcal{T} = \mathcal{K}$$

$$\mathcal{T}^2 = +1$$

$$\mathcal{T} H(\mathbf{k}) \mathcal{T}^{-1} = H(-\mathbf{k}) \quad \text{implies} \quad d_2(\mathbf{k}) = -d_2(-\mathbf{k})$$

$$d_3(\mathbf{k}) = d_3(-\mathbf{k})$$

So Dirac points always come in TRS pairs of opposite type

$$\nu_1^- = \frac{1}{2\pi} \int_{\mathrm{BZ}} \mathrm{d}^2 \mathbf{k} \cdot \Omega_-$$

bands topologically trivial

as TRS implies: $\Omega_{-}(\mathbf{k}) = -\Omega_{-}(\mathbf{k})$

What do we need for a 2D QH system? Break TRS

2D Brickwall Lattice

Cold atom experiments: Tarruell et al, Nature 483, 302 (2012).

Haldane, PRL 61, 2015 (1988) 2D Haldane Model

Separate TRS pairs by adding complex long-range hoppings:

 $H' = -2J' \sin \phi (\sin(k_x + k_y) + \sin(k_x - k_y))\sigma_z + 2J' \cos \phi (\cos(k_x + k_y) + \cos(k_x - k_y))\hat{I}$

breaks TRS, which requires $d_3(\mathbf{k}) = d_3(-\mathbf{k})$

Haldane, PRL 61, 2015 (1988) 2D Haldane Model

Momentum-dependence of extra terms breaks apart the TRS pair

Key points about 2D QH Systems

- Bands labelled by integer first Chern numbers
- Quantized linear response $j_x = -\frac{q^2}{h} E_y \sum_{n \in occ.} \nu_1^n$
- Crucial ingredient is breaking of TRS, e.g.
 - Magnetic fields: Landau levels, Harper-Hofstadter model....
 - 2D Haldane Model

Outline

1. Introduction to Topology

2. Topological Physics in Four Dimensions

- 3. Exploring Higher Dimensions with Cold Atoms (or Photons):
 - Synthetic Dimensions
 - Topological Pumping

Second Chern Number

First Chern number $\nu_1 = \frac{1}{2\pi} \int_{\mathbb{T}^2} \Omega$

Second Chern number

$$\nu_{2} = \frac{1}{8\pi^{2}} \int_{\mathbb{T}^{4}} \Omega \wedge \Omega \in \mathbb{Z},$$
$$= \frac{1}{4\pi^{2}} \int_{\mathbb{T}^{4}} [\Omega^{xy} \Omega^{zw} + \Omega^{wx} \Omega^{zy} + \Omega^{zx} \Omega^{yw}] \mathrm{d}^{4}k$$

(and then the third Chern number in 6D...)

for 6DQH see Petrides, HMP, Zilberberg arXiv:1804.01871 and references there-in

4D Quantum Hall Effect

HMP, Zilberberg, Ozawa, Carusotto & Goldman, PRB 93, 245113 (2016)

What do we need for a 4D QH system?

	Syn	nmetr	ries				Dime	nsions	Ryu et al., NJP, 12, 2010, Chiu et al RMP. 88. 035005 (2016)			
Class	Т	С	S	0	1	2	3	4	5	6	7	
A	0	0	0	\mathbb{Z}	0		0		0	\mathbb{Z}	0	
AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
AI	+	0	0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
BDI	+	+	1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
D	0	+	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
DIII	—	+	1	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	0	2Z	
AII	_	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
CII	_	_	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	
С	0	_	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	
CI	+	—	1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	

1. Preserved TRS for fermions: particles in spin-dependent gauge fields Zhang et al, Science 294, 823 (2001), Qi et al, Phys. Rev. B 78, 195424 (2008).....

2. Broken TRS: 4D Harper-Hofstadter model

Kraus et al, Phys. Rev. Lett. 111, 226401 (2013), HMP et al. 115, 195303 (2015)...

