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Bands have non-zero topological 
first Chern numbers

Figure from 
C. L. Kane & E. J. Mele, 

Science  314, 5806, 
1692 (2006)

2D Quantum Hall Systems

Bands are topologically-trivial

• Very robust as topological invariants can only change if gap closes 

• Bulk-boundary correspondence links topological invariants to no/ edge states 
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Topology from geometry

Z

Stot

dS = 4⇡(1� g)

(Analogy with Gauss-Bonnet theorem for closed surfaces:)

 n,k(r) = eik·run,k(r)

Ĥkun,k = En(k)un,k

The Berry curvature in a lattice system
Consider a particle moving on a two-dimensional lattice:

The eigenfunctions are Bloch waves

The eigenenergies are Bloch bands

The Berry curvature of the    th band: 
An(k) = ihun,k|
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Geometrical properties:

Topological properties:

First Chern number

Berry curvature

Berry connection
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2D Quantum Hall Effect

Karplus & Luttinger Phys. Rev. 95, 1154 (1954)… 
Chang & Niu, PRL, 75, 1348 (1995)…  
Review: Xiao et al, RMP, 82, 1959  (2010) 

“Anomalous velocity”: 
analogous to Lorentz force

Semiclassical dynamics of a wavepacket in a lattice
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Quantized 
conductance:
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[Also derivation from Kubo formula]

For a band insulator
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H =
(p̂� qA(r̂))2

2M

In the continuum:

What do we need for a 2D QH system?
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In the tight-binding regime e.g. Harper-Hofstadter model:

H = J
X

m,n

(ĉ†m+1,nĉm,n + ei2⇡�mĉ†m,n+1ĉm,n) + h.c.

�

(m,n) (m+ 1, n)

(m,n+ 1) (m+ 1, n+ 1)

✓ym+1,n � ✓ym,n � ✓xm,n+1 + ✓xm,n

= � e

~ [B(m+ 1)a2 �Bma2]

= 2⇡
�

�0
= 2⇡↵

Cold atom experiments:  
Aidelsburger et al., PRL, 111, 185301 (2013), Miyake et al, PRL, 111, 185302 (2013), Aidelsburger et al., Nat. Phys, 11,162. (2015) 

Hofstadter, PRB, 14, 2239, 1976 
  



H(k) = "(k)Î + d(k) · � E± = "(k)±
p
d(k) · d(k)

Minimal two-band model, e.g. spinless atoms on 
lattice with two-site unit cell:

What do we need for a 2D QH system?

⌫�1 =
1

2⇡

Z

BZ
d2k · ⌦� =

1

4⇡

Z

BZ
d2k✏abcd̂a@kx d̂b@ky d̂c

The Berry curvature in a lattice system
Consider a particle moving on a two-dimensional lattice:

The eigenfunctions are Bloch waves

The eigenenergies are Bloch bands

The Berry curvature of the    th band: 

How can we make these bands topological? 

Need to close and then re-open a band-gap



H(q) ⇡ vxqx�x + vyqy�y

Dirac
cone

What do we need for a 2D QH system?

qx

qy
E

m = 0

H(q) ⇡ vxqx�x + vyqy�y +m�z

m

d(q) ⇡ (vxqx, vyqy,m)⌦� =
1

2
✏abcd̂a@qx d̂b@qy d̂c d̂ = d/|d|

m+ve-ve

Expanded around Dirac point:

⌦�

⌦�

Berry curvature flips sign across transition as 

Type 1:              same signs —> increases    

Type 2:              opposite signs —> decreases
d1, d2

d1, d2

d3 = �m ! d3 = m

see e.g. Bernevig & Hughes, 
“Topological Insulators and 
Topological Superconductors” 
  



Time-reversal symmetry

T =K T H(k)T �1=H(�k)

d1(k)=d1(�k)

d2(k)=�d2(�k)

d3(k)=d3(�k)T 2 = +1

Time-reversal symmetry for spinless particles

implies

K �K

Type 1 Type 2

So Dirac points always come in TRS pairs of opposite type

⌫�1 =
1

2⇡

Z

BZ
d2k · ⌦� =

1
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Z

BZ
d2k✏abcd̂a@kx d̂b@ky d̂c

bands topologically trivial

⌦�(k) = �⌦�(k)
as TRS implies:

What do we need for a 2D QH system?     Break TRS



2D Brickwall Lattice

H(k) = J [(2 cos kx + cos ky)�1

+ sin ky�2 +m�3]

x

y

J

A B

N.B. very similar to the 
honeycomb lattice…

Cold atom experiments: Tarruell et al, Nature 483, 302 (2012).  

m
TrivialTrivial m = 0

⌦�
⌦�

m = Jm = �J

on-site 
energy 

imbalance



Separate TRS pairs by adding complex long-range hoppings:

2D Haldane Model Haldane, PRL 61, 2015 (1988) 
  

x

y

A B

J 0e�i� J 0ei�

H
0 = �2J 0 sin�(sin(kx + ky) + sin(kx � ky))�z + 2J 0 cos�(cos(kx + ky) + cos(kx � ky))Î

d3(k)=d3(�k)
breaks TRS, which 

requires



Momentum-dependence of extra terms breaks apart the TRS pair

m
Topological TrivialTrivial

J 0 = J/2

Figures for

2D Haldane Model 

⌫�1 = 1

m = 2
p
3J 0 sin(�)m = �2

p
3J 0 sin(�)� = ⇡/10

m = 0 m = Jm = �J

⌦� ⌦�
⌦�

Haldane, PRL 61, 2015 (1988) 
  



Key points about 2D QH Systems

•Bands labelled by integer first Chern numbers 

• Quantized linear response 

•Crucial ingredient is breaking of TRS, e.g. 

•  Magnetic fields: Landau levels, Harper-Hofstadter model…. 

•  2D Haldane Model
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1. Introduction to Topology 

2. Topological Physics in Four Dimensions

3. Exploring Higher Dimensions with Cold Atoms (or Photons):  

• Synthetic Dimensions  

• Topological Pumping

Outline



The Berry curvature in a lattice system
Consider a particle moving on a two-dimensional lattice:

The eigenfunctions are Bloch waves

The eigenenergies are Bloch bands

The Berry curvature of the    th band: 

Second Chern Number

⌦=
1

2
⌦µ⌫(k)dkµ^dk⌫

⌦µ⌫
n = i


h@un

@kµ
|@un

@k⌫
i � h@un

@k⌫
|@un

@kµ
i
�

The Berry curvature in a lattice system
Consider a particle moving on a two-dimensional lattice:

The eigenfunctions are Bloch waves

The eigenenergies are Bloch bands

The Berry curvature of the    th band: 
kz kw

⌫2=
1

8⇡2

Z

T4

⌦ ^ ⌦ 2 Z ,

=
1

4⇡2

Z

T4

[⌦xy⌦zw+⌦wx⌦zy+⌦zx⌦yw]d4k

Second Chern 
number

First Chern 
number ⌫1 =

1

2⇡

Z

T2

⌦

(and then the third Chern number in 6D… )
 for 6DQH see Petrides, HMP, Zilberberg arXiv:1804.01871 and references there-in



Fw

⌦yw

Bxw
vx

4D Quantum Hall Effect

Ez

vy

Fw

vx

Bµ⌫ = @µA⌫ � @⌫Aµ

⌦zx

Adding a perturbing electric and magnetic field

ṙµ(k) =
@E(k)
@kµ

� k̇⌫⌦
µ⌫(k),

k̇µ = �Eµ � ṙ⌫Bµ⌫ ,

�q = ~ = 1

jy = � q3

h2
EzBxw

X

n2occ.

⌫n2

ṙµ =
@E
@kµ

+ E⌫⌦
µ⌫ + ṙ�B⌫�⌦

µ⌫

⇡ @E
@kµ

+ E⌫⌦
µ⌫ +

✓
@E
@k�

+ E�⌦
�� +

@E
@k↵

B�↵⌦
��

◆
B⌫�⌦

µ⌫

HMP, Zilberberg, Ozawa, Carusotto & Goldman, PRL 115, 195303 (2015) 
HMP, Zilberberg, Ozawa, Carusotto & Goldman, PRB 93, 245113 (2016) 

[Note, this is only the “Lorentz-type 
4DQH”, also “density-type 4DQH”…] 
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[⌦xy⌦zw+⌦wx⌦zy+⌦zx⌦yw]d4k



What do we need for a 4D QH system?

• Quantized non-linear response 

•Bands labelled by integer second Chern numbers 

•Different classes of 4D QH systems 

1. Preserved TRS for fermions: particles in spin-dependent gauge fields 

2.  Broken TRS: 4D Harper-Hofstadter model 

3.  Preserved TRS for spinless particles: just lattice connectivity! 

Zhang et al, Science 294, 823 (2001), Qi et al, Phys. Rev. B  78, 195424 (2008).…. 

