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Figure 7. Two eigenstates of the PXP model represented on
the Hilbert space graph for L = 10 sites and PBC. The color
of the vertices reflects the weight of the corresponding prod-
uct state in the eigenvector normalized to have the largest
weight equal to one. Similar to Fig. 1, the Néel states are the
left/right most vertices of the graph, while the fully polarized
state is located in the center of the graph. (a) Wave function
of the special eigenstate closest to the zero energy is concen-
trated in the vicinity of the Néel states. In contrast, the wave
function of the ground state (b) is concentrated in the center
of the graph.

of approximate eigenvectors and their energies. The pro-
jection of exact eigenvectors onto the FSA basis shows
good agreement with the FSA eigenvectors.2 Moreover,
the eigenenergies agree with exact diagonalization data
for large system sizes within few percent. For instance,
crosses in Fig. 2(a) represent estimates for the eigenen-
ergies and expectation values of local observables within
the FSA, and show excellent agreement with exact diag-
onalization data. Finally, the extrapolation of the FSA
energy gaps between adjacent special eigenstates agrees
within 2% with the extrapolation of the same gaps ob-
tained by exact diagonalization, see Fig. 5. As noted
previously, the finite-size corrections to the FSA energy
are linear in 1/L, while exact results appear to follow
1/L2 corrections. The origin of this discrepancy remains
to be understood.

It is possible to obtain the energies of special eigen-
states within the FSA by calculating �j and diagonalizing
a (L + 1) ⇥ (L + 1) matrix. In contrast, the access to the
FSA wave functions requires one to store at least L + 1
basis vectors, each of the dimension of full Hilbert space,
i.e., exponentially large in L. However, as Fig. 3 demon-
strates, special eigenstates have considerably lower en-
tropy than other eigenstates in the same energy density.
This suggest that matrix product state (MPS)63 repre-
sentation of FSA basis and special eigenstates should be
highly e�cient in the present case.

In order to formulate the FSA recurrence in the MPS
basis, we use the matrix product operator representation
of H+ from Eq. (17) and construct the basis by applying
the MPS operator to Néel state. The only di↵erence with
respect to the exact FSA is that a compression similar to
DMRG algorithms63 is performed every time an operator
is applied to the state or two states are summed. That
is, we truncate the state for all bipartitions, so that for
each reduced density matrix the truncated probability is
< 10�8 and then renormalize the state.

As a proof of principle of our MPS implementation of
the FSA, we show entropy scaling of special eigenstates

Figure 8. Logarithmic scaling of entropy for two adjacent
FSA eigenstates in the middle of the spectrum. Black trian-
gles correspond to the state at energy E1 ⇡ 1.33 and blue
crosses to E2 ⇡ 2.66 (the two data sets lie on top of each
other how well do the two data sets agree?). The fit
gives S / 0.48 log(L). Green curve corresponds to the en-
tropy of the exact special eigenstate at E1 ⇡ 1.33. The
non-monotonic behavior of entropy in this case is attributed
to weak hybridization with volume-law entangled states at
nearby energies. The inset displays the entropy of the FSA
ground state. The weak growth of entropy with L is an arte-
fact of the approximation, since the exact ground state is
gapped and obeys area law for entropy.

in Fig. 8. Despite the entropy being a non-local quan-
tity, we again find good agreement between the FSA and
exact eigenstates for system sizes up to L = 30. The
logarithmic growth of entanglement suggests that spe-
cial eigenstates cannot be e�ciently represented by MPS
in the thermodynamic limit. We note that the jumps in
the entropy growth of the exact eigenstate can be under-
stood as accidental hybridization with eigenstates in the
bulk. Because the majority of eigenstates carry extensive
amount of entropy in the middle of the spectrum, such
jumps can be attributed to two-eigenstate resonances.

Notably, the FSA overestimates the entanglement for
small system sizes. This trend is even more pronounced
in the inset of Fig. 8 which shows the scaling of the
ground state entropy within FSA. From exact diagonal-
ization it is known that the system is gapped, and the en-
tropy is expected to saturate at a value S ⇡ 0.346 in the
thermodynamic limit. The observed slow linear growth
is an indication of the error of the approximation and we
expect it to reside within all eigenstates. However, since
the prefactor is very small, for the system sizes consid-
ered, it is not visible in the logarithmic entropy growth
of the highly excited states.