3. Preserved TRS for spinless particles: just lattice connectivity!

HMP, arXiv:1806.05263

What do we need for a 4D QH system?

	Syn	nmetr	ries				Dime	nsions	Ryu et al., NJP, 12, 2010, Chiu et al RMP. 88. 035005 (2016)			
Class	Т	С	S	0	1	2	3	4	5	6	7	
A	0	0	0	\mathbb{Z}	0		0		0	\mathbb{Z}	0	
AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
AI	+	0	0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
BDI	+	+	1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
D	0	+	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
DIII	—	+	1	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	0	2Z	
AII	_	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
CII	_	_	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	
С	0	_	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	
CI	+	—	1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	

1. Preserved TRS for fermions: particles in spin-dependent gauge fields Zhang et al, Science 294, 823 (2001), Qi et al, Phys. Rev. B 78, 195424 (2008).....

2. Broken TRS: 4D Harper-Hofstadter model

Kraus et al, Phys. Rev. Lett. 111, 226401 (2013), HMP et al. 115, 195303 (2015)...

3. Preserved TRS for spinless particles: just lattice connectivity!

Kraus et al, Phys. Rev. Lett. 111, 226401 (2013), HMP et al. 115, 195303 (2015)...

What do we need for a 4D QH system?

	Syn	nmetr	ries				Dime	nsions	Ryu et al., NJP, 12, 2010, Chiu et al RMP. 88, 035005 (2016				
Class	Т	С	S	0	1	2	3	4	5	6	7		
A	0	0	0	\mathbb{Z}	0		0		0	\mathbb{Z}	0		
AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}		
AI	+	0	0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2		
BDI	+	+	1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2		
D	0	+	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0		
DIII	—	+	1	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$		
AII	_	0	0	2Z	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	0		
CII	_	_	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0		
С	0	_	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0		
CI	+	_	1	0	0	0	2Z	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}		

1. Preserved TRS for fermions: particles in spin-dependent gauge fields Zhang et al, Science 294, 823 (2001), Qi et al, Phys. Rev. B 78, 195424 (2008).....

Broken TRS: 4D Harper-Hofstadter model

2.

Kraus et al, Phys. Rev. Lett. 111, 226401 (2013), HMP et al. 115, 195303 (2015)...

3. **Preserved TRS for spinless particles:** just lattice connectivity!

HMP, arXiv:1806.05263

4D Dirac points

Minimal four-band model:

 $H(\mathbf{k}) = \varepsilon(\mathbf{k})\Gamma_0 + \mathbf{d}(\mathbf{k}) \cdot \mathbf{\Gamma}$

Integrand flips sign across transition as $d_5 = -m \rightarrow d_5 = m$

Type 1: d_1, d_2, d_3, d_4 even no/ minus signs —> increases Ω_- Type 2: d_1, d_2, d_3, d_4 odd no/ minus signs —> decreases Ω_-

$$\Gamma_{1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \Gamma_{2} = \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \\ i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \end{pmatrix}, \Gamma_{3} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \Gamma_{4} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix}, \Gamma_{5} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

4D Dirac points

Now TRS for spinless particles

$$\mathcal{T} = \mathcal{K} \\ \mathcal{T}^2 = +1$$

$$\mathcal{T} H(\mathbf{k}) \mathcal{T}^{-1} = H(-\mathbf{k})$$
 implies

$$d_{1}(\mathbf{k}) = d_{1}(-\mathbf{k})$$
$$d_{2}(\mathbf{k}) = -d_{2}(-\mathbf{k})$$
$$d_{3}(\mathbf{k}) = d_{3}(-\mathbf{k})$$
$$d_{4}(\mathbf{k}) = -d_{4}(-\mathbf{k})$$
$$d_{5}(\mathbf{k}) = d_{5}(-\mathbf{k})$$