Kraus et al, Phys. Rev. Lett. 111, 226401 (2013), HMP et al. 115, 195303 (2015)…

HMP, arXiv:1806.05263

discrete PH transformation, Ψ̂ → −iΨ̂c or −Ψ̂c. That is, if we
interpret Eq. (2.29) as a particle-number conserving system,
then Ûπ

Si ŜzÛ
−π
Si ¼ −Ŝz for i ¼ x, y can be viewed as a charge

conjugation Ĉ Q̂ Ĉ−1 ¼ −Q̂ . Observe that the π rotations Ûπ
Si

are examples of PH transformations which square to −1,
which is in contrast to the PH constraint of class D. For the
single-particle Hamiltonian H the π-rotation symmetries Ûπ

Si
lead to the condition

ρ2HTρ2 ¼ −H: ð2:34Þ

The ensemble of Hamiltonians satisfying this condition is
called symmetry class C. We note that for quadratic
Hamiltonians the π-rotation symmetry constrains of Ûπ

Si
actually correspond to a full SUð2Þ spin-rotation symmetry.
This is because for an arbitrary SUð2Þ rotation around Sx or
Sy, the Hamiltonian Ĥ is transformed into a superposition of
Ψ̂†HΨ̂ and its conjugate Ψ̂c†HΨ̂c [i.e., Ĥ → αΨ̂†HΨ̂þ
ð1 − αÞΨ̂c†HΨ̂c, for some α], since Ψ̂†HΨ̂c ¼ Ψ̂c†HΨ̂ ¼ 0.
It follows from Ψ̂†HΨ̂ ¼ Ψ̂c†HΨ̂c together with the Sz
invariance that the BdG Hamiltonian is fully invariant under
SUð2Þ spin-rotation symmetry.
Finally, imposing TRS (2.31) in addition to Sz conservation

leads to Ψ̂†HΨ̂ → Ψ̂Tρ2H%ρ2ðΨ̂†ÞT ¼ −Ψ̂†ρ2H†ρ2Ψ̂ ¼ Ĥ,
i.e., ρ2H†ρ2 ¼ −H. Combined with PHS (2.34), this gives
the conditions

ρ2HTρ2 ¼ −H; H% ¼ H; ð2:35Þ

which defines symmetry class CI.

E. Symmetry classes of tenfold way

Let us now discuss a general symmetry classification of
single-particle Hamiltonians in terms of nonunitary sym-
metries. Note that unitary symmetries, which commute with
the Hamiltonian, allow us to bring the Hamiltonian into a
block diagonal form. Here our aim is to classify the symmetry
properties of these irreducible blocks, which do not exhibit
any unitary symmetries. So far we have considered the
following set of discrete symmetries:

T−1HT ¼ H; T ¼ UTK; UTU%
T ¼ & 1;

C−1HC ¼ −H; C ¼ UCK; UCU%
C ¼ & 1;

S−1HS ¼ −H; S ¼ US; U2
S ¼ 1; ð2:36Þ

where K is the complex conjugation operator. As it turns out,
this set of symmetries is exhaustive. That is, without loss
of generality we may assume that there is only a single TRS
with operator T and a single PHS with operator C. If the
Hamiltonian H was invariant under, say, two PH operations
C1 and C2, then the composition C1 · C2 of these two
symmetries would be a unitary symmetry of the single-particle
Hamiltonian H, i.e., the product UC1

· U%
C2

would commute
with H. Hence, it would be possible to bring H into block

form, such thatUC1
· U%

C2
is a constant on each block. Thus, on

each block UC1
and UC2

would be trivially related to each
other, and therefore it would be sufficient to consider only one
of the two PH operations. The product T · C, however,
corresponds to a unitary symmetry operation for the single-
particle Hamiltonian H. But in this case, the unitary matrix
UT ·U%

C does not commute, but anticommutes with H.
Therefore, T · C does not represent an “ordinary” unitary
symmetry of H. This is the reason why we need to consider
the product T · C [i.e., chiral symmetry S in Eq. (2.36)] as an
additional crucial ingredient for the classification of the
irreducible blocks, besides TR and PH symmetries.
Now it is easy to see that there are only ten possible ways

for how a Hamiltonian H can transform under the general
nonunitary symmetries (2.36). First we observe that there are
three different possibilities for how H can transform under
TRS (T): (i) H is not TR invariant, which we denote by T ¼ 0
in Table I; (ii) the Hamiltonian is TR invariant and the TR
operator T squares toþ1, in which case we write T ¼ þ1; and
(iii) H is symmetric under TR and T squares to −1, which we
denote by T ¼ −1. Similarly, there are three possible ways
for how the Hamiltonian H can transform under PHS with
PH operator C (again, C can square to þ1 or −1). For these
three possibilities we write C ¼ 0, þ1, −1. Hence, there are
3 × 3 ¼ 9 possibilities for how H can transform under both
TRS and PHS. These are not yet all ten cases, since it is also
necessary to consider the behavior of the Hamiltonian under
the product S ¼ T · C. A moment’s thought shows that for
eight of the nine possibilities the presence or absence of
S ¼ T · C is fully determined by howH transforms under TRS
and PHS. (We write S ¼ 0 if S is not a symmetry of the
Hamiltonian, and S ¼ 1 if it is.) But in the case where both
TRS and PHS are absent, there exists the extra possibility
that S is still conserved, i.e., either S ¼ 0 or S ¼ 1 is possible.
This then yields ð3 × 3 − 1Þ þ 2 ¼ 10 possible behaviors of
the Hamiltonian.

TABLE I. Periodic table of topological insulators and supercon-
ductors; δ ≔ d − D , where d is the space dimension and D þ 1 is the
codimension of defects; the leftmost column (A;AIII;…;CI) denotes
the ten symmetry classes of fermionic Hamiltonians, which are
characterized by the presence or absence of time-reversal (T),
particle-hole (C), and chiral (S) symmetries of different types denoted
by & 1. The entriesZ,Z2, 2Z, and 0 represent the presence or absence
of nontrivial topological insulators or superconductors or topological
defects, and when they exist, types of these states. The case of D ¼ 0
(i.e., δ ¼ d) corresponds to the tenfold classification of gapped bulk
topological insulators and superconductors.

δ
Class T C S 0 1 2 3 4 5 6 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

AI þ 0 0 Z 0 0 0 2Z 0 Z2 Z2

BDI þ þ 1 Z2 Z 0 0 0 2Z 0 Z2

D 0 þ 0 Z2 Z2 Z 0 0 0 2Z 0
DIII − þ 1 0 Z2 Z2 Z 0 0 0 2Z
AII − 0 0 2Z 0 Z2 Z2 Z 0 0 0
CII − − 1 0 2Z 0 Z2 Z2 Z 0 0
C 0 − 0 0 0 2Z 0 Z2 Z2 Z 0
CI þ − 1 0 0 0 2Z 0 Z2 Z2 Z
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discrete PH transformation, Ψ̂ → −iΨ̂c or −Ψ̂c. That is, if we
interpret Eq. (2.29) as a particle-number conserving system,
then Ûπ

Si ŜzÛ
−π
Si ¼ −Ŝz for i ¼ x, y can be viewed as a charge

conjugation Ĉ Q̂ Ĉ−1 ¼ −Q̂ . Observe that the π rotations Ûπ
Si

are examples of PH transformations which square to −1,
which is in contrast to the PH constraint of class D. For the
single-particle Hamiltonian H the π-rotation symmetries Ûπ

Si
lead to the condition

ρ2HTρ2 ¼ −H: ð2:34Þ

The ensemble of Hamiltonians satisfying this condition is
called symmetry class C. We note that for quadratic
Hamiltonians the π-rotation symmetry constrains of Ûπ

Si
actually correspond to a full SUð2Þ spin-rotation symmetry.
This is because for an arbitrary SUð2Þ rotation around Sx or
Sy, the Hamiltonian Ĥ is transformed into a superposition of
Ψ̂†HΨ̂ and its conjugate Ψ̂c†HΨ̂c [i.e., Ĥ → αΨ̂†HΨ̂þ
ð1 − αÞΨ̂c†HΨ̂c, for some α], since Ψ̂†HΨ̂c ¼ Ψ̂c†HΨ̂ ¼ 0.
It follows from Ψ̂†HΨ̂ ¼ Ψ̂c†HΨ̂c together with the Sz
invariance that the BdG Hamiltonian is fully invariant under
SUð2Þ spin-rotation symmetry.
Finally, imposing TRS (2.31) in addition to Sz conservation

leads to Ψ̂†HΨ̂ → Ψ̂Tρ2H%ρ2ðΨ̂†ÞT ¼ −Ψ̂†ρ2H†ρ2Ψ̂ ¼ Ĥ,
i.e., ρ2H†ρ2 ¼ −H. Combined with PHS (2.34), this gives
the conditions

ρ2HTρ2 ¼ −H; H% ¼ H; ð2:35Þ

which defines symmetry class CI.

E. Symmetry classes of tenfold way

Let us now discuss a general symmetry classification of
single-particle Hamiltonians in terms of nonunitary sym-
metries. Note that unitary symmetries, which commute with
the Hamiltonian, allow us to bring the Hamiltonian into a
block diagonal form. Here our aim is to classify the symmetry
properties of these irreducible blocks, which do not exhibit
any unitary symmetries. So far we have considered the
following set of discrete symmetries:

T−1HT ¼ H; T ¼ UTK; UTU%
T ¼ & 1;

C−1HC ¼ −H; C ¼ UCK; UCU%
C ¼ & 1;

S−1HS ¼ −H; S ¼ US; U2
S ¼ 1; ð2:36Þ

where K is the complex conjugation operator. As it turns out,
this set of symmetries is exhaustive. That is, without loss
of generality we may assume that there is only a single TRS
with operator T and a single PHS with operator C. If the
Hamiltonian H was invariant under, say, two PH operations
C1 and C2, then the composition C1 · C2 of these two
symmetries would be a unitary symmetry of the single-particle
Hamiltonian H, i.e., the product UC1

· U%
C2

would commute
with H. Hence, it would be possible to bring H into block

form, such thatUC1
· U%

C2
is a constant on each block. Thus, on

each block UC1
and UC2

would be trivially related to each
other, and therefore it would be sufficient to consider only one
of the two PH operations. The product T · C, however,
corresponds to a unitary symmetry operation for the single-
particle Hamiltonian H. But in this case, the unitary matrix
UT ·U%