D. Forward scattering approximation as a
trajectory in Hilbert space

The FSA approximation provides a framework for un-
derstanding the phenomenology of special eigenstates



Universality in quantum dynamics
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• Generic systems are chaotic  
Even isolated classical systems establish temperature  



Not all systems are equally chaotic
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Escaping chaos: integrability

[Kolmogorov 1954; Arnold 1963; Moser 1962]

• Additional conservation laws/symmetries: 
 
 
 
 
 
 

• Dynamics is constrained to tori; full phase space is not explored

• KAM theorem: non-resonant tori survive perturbations 



Ergodicity and integrability 

stable to weak perturbations
[Kolmogorov-Arnold-Moser theorem]chaos → ergodicity 
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                Ergodic phase          vs             MBL phase
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[see arXiv:1804.11065 for a review]

Described by quasi-local  
integrals of motionDescribed by ETH

[Srednicki’94]   
[Rigol,Dunjko,Olshanii’08]



Eigenstate Thermalization Hypothesis

e-iHt

time
thermal

#(0) e-iHt #(0)

ETH: eigenstates are thermal

[Srednicki’94] [Rigol,Dunjko,Olshanii’08]

Quantum dynamics is linear:

→ volume-law entanglement
→ eigenstates ≈ random vectors

thermal

→ sensitivity to perturbations, level repulsion
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III. THERMALIZATION AND
ENTANGLEMENT OF EIGENSTATES

In this Section, we investigate properties of the eigen-
states of the model in Eq. (5) using exact diagonalization
and shift-invert algorithm.47 While we find that the bulk
of eigenstates indeed thermalize, we show that it is possi-
ble to identify an extensive number of those that violate
the ETH and whose entanglement is much smaller than
for typical thermalizing states. We also briefly highlight
a number of other unusual properties of the PXP model,
including the exponentially large number of zero modes
and the coherent revivals in the fidelity dynamics.

In order to study the properties of the eigenstates of
the Hamiltonian (5), especially at high energies, it is cru-
cial to resolve the symmetries of the Hamiltonian. The
PXP model has a discrete spatial inversion symmetry
I which maps site j 7! L � j + 1. With PBCs, the
PXP model also has translation symmetry. In, addi-
tion, the existence of the operator PH =

Q
i
Zi anti-

commuting with the Hamiltonian (5) leads to the par-
ticle hole symmetry of the many-body spectrum: each
eigenstate at energy E has a partner at energy �E. Un-
less specified otherwise, our results below are for PBCs
where translational and inversion symmetries are explic-
itly taken into account. This allows us to obtain the
complete set of eigenstates of large systems of up to
L = 32 sites (at this system size, the zero momentum
inversion-symmetric sector of the Hilbert space contains
D0+ = 77436 states). Shift-invert algorithm allows to ex-
tract a subset of eigenstates for systems of up to L = 36
sites with D0+ = 467160.

A. Breakdown of ETH in special eigenstates

Thermalization in ergodic systems is explained by a
powerful conjecture regarding the nature of eigenstates
— the eigenstate thermalization hypothesis (ETH).8,9,11

The ETH states that in ergodic systems, the individ-
ual excited eigenstates have thermal expectation values
of physical observables, which are identical to those ob-
tained using the microcanonical and Gibbs ensembles.
The expectation value of a physical observable associ-
ated with an operator O is given by the diagonal matrix
element O↵↵ = h↵| O |↵i, where |↵i is an eigenstate of
H, H |↵i = E↵ |↵i. Further, to describe how the sys-
tem approaches the thermal state, Srednicki introduced
an ansatz for the matrix elements of physical operators
in the basis of system’s eigenstates:48,49

O↵� = O(E)�↵� + e�S(E)/2f(E, !)R↵� . (8)

The first term describes the diagonal part of the operator
in the eigenstate basis, and O(E) is a smooth function of
the energy that coincides with canonical ensemble pre-
diction. The second term describes o↵-diagonal matrix
elements, and S(E) is the thermodynamic entropy at the
average energy E = (E↵ + E�)/2, f(E, !) is a smooth

function of E and the energy di↵erence ! = E↵ � E� .
Finally, R↵� is a random number, which has zero mean
and unit variance. We note that the ETH ansatz (8)
for the matrix elements has been verified in several low-
dimensional models.50–53

In Fig. 2 we test the ansatz (8) for the diagonal ma-
trix elements of the operator OZ =

P
j
Zj in PXP model

in Eq. (5). Due to the existence of a constraint in the
Hilbert space, the operator OZ can be related to the near-
est neighbour correlation function OZZ =

P
j
ZjZj+1.