So Dirac points always come in TRS pairs of the same type

$$\nu_2^- = \frac{1}{8\pi^2} \int_{\mathrm{BZ}} \mathrm{tr}(\Omega_- \wedge \Omega_-) \in 2\mathbb{Z}$$

can be topological with TRS

$$\Gamma_{1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \Gamma_{2} = \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \\ i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \end{pmatrix}, \Gamma_{3} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \Gamma_{4} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix}, \Gamma_{5} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

HMP, arXiv:1806.05263

4D Brickwall Lattice

(Can follow equivalent arguments based on 4D honeycomb lattice)

 $H(\mathbf{k}) = J\left[(24\cos k_x + \cos k_y)\Gamma_1 + \sin k_y\Gamma_2 + (2\cos k_z + \cos k_w)\Gamma_3 + \sin k_w\Gamma_4 + m\Gamma_5\right]$ 2 E/JHopping terms \mathbf{K}_4 \mathbf{K}_{2} \mathbf{K}_2 Onsite enėrgies \mathbf{K}_4 $\mathbf{K}_{1}^{\mathbf{v}}$ $, \Gamma_{3} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \Gamma_{4} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & \mathbf{k} & \mathbf{0} & 0 \\ 0 & \mathbf{k} & \mathbf{0} & 0 \\ i & 0 & 0 & 0 \end{pmatrix}, \Gamma_{5} \mathbf{K} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \mathbf{0} & 0 & -1 & 0 \\ \mathbf{0} & 0 & 0 & -1 \end{pmatrix}$ $\Gamma_1 = .$ 0 i π 0 $-\pi -\pi$ HMP, arXiv:1806.05263 -71 9 11

HMP, arXiv:1806.05263

Key points about 4D QH Systems

- Bands labelled by integer second Chern numbers
- Quantized non-linear response

$$j_y = -\frac{q^3}{h^2} E_z B_{xw} \sum_{n \in occ.} \nu_2^n$$

- Different classes of 4D QH systems
 - 1. Preserved TRS for fermions: spinful particles in non-Abelian gauge fields Zhang et al, Science 294, 823 (2001), Qi et al, Phys. Rev. B 78, 195424 (2008).....
 - 2. Broken TRS: 4D Harper-Hofstadter model....

Kraus et al, Phys. Rev. Lett. 111, 226401 (2013), HMP et al. 115, 195303 (2015)...

3. Preserved TRS for spinless particles: just lattice connectivity!

HMP, arXiv:1806.05263

Outline

1. Introduction to Topology

2. Topological Physics in Four Dimensions

- 3. Exploring Higher Dimensions with Cold Atoms (or Photons):
 - Synthetic Dimensions
 - Topological Pumping

Synthetic Dimensions

General Concept:

1. Identify a set of states and reinterpret as sites in a synthetic dimension

2. Couple these modes to simulate a tight-binding "hopping"

Boada et al., PRL, 108, 133001 (2012), Celi et al., PRL, 112, 043001 (2014)

Synthetic dimension with internal atomic states

Ingredients:

- 1. Reinterpret states as sites in synthetic dimension -> Internal atomic states
- 2. Couple states to simulate a "hopping" term
- -> Coupling lasers

Synthetic dimension with harmonic trap states

Ingredients:

- 1. Reinterpret states as sites in synthetic dimension -> Harmonic oscillator states
- 2. Couple states to simulate a "hopping" term -> Shaking of harmonic trap

Also: synthetic dimensions for photons: Optomechanics: Schmidt et al, Optica 2, 7, 635 (2015) Optical cavities: Luo et al, Nature Comm. 6, 7704, (2015) Integrated photonics: Ozawa, HMP, Goldman, Zilberberg, & Carusotto, Phys. Rev. A 93, 043827 (2016), L. Yuan, Y. Shi & S. Fan, Optics Letters 41, 4, 741 (2016) Ozawa & Carusotto, PRL, 118, 013601 (2017) Waveguides: Lustig et al, arXiv:1807.01983

4D QH with Synthetic Dimensions

HMP, Zilberberg, Ozawa, Carusotto & Goldman, Phys. Rev. Lett. 115, 195303 (2015)