C does not commute, but anticommutes with H.
Therefore, T · C does not represent an “ordinary” unitary
symmetry of H. This is the reason why we need to consider
the product T · C [i.e., chiral symmetry S in Eq. (2.36)] as an
additional crucial ingredient for the classification of the
irreducible blocks, besides TR and PH symmetries.
Now it is easy to see that there are only ten possible ways

for how a Hamiltonian H can transform under the general
nonunitary symmetries (2.36). First we observe that there are
three different possibilities for how H can transform under
TRS (T): (i) H is not TR invariant, which we denote by T ¼ 0
in Table I; (ii) the Hamiltonian is TR invariant and the TR
operator T squares toþ1, in which case we write T ¼ þ1; and
(iii) H is symmetric under TR and T squares to −1, which we
denote by T ¼ −1. Similarly, there are three possible ways
for how the Hamiltonian H can transform under PHS with
PH operator C (again, C can square to þ1 or −1). For these
three possibilities we write C ¼ 0, þ1, −1. Hence, there are
3 × 3 ¼ 9 possibilities for how H can transform under both
TRS and PHS. These are not yet all ten cases, since it is also
necessary to consider the behavior of the Hamiltonian under
the product S ¼ T · C. A moment’s thought shows that for
eight of the nine possibilities the presence or absence of
S ¼ T · C is fully determined by howH transforms under TRS
and PHS. (We write S ¼ 0 if S is not a symmetry of the
Hamiltonian, and S ¼ 1 if it is.) But in the case where both
TRS and PHS are absent, there exists the extra possibility
that S is still conserved, i.e., either S ¼ 0 or S ¼ 1 is possible.
This then yields ð3 × 3 − 1Þ þ 2 ¼ 10 possible behaviors of
the Hamiltonian.

TABLE I. Periodic table of topological insulators and supercon-
ductors; δ ≔ d − D , where d is the space dimension and D þ 1 is the
codimension of defects; the leftmost column (A;AIII;…;CI) denotes
the ten symmetry classes of fermionic Hamiltonians, which are
characterized by the presence or absence of time-reversal (T),
particle-hole (C), and chiral (S) symmetries of different types denoted
by & 1. The entriesZ,Z2, 2Z, and 0 represent the presence or absence
of nontrivial topological insulators or superconductors or topological
defects, and when they exist, types of these states. The case of D ¼ 0
(i.e., δ ¼ d) corresponds to the tenfold classification of gapped bulk
topological insulators and superconductors.

δ
Class T C S 0 1 2 3 4 5 6 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

AI þ 0 0 Z 0 0 0 2Z 0 Z2 Z2

BDI þ þ 1 Z2 Z 0 0 0 2Z 0 Z2

D 0 þ 0 Z2 Z2 Z 0 0 0 2Z 0
DIII − þ 1 0 Z2 Z2 Z 0 0 0 2Z
AII − 0 0 2Z 0 Z2 Z2 Z 0 0 0
CII − − 1 0 2Z 0 Z2 Z2 Z 0 0
C 0 − 0 0 0 2Z 0 Z2 Z2 Z 0
CI þ − 1 0 0 0 2Z 0 Z2 Z2 Z
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• Raman transitions between internal states with recoil momentum along y [see Celi et al.]
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What do we need for a 4D QH system?
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•Bands labelled by integer second Chern numbers 

•Different classes of 4D QH systems 

1. Preserved TRS for fermions: particles in spin-dependent gauge fields 

2.  Broken TRS: 4D Harper-Hofstadter model 

3.  Preserved TRS for spinless particles: just lattice connectivity! 

Zhang et al, Science 294, 823 (2001), Qi et al, Phys. Rev. B  78, 195424 (2008).…. 

Kraus et al, Phys. Rev. Lett. 111, 226401 (2013), HMP et al. 115, 195303 (2015)…

HMP, arXiv:1806.05263

discrete PH transformation, Ψ̂ → −iΨ̂c or −Ψ̂c. That is, if we
interpret Eq. (2.29) as a particle-number conserving system,
then Ûπ

Si ŜzÛ
−π
Si ¼ −Ŝz for i ¼ x, y can be viewed as a charge

conjugation Ĉ Q̂ Ĉ−1 ¼ −Q̂ . Observe that the π rotations Ûπ
Si

are examples of PH transformations which square to −1,
which is in contrast to the PH constraint of class D. For the
single-particle Hamiltonian H the π-rotation symmetries Ûπ

Si
lead to the condition

ρ2HTρ2 ¼ −H: ð2:34Þ

The ensemble of Hamiltonians satisfying this condition is
called symmetry class C. We note that for quadratic
Hamiltonians the π-rotation symmetry constrains of Ûπ

Si
actually correspond to a full SUð2Þ spin-rotation symmetry.
This is because for an arbitrary SUð2Þ rotation around Sx or
Sy, the Hamiltonian Ĥ is transformed into a superposition of
Ψ̂†HΨ̂ and its conjugate Ψ̂c†HΨ̂c [i.e., Ĥ → αΨ̂†HΨ̂þ
ð1 − αÞΨ̂c†HΨ̂c, for some α], since Ψ̂†HΨ̂c ¼ Ψ̂c†HΨ̂ ¼ 0.
It follows from Ψ̂†HΨ̂ ¼ Ψ̂c†HΨ̂c together with the Sz
invariance that the BdG Hamiltonian is fully invariant under
SUð2Þ spin-rotation symmetry.
Finally, imposing TRS (2.31) in addition to Sz conservation

leads to Ψ̂†HΨ̂ → Ψ̂Tρ2H%ρ2ðΨ̂†ÞT ¼ −Ψ̂†ρ2H†ρ2Ψ̂ ¼ Ĥ,
i.e., ρ2H†ρ2 ¼ −H. Combined with PHS (2.34), this gives
the conditions

ρ2HTρ2 ¼ −H; H% ¼ H; ð2:35Þ

which defines symmetry class CI.

E. Symmetry classes of tenfold way

Let us now discuss a general symmetry classification of
single-particle Hamiltonians in terms of nonunitary sym-
metries. Note that unitary symmetries, which commute with
the Hamiltonian, allow us to bring the Hamiltonian into a
block diagonal form. Here our aim is to classify the symmetry
properties of these irreducible blocks, which do not exhibit
any unitary symmetries. So far we have considered the
following set of discrete symmetries:

T−1HT ¼ H; T ¼ UTK; UTU%
T ¼ & 1;

C−1HC ¼ −H; C ¼ UCK; UCU%
C ¼ & 1;

S−1HS ¼ −H; S ¼ US; U2
S ¼ 1; ð2:36Þ

where K is the complex conjugation operator. As it turns out,
this set of symmetries is exhaustive. That is, without loss
of generality we may assume that there is only a single TRS
with operator T and a single PHS with operator C. If the
Hamiltonian H was invariant under, say, two PH operations
C1 and C2, then the composition C1 · C2 of these two
symmetries would be a unitary symmetry of the single-particle
Hamiltonian H, i.e., the product UC1

· U%
C2

would commute
with H. Hence, it would be possible to bring H into block

form, such thatUC1
· U%

C2
is a constant on each block. Thus, on

each block UC1
and UC2

would be trivially related to each
other, and therefore it would be sufficient to consider only one
of the two PH operations. The product T · C, however,
corresponds to a unitary symmetry operation for the single-
particle Hamiltonian H. But in this case, the unitary matrix
UT ·U%

C does not commute, but anticommutes with H.
Therefore, T · C does not represent an “ordinary” unitary
symmetry of H. This is the reason why we need to consider
the product T · C [i.e., chiral symmetry S in Eq. (2.36)] as an
additional crucial ingredient for the classification of the
irreducible blocks, besides TR and PH symmetries.
Now it is easy to see that there are only ten possible ways

for how a Hamiltonian H can transform under the general
nonunitary symmetries (2.36). First we observe that there are
three different possibilities for how H can transform under
TRS (T): (i) H is not TR invariant, which we denote by T ¼ 0
in Table I; (ii) the Hamiltonian is TR invariant and the TR
operator T squares toþ1, in which case we write T ¼ þ1; and
(iii) H is symmetric under TR and T squares to −1, which we
denote by T ¼ −1. Similarly, there are three possible ways
for how the Hamiltonian H can transform under PHS with
PH operator C (again, C can square to þ1 or −1). For these
three possibilities we write C ¼ 0, þ1, −1. Hence, there are
3 × 3 ¼ 9 possibilities for how H can transform under both
TRS and PHS. These are not yet all ten cases, since it is also
necessary to consider the behavior of the Hamiltonian under
the product S ¼ T · C. A moment’s thought shows that for
eight of the nine possibilities the presence or absence of
S ¼ T · C is fully determined by howH transforms under TRS
and PHS. (We write S ¼ 0 if S is not a symmetry of the
Hamiltonian, and S ¼ 1 if it is.) But in the case where both
TRS and PHS are absent, there exists the extra possibility
that S is still conserved, i.e., either S ¼ 0 or S ¼ 1 is possible.
This then yields ð3 × 3 − 1Þ þ 2 ¼ 10 possible behaviors of
the Hamiltonian.

TABLE I. Periodic table of topological insulators and supercon-
ductors; δ ≔ d − D , where d is the space dimension and D þ 1 is the
codimension of defects; the leftmost column (A;AIII;…;CI) denotes
the ten symmetry classes of fermionic Hamiltonians, which are
characterized by the presence or absence of time-reversal (T),
particle-hole (C), and chiral (S) symmetries of different types denoted
by & 1. The entriesZ,Z2, 2Z, and 0 represent the presence or absence
of nontrivial topological insulators or superconductors or topological
defects, and when they exist, types of these states. The case of D ¼ 0
(i.e., δ ¼ d) corresponds to the tenfold classification of gapped bulk
topological insulators and superconductors.