Moreover, because of the constraint all eigenstates have
negative values for hOZi, rather than hOZi ⇡ 0 which
might be expected in a generic thermalizing system with
an unconstrained Hilbert space.

Fig. 2(a) shows that most of expectation values of OZ

are close to the canonical prediction, O(E), which is cal-
culated from the Gibbs states defined by the density ma-
trix / exp(��H). The value of � 2 (�1, +1) is ex-
tracted by relating the observable expectation value to
the mean energy in Gibbs ensemble. However, Fig. 2
also shows that there is a number of states that clearly
violate the ETH. These states (denoted by crosses) form
a distinct band, which includes the ground state of the
system and extends all the way up to the middle of the
spectrum. The number of states in this band is L + 1
for OBC. For the case of systems with even L and PBC,
there are L/2+1 states in zero-momentum sector and L/2
states in ⇡-momentum sector, resulting in the same total
count. The special eigenstates belonging to this band can
be viewed as parent states that define the ETH-breaking
“towers”, visible in Fig. 2(a). Lower states in the towers
also break the ETH, though more weakly.

In Fig. 2(b) we show the distribution of di↵erences
in expectation value of OZ between eigenstates adja-
cent in energy, �OZ = |OZ

i+1,i+1 � OZ

ii
|. Consistent

with the ETH prediction, we observe that this distri-
bution narrows around �Z = 0 upon increasing the
system size. However, despite the fluctuations of �OZ

decaying with the system size, this decay is parametri-
cally slower compared to the ETH prediction. The inset
of Fig. 2(b) shows that the mean �OZ decays approx-

imately as 1/D1/4
0+ whereas the ETH suggests a decay

which is inversely proportional to the square root of the
density of states, 1/

p
D0+. Note, however, that only the

three largest system sizes appear to be in the scaling
regime, which means that it is possible that the power
governing the decay of the diagonal matrix element in-
deed converges to 1/2 in somewhat larger systems.

Finally, we test the ETH ansatz for the o↵-diagonal
matrix elements. Using Eq. (8) we define the average
matrix element at a given energy separation,

f2(!) = eS(E)h| h�| OZ |↵i |2�(E↵ � E� � !)i↵,� , (9)

which is rescaled by the density of states and averaged
over the middle 2/3 eigenstates in the spectrum, which
are denoted by ↵, �. The ETH for o↵-diagonal matrix el-
ements is equivalent to the function f2(!) being smooth

local observables  
are smooth

off-diagonal matrix elements 
are small

→ matrix elements ansatz



Thermalizing vs MBL dynamics

Ergodic Many-body localized 

Is intermediate behavior possible? 
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Experiments on Rydberg atoms array

[Bernien et al, Nature 2017, arXiv:1707.04344]

Atom-by-atom assembly of Rydberg chain

Effective description: two states per atom:
excited (Rydberg) state

ground state

Rydberg blockade Dynamical constraint



Experimental puzzle: long-time oscillations

Quantum quench
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ARTICLE RESEARCH

Even more striking is the coherent and persistent oscillation 
of the crystalline order after the quantum quench. With respect 
to the quenched Hamiltonian (∆ =  0), the energy density of our  
Z2-ordered state corresponds to that of an infinite-temperature 
ensemble within the manifold constrained by Rydberg blockade. 
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist 
well beyond the natural timescale of local relaxation (1/Ω) and the 
fastest timescale (1/Vi,i+1).

To understand these observations, we consider a simplified model 
in which the effect of long-range interactions is neglected, and nearest- 
neighbour interactions are replaced by hard constraints on neigh-
bouring excitations of Rydberg states30. In this limit, the qualitative 
behaviour of the quench dynamics can be understood in terms of 
dimerized spins (Fig. 6c); owing to the blockade constraint, each dimer 
forms an effective spin-1 system with three states (|rg〉, |gg〉 and |gr〉), 
in which the resonant drive ‘rotates’ the three states over the period 