Outline

1. Introduction to Topology

2. Topological Physics in Four Dimensions

- 3. Exploring Higher Dimensions with Cold Atoms or Photons:
 - Synthetic Dimensions
 - Topological Pumping

Topological Pumping

Topology of higher-dimensional system can be seen in special lower-dimensional timedependent systems

D. J. Thouless, Phys. Rev. B 27, 6083 (1983)

Semiclassical Dynamics C.f. $\dot{\mathbf{r}} = \frac{\partial \varepsilon}{\partial \mathbf{k}} - \dot{\mathbf{k}} \times \mathbf{\Omega}$ Motion of a wave-packet anomalous velocity $\dot{x}_j = \frac{\partial \varepsilon_j(\varphi, Q)}{\partial Q} + \dot{\varphi} \Omega_j^{\varphi, Q}$ \mathcal{E} Xiao et al., RMP, 82, 1959 (2010) $x_j = \int_0^T \frac{\partial \varepsilon_j(\varphi, Q)}{\partial Q} \mathrm{d}t + \int_0^{2\pi} \Omega_j^{\varphi, Q} \mathrm{d}\varphi$ Unquantized shift after a pump cycle **Geometrical Pump:** pumping of a wave-packet Photonic expt: M. Wimmer, <u>HMP</u>, I. Carusotto & U. Peschel, Nat. Phys. 13, 545–550 (2017)

Quantized shift after a pump cycle

 $e = \hbar = 1$

$$x_j = \frac{1}{2\pi} \int_{\mathrm{BZ}} \int_0^{2\pi} \Omega_j^{\varphi,Q} \mathrm{d}Q \mathrm{d}\varphi = \nu_1$$

Topological Pump: pumping of a band insulator

 \mathcal{E}

Example of 1D topological pumping

e.g. band insulator in a timedependent superlattice

 $V_s \sin^2(\pi x/d_s) + V_l \sin^2(\pi x/d_l - \varphi/2)$

Topological pumping in photonics: Kraus et al. PRL, 109, 106402 (2012) Hu et al Phys. Rev. B 95, 184306 (2017)... **Topological pumping in cold atoms:** Lohse, M et al. Nat. Phys. 12, 350–354 (2016). Nakajima, S. et al. Nat. Phys. 12, 296–300 (2016).

$$x(T) \propto \nu_1$$

Going from 2D QH to 1D Pump

• 2D Harper-Hofstadter model

$$\hat{H} = -\sum_{m,n} \left(J_x \, \hat{a}_{m+1,n}^{\dagger} \hat{a}_{m,n} + J_z \, e^{-im\Phi_{xz}} \hat{a}_{m,n+1}^{\dagger} \hat{a}_{m,n} \right) + \text{h.c.}$$
P. G. Harper, Proc. Phys. Soc. A (1955)

M. Y. Azbel, Sov. Phys. JETP (1964) D. Hofstadter, Phys. Rev. B (1976)

Ansatz: Bloch waves along z:
$$\Psi_{mn} = e^{ik_z d_s n} \cdot \psi_m$$

Going from 2D QH to 1D Pump

• 2D Harper-Hofstadter model

$$\hat{H} = -\sum_{m,n} \left(J_x \, \hat{a}_{m+1,n}^{\dagger} \hat{a}_{m,n} + J_z \, e^{-im\Phi_{xz}} \hat{a}_{m,n+1}^{\dagger} \hat{a}_{m,n} \right) + \text{h.c.}$$

P. G. Harper, Proc. Phys. Soc. A (1955) M. Y. Azbel, Sov. Phys. JETP (1964) D. Hofstadter, Phys. Rev. B (1976)

Ansatz: Bloch waves along z:
$$\Psi_{mn} = e^{ik_z d_s n} \cdot \psi_m$$

• 1D Harper model

 $\hat{H}_{1D} = \sum_{m} \left[-J_x (\hat{a}_{m+1}^{\dagger} \hat{a}_m + \text{h.c.}) - 2J_z \cos(\Phi_{xz} x/d_s - d_s k_z) \hat{a}_m^{\dagger} \hat{a}_m \right]$