δ
Class T C S 0 1 2 3 4 5 6 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

AI þ 0 0 Z 0 0 0 2Z 0 Z2 Z2

BDI þ þ 1 Z2 Z 0 0 0 2Z 0 Z2

D 0 þ 0 Z2 Z2 Z 0 0 0 2Z 0
DIII − þ 1 0 Z2 Z2 Z 0 0 0 2Z
AII − 0 0 2Z 0 Z2 Z2 Z 0 0 0
CII − − 1 0 2Z 0 Z2 Z2 Z 0 0
C 0 − 0 0 0 2Z 0 Z2 Z2 Z 0
CI þ − 1 0 0 0 2Z 0 Z2 Z2 Z
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4D Dirac points
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where N is the number of cells and where the sum runs over all momenta in the BZ, we find:
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the above expressions can be combined and written compactly as:
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H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2 + (2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (S4)

as stated in the main text.
To engineer a topological phase transition, we also need to add longer-range hoppings that can separate out the

Dirac points of the two types. In the main text, we give the example of a hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0). In terms of the tight-binding real-space model, this would correspond

Minimal four-band model:
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4D Dirac points
Now TRS for spinless particles
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Introducing the Dirac matrices:
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the above expressions can be combined and written compactly as:
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H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2 + (2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (S4)

as stated in the main text.
To engineer a topological phase transition, we also need to add longer-range hoppings that can separate out the

Dirac points of the two types. In the main text, we give the example of a hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0). In terms of the tight-binding real-space model, this would correspond
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FIG. 1. (a) A 4D brickwall lattice with four sites per unit cell.
Solid and dotted lines denote hoppings with real amplitudes
J and �J respectively. (b) The doubly-degenerate energy
bands (Eq. S4) for ky = kw = 0, with the 4D Dirac points
labelled. (c) When m 6= 0, the Dirac points are gapped and
the integrand of Eq. 4 is nontrivial, as shown here for ky =
kw = 0 and m=�J/2. However, this lattice is topologically
trivial as the two pairs of Dirac points contribute in opposite
senses to the 2CN.

As in 2D, the topological invariant changes via topo-
logical phase transitions where band gaps close and re-
open. In the simplest case, the four bands touch at an
isolated set of Dirac points in the BZ, around each of
which d(q) ⇡ (vxqx, vyqy, vzqz, vwqw,m), where vz(vw)
is the dispersion slope with respect to qz(qw). As be-
fore, the mass, m, smoothly tunes across the transition,
with the integrand of Eq. 4 flipping sign as d5 ⇡ m

changes sign. Each isolated point that closes and opens
changes the 2CN by ±1 [55]. Again, this divides the
Dirac points into two types; the first (second) type has
an even (odd) number of minus signs within the other
components {d1, d2, d3, d4} such that the 2CN increases
(decreases) as m goes from negative to positive values.
Importantly, in 4D, preserving TRS for spinless sys-

tems does not imply equal numbers of the two types of
Dirac points. This is because when spinless or bosonic
TRS is present, d1(k) = d1(�k), d3(k) = d3(�k) and
d5(k) = d5(�k) are even, while d2(k) = �d2(�k) and
d4(k) =�d4(�k) are odd. Then, a Dirac point at K is
again paired with another Dirac point at �K, but now
these Dirac points are of the same type, as both d2 and
d4 flip sign. As a result, each TRS pair of Dirac points
will change the 2CN by ±2 across a transition.
Unlike 2D, it is therefore possible to have spinless 4D

QH models with TRS, where the 2CNs take only even
integer values, 2Z [6]. This is a key di↵erence from
previously-studied 4D systems in Class A (with broken

TRS) and Class AII (with fermionic TRS), where the
2CN takes any integer values, Z. For a four-band Class
AII model, for example, the di↵erent TRS constraints al-
low unpaired Dirac points at TRS-invariant momenta, so
that the 2CN can change by ±1 [55]. Physically, the lat-
ter may describe a lattice of particles in spatially-varying,
spin-dependent gauge fields, which is challenging to re-
alise with current technology. Instead, as we now illus-
trate, a suitable four-band model in Class AI could be
engineered for spinless particles by exploiting lattice con-
nectivity.
Proposal for 4D Model– Inspired by the 2D Hal-

dane model, our 4D proposal extends the honey-
comb/brickwall lattice into 4D. As introduced above,
these lattices are topologically-equivalent, having two
sites per unit cell and a single pair of Dirac points in the
BZ. Hereafter, we focus on the brickwall geometry, which
is most natural for synthetic dimensions, but note that
similar arguments apply to the honeycomb geometry.
To realise a four-band model like Eq. 3, we construct a

4D lattice [see Fig. S1(a)], with a four-site unit cell and
the connectivity of a 2D brickwall lattice in both x�y

and z�w planes. The Hamiltonian is [56]:

H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2

+(2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (5)

where J is the hopping amplitude, the lattice spacing
a = 1, and m is an energy o↵set between the A,B and
C,D sites. Note that the real-space hoppings between
B and D sites need to have an opposite sign compared
to other hoppings, as indicated in Fig. S1(a), in order to
realise the required � matrix structure [56].
When m = 0, this model has four 4D Dirac points

in the BZ, as shown in Fig. S1(b). The points at
K1,2 = (⌥2⇡/3, 0,⌥2⇡/3, 0) are a time-reversal pair of
the first type, while those at K3,4 = (±2⇡/3, 0,⌥2⇡/3, 0)
are a pair of the second type. Therefore, this model is still
topologically trivial, as shown, for example, in Fig. S1(c),
for a cut at ky=kw=0 and m=�J/2, where the contri-
butions to the 2CN (Eq. 4) cancel out for the two pairs.
As in the 2D Haldane model, another ingredient is

needed to separate out the two types of Dirac points
and engineer topological bands. In particular, we need a
mass-like term, proportional to �5, which distinguishes
between the two pairs of Dirac points. In this model,
there are many possible terms that achieve this, corre-
sponding to di↵erent long-range hoppings between alike-
sites (e.g. A ! A) [56]. As an example, we con-
sider long-range hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0) (e.g. see
Fig. 2(a)), giving:

H
0(k) = [2J 0 cos(2kx+ 2kz) + 2J 00 cos(2kx� 2kz)]�5, (6)

where J
0 (J 00) is the hopping amplitude along r0 (r00).

As a result, the first pair closes at m=J
0�2J 00 and the

H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2 + (2 cos kz + cos kw)�3 + sin kw�4 +m�5]
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where N is the number of cells and where the sum runs over all momenta in the BZ, we find:
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Introducing the Dirac matrices:
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the above expressions can be combined and written compactly as:
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H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2 + (2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (S4)

as stated in the main text.
To engineer a topological phase transition, we also need to add longer-range hoppings that can separate out the

Dirac points of the two types. In the main text, we give the example of a hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0). In terms of the tight-binding real-space model, this would correspond
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FIG. 1. (a) A 4D brickwall lattice with four sites per unit cell.
Solid and dotted lines denote hoppings with real amplitudes
J and �J respectively. (b) The doubly-degenerate energy
bands (Eq. S4) for ky = kw = 0, with the 4D Dirac points
labelled. (c) When m 6= 0, the Dirac points are gapped and
the integrand of Eq. 4 is nontrivial, as shown here for ky =
kw = 0 and m=�J/2. However, this lattice is topologically
trivial as the two pairs of Dirac points contribute in opposite
senses to the 2CN.

As in 2D, the topological invariant changes via topo-
logical phase transitions where band gaps close and re-
open. In the simplest case, the four bands touch at an
isolated set of Dirac points in the BZ, around each of
which d(q) ⇡ (vxqx, vyqy, vzqz, vwqw,m), where vz(vw)
is the dispersion slope with respect to qz(qw). As be-
fore, the mass, m, smoothly tunes across the transition,
with the integrand of Eq. 4 flipping sign as d5 ⇡ m

changes sign. Each isolated point that closes and opens
changes the 2CN by ±1 [55]. Again, this divides the
Dirac points into two types; the first (second) type has
an even (odd) number of minus signs within the other
components {d1, d2, d3, d4} such that the 2CN increases
(decreases) as m goes from negative to positive values.
Importantly, in 4D, preserving TRS for spinless sys-

tems does not imply equal numbers of the two types of
Dirac points. This is because when spinless or bosonic
TRS is present, d1(k) = d1(�k), d3(k) = d3(�k) and
d5(k) = d5(�k) are even, while d2(k) = �d2(�k) and
d4(k) =�d4(�k) are odd. Then, a Dirac point at K is
again paired with another Dirac point at �K, but now
these Dirac points are of the same type, as both d2 and
d4 flip sign. As a result, each TRS pair of Dirac points
will change the 2CN by ±2 across a transition.
Unlike 2D, it is therefore possible to have spinless 4D

QH models with TRS, where the 2CNs take only even
integer values, 2Z [6]. This is a key di↵erence from
previously-studied 4D systems in Class A (with broken

TRS) and Class AII (with fermionic TRS), where the
2CN takes any integer values, Z. For a four-band Class
AII model, for example, the di↵erent TRS constraints al-
low unpaired Dirac points at TRS-invariant momenta, so
that the 2CN can change by ±1 [55]. Physically, the lat-
ter may describe a lattice of particles in spatially-varying,
spin-dependent gauge fields, which is challenging to re-
alise with current technology. Instead, as we now illus-
trate, a suitable four-band model in Class AI could be
engineered for spinless particles by exploiting lattice con-
nectivity.
Proposal for 4D Model– Inspired by the 2D Hal-

dane model, our 4D proposal extends the honey-
comb/brickwall lattice into 4D. As introduced above,
these lattices are topologically-equivalent, having two
sites per unit cell and a single pair of Dirac points in the
BZ. Hereafter, we focus on the brickwall geometry, which
is most natural for synthetic dimensions, but note that
similar arguments apply to the honeycomb geometry.
To realise a four-band model like Eq. 3, we construct a