Ωπ/2 (2 ), which is close to that observed experimentally. Although 
this qualitative picture does not take into account the strong interac-
tions (constraints) between neighbouring dimers, it can be extended 
by considering a minimal variational ansatz for the many-body wave 
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we 
derive analytical equations of motion and obtain a crystalline-order 
oscillation with a frequency of about Ω/1.51 (see Extended Data  
Fig. 9), which is within 10% of the experimental observations. These 
considerations are supported by various numerical simulations. The 
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy 
grows at a rate much smaller than Ω, indicating that the oscillation 
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a 

timescale that is determined by 1/Vi,i+2, in good agreement with experi-
mental observations (Fig. 6b); the entanglement entropy also grows on 
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of 
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected, 
because our Hamiltonian, with or without long-range interactions, is 
far from any known integrable system30, and features neither strong 
disorder nor explicitly conserved quantities38. Instead, our observations 
are probably associated with constrained dynamics due to Rydberg 
blockade and large separations of timescales ( Ω+ +≫ ≫V Vi i i i, 1 , 2 ;  
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio + /(1 5 ) 2N N  (refs 40, 41). The evolution 
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics42. 
Although these considerations provide important insights into the 
origin of robust emergent dynamics, our results challenge conventional 
theoretical concepts and so warrant further studies.

Outlook
Our observations demonstrate that Rydberg excitation of arrays of 
neutral atoms is a promising way of studying quantum dynamics and 
quantum simulations in large systems. Our method can be extended 
and improved in several ways. Individual qubit rotations around the z 
axis could be implemented using light shifts associated with trap light, 
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding 
qubits into hyperfine sublevels of the electronic ground state and using 
state-selective Rydberg excitation23. Implementing two-dimensional 
arrays could provide a path towards realizing thousands of traps. 
Such two-dimensional configurations could be realized by using a  
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Figure 6 | Emergent oscillations in many-body dynamics after sudden 
quench. a, A schematic of the sequence (top, showing ∆(t)), which 
involves adiabatic preparation and then a sudden quench to single-atom 
resonance. The single-atom trajectories are shown (bottom) for a 9-atom 
cluster, with the colour scale indicating the Rydberg probability. We 
observe that the initial crystal with a Rydberg excitation at every odd trap 
site (left inset) collapses after the quench, and a crystal with an excitation 
at every even site builds up (middle inset). At a later time, the initial crystal 
revives with a frequency of Ω/1.38(1) (right inset). Error bars denote 
68% confidence intervals. b, Domain-wall density after the quench. The 
dynamics decay slowly on a timescale of 0.88 µs. Shaded region represents 

the standard error of the mean. Solid blue line is a fully coherent matrix 
product state (MPS) simulation with bond dimension D =  256, taking into 
account measurement fidelity. c, Toy model of non-interacting dimers  
(see main text). Blue (white) circles represent atoms in state |g〉 (|r〉).  
d, Numerical calculations of the dynamics after a quench, starting from an 
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall 
density (red) and the growth of entanglement entropy of the half chain  
(13 atoms; blue) are shown as functions of time after the quench. Dashed 
lines take into account only the nearest-neighbour (NN) blockade 
constraint. Solid lines correspond to the full 1/R6 interaction potential.
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Even more striking is the coherent and persistent oscillation 
of the crystalline order after the quantum quench. With respect 
to the quenched Hamiltonian (∆ =  0), the energy density of our  
Z2-ordered state corresponds to that of an infinite-temperature 
ensemble within the manifold constrained by Rydberg blockade. 
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist 
well beyond the natural timescale of local relaxation (1/Ω) and the 
fastest timescale (1/Vi,i+1).

To understand these observations, we consider a simplified model 
in which the effect of long-range interactions is neglected, and nearest- 
neighbour interactions are replaced by hard constraints on neigh-
bouring excitations of Rydberg states30. In this limit, the qualitative 
behaviour of the quench dynamics can be understood in terms of 
dimerized spins (Fig. 6c); owing to the blockade constraint, each dimer 
forms an effective spin-1 system with three states (|rg〉, |gg〉 and |gr〉), 
in which the resonant drive ‘rotates’ the three states over the period 

Ωπ/2 (2 ), which is close to that observed experimentally. Although 
this qualitative picture does not take into account the strong interac-
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by considering a minimal variational ansatz for the many-body wave 
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we 
derive analytical equations of motion and obtain a crystalline-order 
oscillation with a frequency of about Ω/1.51 (see Extended Data  
Fig. 9), which is within 10% of the experimental observations. These 
considerations are supported by various numerical simulations. The 
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy 
grows at a rate much smaller than Ω, indicating that the oscillation 
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a 

timescale that is determined by 1/Vi,i+2, in good agreement with experi-
mental observations (Fig. 6b); the entanglement entropy also grows on 
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of 
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected, 
because our Hamiltonian, with or without long-range interactions, is 
far from any known integrable system30, and features neither strong 
disorder nor explicitly conserved quantities38. Instead, our observations 
are probably associated with constrained dynamics due to Rydberg 
blockade and large separations of timescales ( Ω+ +≫ ≫V Vi i i i, 1 , 2 ;  
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio + /(1 5 ) 2N N  (refs 40, 41). The evolution 
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics42. 
Although these considerations provide important insights into the 
origin of robust emergent dynamics, our results challenge conventional 
theoretical concepts and so warrant further studies.