P. G. Harper, Proc. Phys. Soc. A (1955) S. Aubry/G. André, Ann. Isr. Phys. Soc.(1980)

 \rightarrow maps onto 1D superlattice with dynamical phase ϕ

$$-J_x\left(\hat{a}_{m+1}^{\dagger}\hat{a}_m + \text{h.c.}\right) - V_l\cos\left(2\pi x/d_l - \varphi\right)\hat{a}_m^{\dagger}\hat{a}_m$$

 $\Phi_{xz} = 2\pi d_s/d_l$

 d_{\cdot}

0

4D QH with a 2D topological pump

4D Harper-Hofstadter model

$$\hat{H} = -\sum_{m,m',n,n'} (J_x \hat{a}_{m+1,m',n,n'}^{\dagger} a_{m,m',n,n'} + J_z e^{-im\Phi_{xz}} \hat{a}_{m,m'+1,n,n'}^{\dagger} a_{m,m',n,n'} + J_y \hat{a}_{m,m',n+1,n'}^{\dagger} a_{m,m',n,n'} + J_w e^{-in\Phi_{yw} - im\tilde{\Phi}_{xw}} \hat{a}_{m,m',n,n'+1}^{\dagger} a_{m,m',n,n'}) + \text{h.c.}$$

4D QH with a 2D topological pump

Ansatz: Bloch waves along z and w

$$\Psi_{m,m',n,n'} = e^{ik_z d_s m'} e^{ik_w d_s n'} \psi_{mn}$$

$$\hat{H}_{2D} = \sum_{m,n} \left[-J_x(\hat{a}_{m+1,n}^{\dagger} \hat{a}_{m,n} + \text{h.c.}) - J_y(\hat{a}_{m+1,n}^{\dagger} \hat{a}_{m,n} + \text{h.c.}) + \left(-2J_z \cos(\Phi_{xz} x/d_s - d_s k_z) - 2J_w \cos(\Phi_{yw} y/d_s + \tilde{\Phi}_{xw} x/d_s - d_s k_w) \right) \hat{a}_{m,n}^{\dagger} \hat{a}_{m,n} \right]$$

Y. E. Kraus et al., Phys. Rev. Lett. 111, 226401 (2013)

2D Topological Pump

2D topological pump

Use a *tilted* timedependent 2D optical superlattice of atoms Pump along x but atoms also move along y due to tilt

 $x(T) = \nu_1 d_l$ $y(T) = \nu_2 \bar{B}_{xw} d_l$

∝B

4D QH with a 2D topological pump

• Qualitative signatures from in-situ measurements

• Quantitative band-mapping measurements with small atom cloud as local probe

Reflects
$$y = \nu_2 \theta d_l$$

Lohse, Schweizer, HMP, Zilberberg, Bloch, Nature 553, 55–58 (2018)

Edge states of 2D pump

 Complementary experiment: edge states of 2D photonics pump (bulk-boundary correspondence)

O. Zilberberg et al., Nature 553, 59 (2018)

Also 2nd Chern number measurement in parameter-space of 4-level system: Sugawa et al., arXiv:1610.06228

Explored a dynamical version of the **4D QH effect** in a 2D pump for atoms

Review: *"Topological Photonics"* Tomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman, Mohammad Hafezi, Ling Lu, Mikael Rechtsman, David Schuster, Jonathan Simon, Oded Zilberberg, Iacopo Carusotto arXiv:1802.04173

and thanks again to

Martin Wimmer (Erlangen/Jena)

Ulf Peschel (Jena)

Michael Lohse (Munich)

(Munich)

Christian Schweizer Immanuel Bloch (Munich)

Tomoki Ozawa (Trento)

lacopo Carusotto (Trento)

Oded Zilberberg (Zurich)

Nathan Goldman (Brussels)