4D lattice [see Fig. S1(a)], with a four-site unit cell and
the connectivity of a 2D brickwall lattice in both x�y

and z�w planes. The Hamiltonian is [56]:

H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2

+(2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (5)

where J is the hopping amplitude, the lattice spacing
a = 1, and m is an energy o↵set between the A,B and
C,D sites. Note that the real-space hoppings between
B and D sites need to have an opposite sign compared
to other hoppings, as indicated in Fig. S1(a), in order to
realise the required � matrix structure [56].
When m = 0, this model has four 4D Dirac points

in the BZ, as shown in Fig. S1(b). The points at
K1,2 = (⌥2⇡/3, 0,⌥2⇡/3, 0) are a time-reversal pair of
the first type, while those at K3,4 = (±2⇡/3, 0,⌥2⇡/3, 0)
are a pair of the second type. Therefore, this model is still
topologically trivial, as shown, for example, in Fig. S1(c),
for a cut at ky=kw=0 and m=�J/2, where the contri-
butions to the 2CN (Eq. 4) cancel out for the two pairs.
As in the 2D Haldane model, another ingredient is

needed to separate out the two types of Dirac points
and engineer topological bands. In particular, we need a
mass-like term, proportional to �5, which distinguishes
between the two pairs of Dirac points. In this model,
there are many possible terms that achieve this, corre-
sponding to di↵erent long-range hoppings between alike-
sites (e.g. A ! A) [56]. As an example, we con-
sider long-range hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0) (e.g. see
Fig. 2(a)), giving:

H
0(k) = [2J 0 cos(2kx+ 2kz) + 2J 00 cos(2kx� 2kz)]�5, (6)

where J
0 (J 00) is the hopping amplitude along r0 (r00).

As a result, the first pair closes at m=J
0�2J 00 and the
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FIG. 1. (a) A 4D brickwall lattice with four sites per unit cell.
Solid and dotted lines denote hoppings with real amplitudes
J and �J respectively. (b) The doubly-degenerate energy
bands (Eq. S4) for ky = kw = 0, with the 4D Dirac points
labelled. (c) When m 6= 0, the Dirac points are gapped and
the integrand of Eq. 4 is nontrivial, as shown here for ky =
kw = 0 and m=�J/2. However, this lattice is topologically
trivial as the two pairs of Dirac points contribute in opposite
senses to the 2CN.

As in 2D, the topological invariant changes via topo-
logical phase transitions where band gaps close and re-
open. In the simplest case, the four bands touch at an
isolated set of Dirac points in the BZ, around each of
which d(q) ⇡ (vxqx, vyqy, vzqz, vwqw,m), where vz(vw)
is the dispersion slope with respect to qz(qw). As be-
fore, the mass, m, smoothly tunes across the transition,
with the integrand of Eq. 4 flipping sign as d5 ⇡ m

changes sign. Each isolated point that closes and opens
changes the 2CN by ±1 [55]. Again, this divides the
Dirac points into two types; the first (second) type has
an even (odd) number of minus signs within the other
components {d1, d2, d3, d4} such that the 2CN increases
(decreases) as m goes from negative to positive values.

Importantly, in 4D, preserving TRS for spinless sys-
tems does not imply equal numbers of the two types of
Dirac points. This is because when spinless or bosonic
TRS is present, d1(k) = d1(�k), d3(k) = d3(�k) and
d5(k) = d5(�k) are even, while d2(k) = �d2(�k) and
d4(k) =�d4(�k) are odd. Then, a Dirac point at K is
again paired with another Dirac point at �K, but now
these Dirac points are of the same type, as both d2 and
d4 flip sign. As a result, each TRS pair of Dirac points
will change the 2CN by ±2 across a transition.

Unlike 2D, it is therefore possible to have spinless 4D
QH models with TRS, where the 2CNs take only even
integer values, 2Z [6]. This is a key di↵erence from
previously-studied 4D systems in Class A (with broken

TRS) and Class AII (with fermionic TRS), where the
2CN takes any integer values, Z. For a four-band Class
AII model, for example, the di↵erent TRS constraints al-
low unpaired Dirac points at TRS-invariant momenta, so
that the 2CN can change by ±1 [55]. Physically, the lat-
ter may describe a lattice of particles in spatially-varying,
spin-dependent gauge fields, which is challenging to re-
alise with current technology. Instead, as we now illus-
trate, a suitable four-band model in Class AI could be
engineered for spinless particles by exploiting lattice con-
nectivity.

Proposal for 4D Model– Inspired by the 2D Hal-
dane model, our 4D proposal extends the honey-
comb/brickwall lattice into 4D. As introduced above,
these lattices are topologically-equivalent, having two
sites per unit cell and a single pair of Dirac points in the
BZ. Hereafter, we focus on the brickwall geometry, which
is most natural for synthetic dimensions, but note that
similar arguments apply to the honeycomb geometry.

To realise a four-band model like Eq. 3, we construct a
4D lattice [see Fig. S1(a)], with a four-site unit cell and
the connectivity of a 2D brickwall lattice in both x�y

and z�w planes. The Hamiltonian is [56]:

H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2

+(2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (5)

where J is the hopping amplitude, the lattice spacing
a = 1, and m is an energy o↵set between the A,B and
C,D sites. Note that the real-space hoppings between
B and D sites need to have an opposite sign compared
to other hoppings, as indicated in Fig. S1(a), in order to
realise the required � matrix structure [56].

When m = 0, this model has four 4D Dirac points
in the BZ, as shown in Fig. S1(b). The points at
K1,2 = (⌥2⇡/3, 0,⌥2⇡/3, 0) are a time-reversal pair of
the first type, while those at K3,4 = (±2⇡/3, 0,⌥2⇡/3, 0)
are a pair of the second type. Therefore, this model is still
topologically trivial, as shown, for example, in Fig. S1(c),
for a cut at ky=kw=0 and m=�J/2, where the contri-
butions to the 2CN (Eq. 4) cancel out for the two pairs.

As in the 2D Haldane model, another ingredient is
needed to separate out the two types of Dirac points
and engineer topological bands. In particular, we need a
mass-like term, proportional to �5, which distinguishes
between the two pairs of Dirac points. In this model,
there are many possible terms that achieve this, corre-
sponding to di↵erent long-range hoppings between alike-
sites (e.g. A ! A) [56]. As an example, we con-
sider long-range hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0) (e.g. see
Fig. 2(a)), giving:

H
0(k) = [2J 0 cos(2kx+ 2kz) + 2J 00 cos(2kx� 2kz)]�5, (6)

where J
0 (J 00) is the hopping amplitude along r0 (r00).

As a result, the first pair closes at m=J
0�2J 00 and the
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Separate two TRS pairs by adding real long-range hoppings, e.g. 
H

0(k) = 2J 0 cos(2kx+ 2kz)�5
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FIG. 1. (a) A 4D brickwall lattice with four sites per unit cell.
Solid and dotted lines denote hoppings with real amplitudes
J and �J respectively. (b) The doubly-degenerate energy
bands (Eq. S4) for ky = kw = 0, with the 4D Dirac points
labelled. (c) When m 6= 0, the Dirac points are gapped and
the integrand of Eq. 4 is nontrivial, as shown here for ky =
kw = 0 and m=�J/2. However, this lattice is topologically
trivial as the two pairs of Dirac points contribute in opposite
senses to the 2CN.

As in 2D, the topological invariant changes via topo-
logical phase transitions where band gaps close and re-
open. In the simplest case, the four bands touch at an
isolated set of Dirac points in the BZ, around each of
which d(q) ⇡ (vxqx, vyqy, vzqz, vwqw,m), where vz(vw)
is the dispersion slope with respect to qz(qw). As be-
fore, the mass, m, smoothly tunes across the transition,
with the integrand of Eq. 4 flipping sign as d5 ⇡ m

changes sign. Each isolated point that closes and opens
changes the 2CN by ±1 [55]. Again, this divides the
Dirac points into two types; the first (second) type has
an even (odd) number of minus signs within the other
components {d1, d2, d3, d4} such that the 2CN increases
(decreases) as m goes from negative to positive values.
Importantly, in 4D, preserving TRS for spinless sys-
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nectivity.
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the connectivity of a 2D brickwall lattice in both x�y
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B and D sites need to have an opposite sign compared
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are a pair of the second type. Therefore, this model is still
topologically trivial, as shown, for example, in Fig. S1(c),
for a cut at ky=kw=0 and m=�J/2, where the contri-
butions to the 2CN (Eq. 4) cancel out for the two pairs.
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between the two pairs of Dirac points. In this model,
there are many possible terms that achieve this, corre-
sponding to di↵erent long-range hoppings between alike-
sites (e.g. A ! A) [56]. As an example, we con-
sider long-range hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0) (e.g. see
Fig. 2(a)), giving:

H
0(k) = [2J 0 cos(2kx+ 2kz) + 2J 00 cos(2kx� 2kz)]�5, (6)

where J
0 (J 00) is the hopping amplitude along r0 (r00).