Outlook
Our observations demonstrate that Rydberg excitation of arrays of 
neutral atoms is a promising way of studying quantum dynamics and 
quantum simulations in large systems. Our method can be extended 
and improved in several ways. Individual qubit rotations around the z 
axis could be implemented using light shifts associated with trap light, 
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding 
qubits into hyperfine sublevels of the electronic ground state and using 
state-selective Rydberg excitation23. Implementing two-dimensional 
arrays could provide a path towards realizing thousands of traps. 
Such two-dimensional configurations could be realized by using a  
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quench. a, A schematic of the sequence (top, showing ∆(t)), which 
involves adiabatic preparation and then a sudden quench to single-atom 
resonance. The single-atom trajectories are shown (bottom) for a 9-atom 
cluster, with the colour scale indicating the Rydberg probability. We 
observe that the initial crystal with a Rydberg excitation at every odd trap 
site (left inset) collapses after the quench, and a crystal with an excitation 
at every even site builds up (middle inset). At a later time, the initial crystal 
revives with a frequency of Ω/1.38(1) (right inset). Error bars denote 
68% confidence intervals. b, Domain-wall density after the quench. The 
dynamics decay slowly on a timescale of 0.88 µs. Shaded region represents 

the standard error of the mean. Solid blue line is a fully coherent matrix 
product state (MPS) simulation with bond dimension D =  256, taking into 
account measurement fidelity. c, Toy model of non-interacting dimers  
(see main text). Blue (white) circles represent atoms in state |g〉 (|r〉).  
d, Numerical calculations of the dynamics after a quench, starting from an 
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall 
density (red) and the growth of entanglement entropy of the half chain  
(13 atoms; blue) are shown as functions of time after the quench. Dashed 
lines take into account only the nearest-neighbour (NN) blockade 
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Even more striking is the coherent and persistent oscillation 
of the crystalline order after the quantum quench. With respect 
to the quenched Hamiltonian (∆ =  0), the energy density of our  
Z2-ordered state corresponds to that of an infinite-temperature 
ensemble within the manifold constrained by Rydberg blockade. 
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist 
well beyond the natural timescale of local relaxation (1/Ω) and the 
fastest timescale (1/Vi,i+1).

To understand these observations, we consider a simplified model 
in which the effect of long-range interactions is neglected, and nearest- 
neighbour interactions are replaced by hard constraints on neigh-
bouring excitations of Rydberg states30. In this limit, the qualitative 
behaviour of the quench dynamics can be understood in terms of 
dimerized spins (Fig. 6c); owing to the blockade constraint, each dimer 
forms an effective spin-1 system with three states (|rg〉, |gg〉 and |gr〉), 
in which the resonant drive ‘rotates’ the three states over the period 

Ωπ/2 (2 ), which is close to that observed experimentally. Although 
this qualitative picture does not take into account the strong interac-
tions (constraints) between neighbouring dimers, it can be extended 
by considering a minimal variational ansatz for the many-body wave 
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we 
derive analytical equations of motion and obtain a crystalline-order 
oscillation with a frequency of about Ω/1.51 (see Extended Data  
Fig. 9), which is within 10% of the experimental observations. These 
considerations are supported by various numerical simulations. The 
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy 
grows at a rate much smaller than Ω, indicating that the oscillation 
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a 

timescale that is determined by 1/Vi,i+2, in good agreement with experi-
mental observations (Fig. 6b); the entanglement entropy also grows on 
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of 
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected, 
because our Hamiltonian, with or without long-range interactions, is 
far from any known integrable system30, and features neither strong 
disorder nor explicitly conserved quantities38. Instead, our observations 
are probably associated with constrained dynamics due to Rydberg 
blockade and large separations of timescales ( Ω+ +≫ ≫V Vi i i i, 1 , 2 ;  
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio + /(1 5 ) 2N N  (refs 40, 41). The evolution 
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics42. 
Although these considerations provide important insights into the 
origin of robust emergent dynamics, our results challenge conventional 
theoretical concepts and so warrant further studies.