As a result, the first pair closes at m=J
0�2J 00 and the
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FIG. 2. (a) Example of longer-range hoppings (Eq. 6) that
can make the lattice [Fig. S1(a)] topologically nontrivial. (b)
The integrand of Eq. 4 with ky =kw =0, m=�J/2, J 0=J/2
and J 00=0, showing that the two pairs now contribute to the
2CN in the same sense, giving a total 2CN of �2. (c)&(d)
The energy dispersion at the topological phase transitions,
corresponding, for the parameters above, to (c)m=�J and
(d) m = J/2, showing that there is only one pair of Dirac
points at each transition.

second at m = J
00�2J 0 (see Fig. 2(c)&(d)). Provided

that J
0 6= J

00, these are topological transitions; for ex-
ample, if J 00 = 0 and J

0
> 0, this model has a 2CN of

-2 for �2J 0
< m < J

0, and is trivial otherwise, as can
also be confirmed numerically [1]. Note that the above
terms preserve TRS and so all 1CNs vanish by symme-
try. Adding TRS-breaking terms will separate the Dirac
points within a pair; this can give a 4D QH model, but in
Class A where the 1CNs can be non-zero [21, 22, 27, 34].
4D QH E↵ect and 3D Surface States– Bands with

non-zero 2CNs support a 4D QH response, as could be
probed, for example, in the current density [17, 55], in
the center-of-mass motion of a cloud [34, 58, 59] or in the
displacement of a driven-dissipative steady state [35, 60].
As the 1CNs vanish in Class AI, this QH response will
stem purely from the 2CN and so will be easier to iso-
late than in Class A models where the 1CN response can
dominate [21, 22, 34]. There is also a one-to-one corre-
spondence between the bulk topological invariant and the
number of topological surface states [1–3, 55]. For Class
AI models, the 2CN takes even integer values, as dis-
cussed above, and so surface states come in pairs. In the
3D BZ of our model, these correspond to pairs of Weyl
points with the same chirality. The existence of such
surface states could be probed in ultracold atomic [9, 10]
and photonic experiments [11–13].
Experimental Remarks– Our proposal avoids the need

to control (artificial) gauge fields in a 4D geometry, by
constructing a 4D QH model using the lattice connec-

tivity. The tuneability of lattice connectivity is a well-
established tool in lower dimensions, with the 2D hon-
eycomb/brickwall lattices having been engineered exper-
imentally in atomic [61, 62] and photonic set-ups [63–66].
To realise the specific 4D lattice in Fig. S1(a), a

2D honeycomb/brickwall lattice can be extended by a
third spatial dimension (z) and a synthetic dimension
(w) [35, 37–47]. To create the z�w brickwall connectivity,
only a subset of states in the synthetic dimension should
be coupled at each site along z; this could be achieved,
for example, by engineering states to have two alternat-
ing energy-level spacings, such that di↵erent transitions
can be addressed at alternating sites. Furthermore, the
sign of certain hoppings along real dimensions can be
flipped, as required in Eq. S4, by employing di↵erent or-
bitals or modes at di↵erent sites [67], or by driving the
system [68]. Longer-range hoppings like in Fig. 2(a) can
be controlled, e.g. by designing the shape of an opti-
cal lattice potential for atoms or through arrangement
of photonic resonators. However, care must be taken
to design these terms to dominate over other long-range
hoppings [56]. Alternatively, as this proposal relies on
the lattice connectivity, it could be implemented as a 4D
network model [69].
Conclusions– We have proposed how to realise 4D

topological systems without gauge fields, by designing
the lattice connectivity. These are systems in Class AI,
corresponding to spinless or bosonic models with TRS
and even-valued 2CNs. To illustrate this, we have de-
signed a minimal 4D lattice model which exhibits the 4D
QH e↵ect and hosts pairs of chiral Weyl surface states.
As this model could be realised using ultracold atoms
or photons, it opens the way towards the exploration of
a new class of systems with nontrivial band invariants
only in four dimensions or higher.

Note: In preparation of this manuscript, we became
aware of a recent proposal for an eight-band 4D crys-
talline topological insulator, which has bosonic TRS [70],
but which is instead topologically-protected by reflection
symmetry and which relies on spin-orbit couplings.
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Key points about 4D QH Systems

•Bands labelled by integer second Chern numbers 

• Quantized non-linear response 

•Different classes of 4D QH systems 

1. Preserved TRS for fermions: spinful particles in non-Abelian gauge fields 

2.  Broken TRS: 4D Harper-Hofstadter model…. 

3.  Preserved TRS for spinless particles: just lattice connectivity! 
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1. Introduction to Topology 

2. Topological Physics in Four Dimensions 

3. Exploring Higher Dimensions with Cold Atoms (or Photons):  

• Synthetic Dimensions 

• Topological Pumping
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General Concept: 

1. Identify a set of states and reinterpret as sites in a synthetic dimension 
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2. Couple these modes to simulate a tight-binding “hopping” 
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Ingredients: 
1. Reinterpret states as sites in synthetic dimension  ->  Internal atomic states
2. Couple states to simulate a “hopping” term            ->  Coupling lasers

I = 5/2
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(c) Concept

FIG. 1. (a) Proposed experimental layout with 87Rb. A pair
of counter-propagating � = 1064 nm lasers provide a 5EL

deep optical lattice lattice with period a = �/2. A pair of
“Raman” laser beams with wavelength �R = 790 nm, at an-
gles ±✓ from ex, couple the internal atomic states with recoil
wavevector kR = 2⇡ cos(✓)/�R. The laser beams’ polariza-
tions – all linear – are marked by symbols at their ends. (b)
Raman couplings in the F = 1 manifold. The transitions are
induced by the beams depicted in (a). (c) Synthetic 2D lattice
with magnetic flux � = �/2⇡ per plaquette (� = 2kRa). Here
n = x/a (m) labels the sites along ex (Zeeman sublevels).

require a minimum amount of laser light (less than 1%
required for existing schemes [19]), minimizing sponta-
neous emission. In addition, periodic boundary condi-
tions in the synthetic direction can be created by cou-
plingmF = +1 tomF = �1 using an o↵-resonant Raman
transition from |F = 1,mF = +1i to an ancillary state,
e.g., |F = 2,mF = 0i (detuned by �pbc and coupled with
strength ⌦R,pbc), completed by a radio-frequency tran-
sition to |F = 1,mF = 1i with strength ⌦RF , giving a
⇤-like scheme with strength ⌦pbc = �⌦R,pbc⌦RF /2�pbc.

A constant magnetic field B0ez Zeeman splits the mag-
netic sublevels |mF = ±1i by ⌥~!0 = gFµBB0, where gF
is the Landé g-factor and µB is the Bohr magneton, see
Fig. 1(ab). The Raman spin-flip transitions, detuned by
� from two-photon resonance, impart a 2kR recoil mo-
mentum along ex. Taking ~ = 1, the laser fields can be
described via a spatially periodic e↵ective magnetic field

⌦T = �ez + ⌦R [cos (2kRx) ex � sin (2kRx) ey] , (1)

which couples the hyperfine ground-states giving the ef-

fective atom-light Hamiltonian [4, 38, 41, 49]

Hal = ⌦T ·F = �Fz + (F+e
ikRx + F�e

�ikRx)⌦R/2 , (2)

where the operators F± = Fx ± iFy act as F+ |mi =
gF,m |m+ 1i with gF,m =

p
F (F + 1)�m (m+ 1).

Thus the Raman beams sequentially couple states m =
�F, . . . , F , with each transition accompanied by an x-
dependent phase. This naturally generates Peierls phases
for “motion” along them (spin) direction, denoted as em.
The combination of the optical lattice along ex and the

Raman-induced hopping along em yield an e↵ective 2D
lattice with one physical and one synthetic dimension, as
depicted in Fig. 1(c) for F = 1. For a system of length
Lx along ex, the lattice has N = Lx/a sites along ex,
and a width of W = 2F + 1 sites along em. For � = 0
the system is described by the Hamiltonian

H =
X

n,m

⇣
�ta

†
n+1,m + ⌦m�1e

�i�n
a
†
n,m�1

⌘
an,m +H.c. ,

(3)
where n labels the spatial index and m labels the spin in-
dex; � = 2kRa sets the magnetic flux; ⌦m = ⌦RgF,m/2 is
the synthetic tunneling strength; and a

†
n,m is the atomic

creation operator in the dimensionally extended lattice.
This two-dimensional lattice is pierced by a uniform syn-
thetic magnetic flux � = �/2⇡ = kRa/⇡ per plaquette
(in units of the Dirac flux quantum). The quantity gF,m

is independent of m for F = 1/2 and F = 1, but for
larger F hopping along em is generally non-uniform.

Open boundaries. Since ⌦m 6= 0 only when m 2
{�F, . . . , F � 1}, Eq. (3) has open boundary condi-
tions along em, with sharp edges at m = ±F . By
gauge-transforming an,m and a

†
n,m, the hopping phase

exp(i2kRx) can be transferred to the hopping along ex.
Combining this with a Fourier transformation along ex,
b
†
q,m = N

�1/2
PN

n=1 a
†
n,me

i(q+�m)n, splits the Hamilto-
nian H =

P
q Hq into momentum components

Hq =
FX

m=�F

"q+�mb
†
q,mbq,m +

⇣
⌦mb

†
q,m+1bq,m +H.c.

⌘
,

where "k = �2t cos(k), q ⌘ 2⇡l/N , and l 2 {1, . . . , N}.
Figure 2 shows the resulting band structure for F = 1.
Away from the avoided crossings, the lowest band de-
scribes the propagation of “edge states” localized in spin
space at m = ±F (blue and red arrows): these states
propagate along ex in opposite directions. In the physical
system, these give rise to a spin current js(x) = j" � j#.
When W = 2F + 1 � 1, these edge states become anal-
ogous to those in quantum Hall systems [50, 51]. The
F = 9/2 manifold of 40K allows experimental access to
this large-W limit [52], since its 10 internal states repro-
duce the Hofstadter-butterfly topological band structure.
The edge-state propagation can be directly visualized

by confining a multi-component Fermi gas to a region
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Fig. 1(ab). The Raman spin-flip transitions, detuned by
� from two-photon resonance, impart a 2kR recoil mo-
mentum along ex. Taking ~ = 1, the laser fields can be
described via a spatially periodic e↵ective magnetic field

⌦T = �ez + ⌦R [cos (2kRx) ex � sin (2kRx) ey] , (1)

which couples the hyperfine ground-states giving the ef-

fective atom-light Hamiltonian [4, 38, 41, 49]

Hal = ⌦T ·F = �Fz + (F+e
ikRx + F�e

�ikRx)⌦R/2 , (2)

where the operators F± = Fx ± iFy act as F+ |mi =
gF,m |m+ 1i with gF,m =

p
F (F + 1)�m (m+ 1).

Thus the Raman beams sequentially couple states m =
�F, . . . , F , with each transition accompanied by an x-
dependent phase. This naturally generates Peierls phases
for “motion” along them (spin) direction, denoted as em.
The combination of the optical lattice along ex and the

Raman-induced hopping along em yield an e↵ective 2D
lattice with one physical and one synthetic dimension, as
depicted in Fig. 1(c) for F = 1. For a system of length
Lx along ex, the lattice has N = Lx/a sites along ex,
and a width of W = 2F + 1 sites along em. For � = 0
the system is described by the Hamiltonian

H =
X

n,m

⇣
�ta

†
n+1,m + ⌦m�1e

�i�n
a
†
n,m�1

⌘
an,m +H.c. ,

(3)
where n labels the spatial index and m labels the spin in-
dex; � = 2kRa sets the magnetic flux; ⌦m = ⌦RgF,m/2 is
the synthetic tunneling strength; and a

†
n,m is the atomic

creation operator in the dimensionally extended lattice.
This two-dimensional lattice is pierced by a uniform syn-
thetic magnetic flux � = �/2⇡ = kRa/⇡ per plaquette
(in units of the Dirac flux quantum). The quantity gF,m

is independent of m for F = 1/2 and F = 1, but for
larger F hopping along em is generally non-uniform.

Open boundaries. Since ⌦m 6= 0 only when m 2
{�F, . . . , F � 1}, Eq. (3) has open boundary condi-
tions along em, with sharp edges at m = ±F . By
gauge-transforming an,m and a

†
n,m, the hopping phase

exp(i2kRx) can be transferred to the hopping along ex.
Combining this with a Fourier transformation along ex,
b
†
q,m = N

�1/2
PN

n=1 a
†
n,me

i(q+�m)n, splits the Hamilto-
nian H =

P
q Hq into momentum components

Hq =
FX

m=�F

"q+�mb
†
q,mbq,m +

⇣
⌦mb

†
q,m+1bq,m +H.c.

⌘
,

where "k = �2t cos(k), q ⌘ 2⇡l/N , and l 2 {1, . . . , N}.
Figure 2 shows the resulting band structure for F = 1.
Away from the avoided crossings, the lowest band de-
scribes the propagation of “edge states” localized in spin
space at m = ±F (blue and red arrows): these states
propagate along ex in opposite directions. In the physical
system, these give rise to a spin current js(x) = j" � j#.
When W = 2F + 1 � 1, these edge states become anal-
ogous to those in quantum Hall systems [50, 51]. The
F = 9/2 manifold of 40K allows experimental access to
this large-W limit [52], since its 10 internal states repro-
duce the Hofstadter-butterfly topological band structure.

The edge-state propagation can be directly visualized
by confining a multi-component Fermi gas to a region

Gauge field controlled by 
angle of Raman lasers

Synthetic dimension with internal atomic states

Florence: Mancini et al, Science, 349, 1510 (2015) 
Maryland: Stuhl et al. Science, 349, 1514 (2015)

For atomic hyperfine states: 

Also now with clock transitions: 
Florence Livi et al, Phys. Rev. Lett. 117, 220401 (2016) 
Boulder: Kolkowitz et al, Nature,  542, 66 (2017) 



Ingredients: 
1. Reinterpret states as sites in synthetic dimension  ->  Harmonic oscillator states
2. Couple states to simulate a “hopping” term            ->  Shaking of harmonic trap

Ĥ0 =
p̂
2
x

2M
+

1

2
M!

2
x̂
2 = !

1X

�=0

�|�ih�|

Theory: HMP, T. Ozawa and N. Goldman, Phys. Rev. A 95, 023607 (2017)

0
1
2
3
4

0 1 2 3 4

Ĥ1D ⇡
X

�

J�e
i�
ĉ
†
��1ĉ� + h.c.In rotating frame (with a rotating wave approximation):

J�=

r
�

8M!

V̂ (t) =  x̂ cos(!t+ �) =
p
2M!

cos(!t+ �)
1X

�=1

p
�

✓
|�ih�� 1|+ h.c.

◆

Synthetic dimension with harmonic trap states

Also: synthetic dimensions for photons:  
Optomechanics: Schmidt et al, Optica 2, 7, 635 (2015) 
Optical cavities: Luo et al, Nature Comm. 6, 7704, (2015) 
Integrated photonics: Ozawa, HMP, Goldman, Zilberberg, & Carusotto, Phys. Rev. A 93, 043827 (2016), 
L. Yuan, Y. Shi & S. Fan, Optics Letters 41, 4,  741 (2016) 
Ozawa & Carusotto, PRL, 118, 013601 (2017) 
Waveguides: Lustig et al, arXiv:1807.01983



The transport equations

• Let us come back to our transport equation, with ⌦zx,⌦yw 6= 0

jµ = E⌫
1

(2⇡)4

Z

T4
⌦µ⌫

d
4k +

⌫2
4⇡2

"µ↵�⌫E⌫B↵� , ⌫2 =
1

4⇡2

Z

T4
⌦zx⌦yw

d
4k

• We now choose an electric field E = Ey1y and a magnetic field B↵� = Bzw

hopping along a synthetic (internal-state) dimension
see Celi et al PRL ‘14

where

(simply tune the Raman lasers!)

• The transport equations yield two non-trivial contributions :

jw = Ey
1

(2⇡)4

Z

T4
⌦wy

d
4k : linear response along w (⇠ 2D QH effect)

jx =
⌫2
4⇡2

EyBzw : non-linear response along x (⇠ 4D QH effect)

4D QH with Synthetic Dimensions

HMP, Zilberberg, Ozawa, Carusotto & Goldman, Phys. Rev. Lett. 115, 195303 (2015)

e.g. as in expt: Aidelsburger 
et al., Nat. Phys, 11,162. 

(2015)
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Comparison of 
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jx =
⌫2
4⇡2

EyBzw = � ⌫2
2⇡a2

Ey�̃

jw = Ey
1

(2⇡)4

Z

T4

⌦wyd4k = �⌫yw1 �1

2⇡a2
Ey.

⌫2 = �1
Expect:
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1. Introduction to Topology 

2. Topological Physics in Four Dimensions 

3. Exploring Higher Dimensions with Cold Atoms or Photons:  

• Synthetic Dimensions  

• Topological Pumping

Outline



D. J. Thouless, Phys. Rev. B 27, 6083 (1983)

Topology of higher-dimensional system can be seen in special lower-dimensional time-
dependent systems 
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ky

⌦
kx,ky
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
h@uj
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Parameter space for 1D 
time-periodic lattice

Ĥ(t) = Ĥ(t+ T )

'(t+ T ) = '(t) + 2⇡

Topological Pumping



Semiclassical Dynamics

Q

"

Topological Pump: pumping of a band insulator

Quantized 
shift after a pump cycle xj =

1

2⇡

Z

BZ

Z 2⇡

0
⌦',Q

j dQd' = ⌫1

Geometrical Pump: 
pumping of a wave-packet

"

Q
Unquantized 

shift after a pump cycle

ẋj =
@"j(', Q)

@Q
+ '̇⌦',Q

j

Xiao et al., RMP, 82, 1959 (2010)

Motion of a wave-packet anomalous velocity

xj =

Z T

0

@"j(', Q)

@Q
dt+

Z 2⇡

0
⌦',Q

j d'

c.f. ṙ =
@"

@k
� k̇⇥⌦

e = ~ = 1

Photonic expt: M. Wimmer, HMP, I. Carusotto & U. Peschel, Nat. Phys. 13, 545–550 (2017) 



Example of 1D topological pumping
e.g. band insulator in a time-
dependent superlattice

Topological pumping in photonics:
Kraus et al. PRL, 109, 106402 (2012) 

Hu et al Phys. Rev. B 95, 184306 (2017)… 
Topological pumping in cold atoms:

Lohse, M et al. Nat. Phys. 12, 350–354 (2016).  
Nakajima, S. et al. Nat. Phys. 12, 296–300 (2016).  

Vs sin
2(⇡x/ds) + Vl sin

2(⇡x/dl � '/2)

x(T ) / ⌫1



Ĥ = �
X

m,n

⇣
Jx â

†
m+1,nâm,n + Jz e

�im�xz â
†
m,n+1âm,n

⌘
+ h.c.

P. G. Harper, Proc. Phys. Soc. A (1955)

M. Y. Azbel, Sov. Phys. JETP (1964)


D. Hofstadter, Phys. Rev. B (1976)

• 2D Harper-Hofstadter model 
 
 

Ansatz: Bloch waves along z:  mn = eikzdsn ·  m
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24 Chapter 2. Topological Charge Pumping
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Figure 2.3 – The 2D integer quantum Hall effect as a 1D topological charge pump. (a) 2D quantum Hall
system in the Laughlin geometry. The surface of the cylinder is pierced by a uniform magnetic flux �xz , leading
to the formation of Landau levels. When an additional magnetic flux �x(t) along the axis of the cylinder is
changed in time, an electric field Ez is induced along z . This gives rise to the Hall response with a drift velocity
vx in the x -direction. Figure adapted from [106]. (b) The states in each Landau level can be expressed as
eigenstates of localized harmonic oscillators with a spacing dx determined by the circumference of the cylinder
in the transverse z -direction. The threading of the flux �x through the cylinder causes a quantized sliding
motion of the harmonic oscillator potentials along x – the Hall response. (c) This situation is equivalent to the
trivial limit of a 1D Thouless pump where only the moving lattice with period dl is present, i.e. Vs = 0. In this
case, the superlattice phase ' acts as the pump parameter in the same way as the threaded flux �x for the 2D
Landau levels.

in quantum Hall systems [147]. When comparing two configurations with different �x,
these are related by a gauge transformation, which by definition leaves all physical observ-
ables invariant. However, in the cylindrical geometry the boundary condition for extended
states along z permit only certain gauge transformations, namely those that differ by an
integer multiple of flux quanta [37]. As the flux is threaded, a particle transport can thus
occur, but after each flux quantum all eigenstates have to be identical to the starting point
and the motion of the oscillator states localized along x must be quantized – even in the
presence of a random potential.

The sliding motion of the Landau levels along x is equivalent to a topological charge
pump in the limit, where the short lattice vanishes Vs ! 0 (Fig. 2.3). In this case, the
quantization of the resulting particle transport becomes trivial as a change in the pump
parameter ' corresponds to a global translation of the system. The particles will naturally
follow this motion as long as it remains adiabatic and thus move by a lattice constant dl
per pump cycle, i.e. ⌫1 = +1 as for the Landau levels [Eq. (2.16)]. Note that while in
this limit, a motion would also occur in classical systems, its quantization is robust only
in quantum mechanical systems, where it is protected by the band gap. For a classical
particle, the motion of the lattice would excite oscillations around the minima for any finite
pumping speed that destroy the exact quantization in the generic case. The deviation can
be shown to scale inversely with the cycle time T as opposed an exponential suppression
of excitations in quantum systems [148].

Going from 2D QH to 1D Pump



• 2D Harper-Hofstadter model 
 
 

Ansatz: Bloch waves along z:  mn = eikzdsn ·  m

k x
 

ϕ/k
z
 

1D: Hϕ(kx) 2D: H(kx,kz)

Ĥ = �
X

m,n

⇣
Jx â

†
m+1,nâm,n + Jz e

�im�xz â
†
m,n+1âm,n

⌘
+ h.c.

P. G. Harper, Proc. Phys. Soc. A (1955)

M. Y. Azbel, Sov. Phys. JETP (1964)


D. Hofstadter, Phys. Rev. B (1976)

maps onto 1D superlattice with dynamical phase φ

�Jx
⇣
â†m+1âm + h.c.

⌘
� Vl cos (2⇡x/dl � ') â†mâm

dsdl

ϕ

�xz = 2⇡ds/dl

• 1D Harper model

P. G. Harper, Proc. Phys. Soc. A (1955)  
S. Aubry/G. André, Ann. Isr. Phys. Soc.(1980) 

Ĥ1D =
X

m

h
�Jx(â

†
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†
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i

Going from 2D QH to 1D Pump
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4D QH with a 2D topological pump
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•    m,m0,n,n0 = eikzdsm
0
eikwdsn

0
 mnAnsatz: Bloch waves along z and w

Y. E. Kraus et al., Phys. Rev. Lett. 111, 226401 (2013)

4D QH with a 2D topological pump
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2D Topological Pump
Kraus et al, Phys. Rev. Lett. 111, 226401 (2013) 

Lohse, Schweizer, HMP, Zilberberg, Bloch, Nature 553, 55–58 (2018)

c.f. 1D topological pump

∝Β 

Use a tilted time-
dependent 2D optical 
superlattice of atoms

2D topological pump

y(T ) = ⌫2B̄xwdl

x(T ) = ⌫1dl

Pump along x but atoms also 
move along y due to tilt

x

y



• Qualitative signatures from in-situ measurements 
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4D QH with a 2D topological pump

Lohse, Schweizer, HMP, Zilberberg, Bloch, Nature 553, 55–58 (2018)



• Complementary experiment: edge states of 2D 
photonics pump (bulk-boundary correspondence) 

Edge states of 2D pump

O. Zilberberg et al., Nature 553, 59 (2018)

Laser-written photonic 
waveguides  Also 2nd Chern number measurement in parameter-space of 

4-level system: Sugawa et al., arXiv:1610.06228 



Summary

Explored a dynamical version of the 4D QH effect 
in a 2D pump for atoms 

Synthetic dimensions for cold atoms or photons 
0
1
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3
4

0 1 2 3 4

Review: “Topological Photonics” 
Tomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman, Mohammad Hafezi, Ling Lu, 

Mikael Rechtsman, David Schuster, Jonathan Simon, Oded Zilberberg, Iacopo Carusotto 
arXiv:1802.04173
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(a)

(b) (c)

FIG. 1. (a) A 4D brickwall lattice with four sites per unit cell.
Solid and dotted lines denote hoppings with real amplitudes
J and �J respectively. (b) The doubly-degenerate energy
bands (Eq. S4) for ky = kw = 0, with the 4D Dirac points
labelled. (c) When m 6= 0, the Dirac points are gapped and
the integrand of Eq. 4 is nontrivial, as shown here for ky =
kw = 0 and m=�J/2. However, this lattice is topologically
trivial as the two pairs of Dirac points contribute in opposite
senses to the 2CN.

As in 2D, the topological invariant changes via topo-
logical phase transitions where band gaps close and re-
open. In the simplest case, the four bands touch at an
isolated set of Dirac points in the BZ, around each of
which d(q) ⇡ (vxqx, vyqy, vzqz, vwqw,m), where vz(vw)
is the dispersion slope with respect to qz(qw). As be-
fore, the mass, m, smoothly tunes across the transition,
with the integrand of Eq. 4 flipping sign as d5 ⇡ m

changes sign. Each isolated point that closes and opens
changes the 2CN by ±1 [55]. Again, this divides the
Dirac points into two types; the first (second) type has
an even (odd) number of minus signs within the other
components {d1, d2, d3, d4} such that the 2CN increases
(decreases) as m goes from negative to positive values.
Importantly, in 4D, preserving TRS for spinless sys-

tems does not imply equal numbers of the two types of
Dirac points. This is because when spinless or bosonic
TRS is present, d1(k) = d1(�k), d3(k) = d3(�k) and
d5(k) = d5(�k) are even, while d2(k) = �d2(�k) and
d4(k) =�d4(�k) are odd. Then, a Dirac point at K is
again paired with another Dirac point at �K, but now
these Dirac points are of the same type, as both d2 and
d4 flip sign. As a result, each TRS pair of Dirac points
will change the 2CN by ±2 across a transition.
Unlike 2D, it is therefore possible to have spinless 4D

QH models with TRS, where the 2CNs take only even
integer values, 2Z [6]. This is a key di↵erence from
previously-studied 4D systems in Class A (with broken

TRS) and Class AII (with fermionic TRS), where the
2CN takes any integer values, Z. For a four-band Class
AII model, for example, the di↵erent TRS constraints al-
low unpaired Dirac points at TRS-invariant momenta, so
that the 2CN can change by ±1 [55]. Physically, the lat-
ter may describe a lattice of particles in spatially-varying,
spin-dependent gauge fields, which is challenging to re-
alise with current technology. Instead, as we now illus-
trate, a suitable four-band model in Class AI could be
engineered for spinless particles by exploiting lattice con-
nectivity.
Proposal for 4D Model– Inspired by the 2D Hal-

dane model, our 4D proposal extends the honey-
comb/brickwall lattice into 4D. As introduced above,
these lattices are topologically-equivalent, having two
sites per unit cell and a single pair of Dirac points in the
BZ. Hereafter, we focus on the brickwall geometry, which
is most natural for synthetic dimensions, but note that
similar arguments apply to the honeycomb geometry.
To realise a four-band model like Eq. 3, we construct a

4D lattice [see Fig. S1(a)], with a four-site unit cell and
the connectivity of a 2D brickwall lattice in both x�y

and z�w planes. The Hamiltonian is [56]:

H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2

+(2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (5)

where J is the hopping amplitude, the lattice spacing
a = 1, and m is an energy o↵set between the A,B and
C,D sites. Note that the real-space hoppings between
B and D sites need to have an opposite sign compared
to other hoppings, as indicated in Fig. S1(a), in order to
realise the required � matrix structure [56].
When m = 0, this model has four 4D Dirac points

in the BZ, as shown in Fig. S1(b). The points at
K1,2 = (⌥2⇡/3, 0,⌥2⇡/3, 0) are a time-reversal pair of
the first type, while those at K3,4 = (±2⇡/3, 0,⌥2⇡/3, 0)
are a pair of the second type. Therefore, this model is still
topologically trivial, as shown, for example, in Fig. S1(c),
for a cut at ky=kw=0 and m=�J/2, where the contri-
butions to the 2CN (Eq. 4) cancel out for the two pairs.
As in the 2D Haldane model, another ingredient is

needed to separate out the two types of Dirac points
and engineer topological bands. In particular, we need a
mass-like term, proportional to �5, which distinguishes
between the two pairs of Dirac points. In this model,
there are many possible terms that achieve this, corre-
sponding to di↵erent long-range hoppings between alike-
sites (e.g. A ! A) [56]. As an example, we con-
sider long-range hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0) (e.g. see
Fig. 2(a)), giving:

H
0(k) = [2J 0 cos(2kx+ 2kz) + 2J 00 cos(2kx� 2kz)]�5, (6)

where J
0 (J 00) is the hopping amplitude along r0 (r00).

As a result, the first pair closes at m=J
0�2J 00 and the

New topological classes in four dimensions 
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