Outlook
Our observations demonstrate that Rydberg excitation of arrays of 
neutral atoms is a promising way of studying quantum dynamics and 
quantum simulations in large systems. Our method can be extended 
and improved in several ways. Individual qubit rotations around the z 
axis could be implemented using light shifts associated with trap light, 
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding 
qubits into hyperfine sublevels of the electronic ground state and using 
state-selective Rydberg excitation23. Implementing two-dimensional 
arrays could provide a path towards realizing thousands of traps. 
Such two-dimensional configurations could be realized by using a  
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Figure 6 | Emergent oscillations in many-body dynamics after sudden 
quench. a, A schematic of the sequence (top, showing ∆(t)), which 
involves adiabatic preparation and then a sudden quench to single-atom 
resonance. The single-atom trajectories are shown (bottom) for a 9-atom 
cluster, with the colour scale indicating the Rydberg probability. We 
observe that the initial crystal with a Rydberg excitation at every odd trap 
site (left inset) collapses after the quench, and a crystal with an excitation 
at every even site builds up (middle inset). At a later time, the initial crystal 
revives with a frequency of Ω/1.38(1) (right inset). Error bars denote 
68% confidence intervals. b, Domain-wall density after the quench. The 
dynamics decay slowly on a timescale of 0.88 µs. Shaded region represents 

the standard error of the mean. Solid blue line is a fully coherent matrix 
product state (MPS) simulation with bond dimension D =  256, taking into 
account measurement fidelity. c, Toy model of non-interacting dimers  
(see main text). Blue (white) circles represent atoms in state |g〉 (|r〉).  
d, Numerical calculations of the dynamics after a quench, starting from an 
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall 
density (red) and the growth of entanglement entropy of the half chain  
(13 atoms; blue) are shown as functions of time after the quench. Dashed 
lines take into account only the nearest-neighbour (NN) blockade 
constraint. Solid lines correspond to the full 1/R6 interaction potential.
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to ⟨ ⟩P2 av. The exponential enhancement of PR2 is evident in Fig. 3d 
and its persistence for chains of up to L =  32 sites provides strong 
evidence for the existence of special states even in the thermody-
namic limit.

In addition, the enhancement of the participation ratio for special 
eigenstates evidences their concentration in some subregions of the 
Hilbert space. This suggests that special eigenstates are equivalent 
to the many-body version of quantum scarred wavefunctions that 
concentrate in the vicinity of unstable periodic classical orbits in 
the single-particle quantum chaos. The success of the FSA in yield-
ing a good approximation to special eigenstates shows that the ‘spe-
cial trajectory’ in the present case connects the two different charge 
density wave states, Z2 and Z ′

2. This provides a natural explanation 
for the unusual dynamics observed in Fig. 2 and in experiment25, 
including the revivals in the many-body fidelity starting from the 
Z2 initial state shown in Supplementary Information. Finally, we 
have found evidence that other states, for example, ∣∙∘∘∙∘∘…⟩ , lead 
to similar behaviour to the Z2 state, although at present it is not clear 
how to determine all such configurations.

Level statistics and zero modes
Above we suggested a connection between special states, non-ergo-
dic dynamics and quantum scars. However, an alternative explana-
tion for the unusual behaviour observed could be some proximate 
integrability33,34. Indeed, the Hamiltonian equation (1) can be seen 
as a deformation of the ‘golden chain’ introduced in ref. 15, which 
is Yang–Baxter integrable. However, the present model cannot be 
treated as a weak deformation of the ‘golden chain’15, as the two 
Hamiltonians differ by several terms with O(1) coefficients.

To investigate possible integrability, in Fig. 4 we studied the level 
statistics of the model in equation (1), which is a common diag-
nostic in the context of both single-particle and many-body quan-
tum systems35,36. Fig. 4 reveals that even for relatively small system 
size, there is a pronounced level repulsion and the distribution of 
the energy level spacing is close to the semi-Poisson distribution, 
P(s) =  4se−2s (ref. 37), characterized by the level repulsion at s →  0 and 
an exponential tail. This is in sharp contrast with integrable systems, 
which always have Poisson level statistics. Moreover, on increasing 
the system size to L =  32, we observe that the level statistics steadily 
approaches the Wigner–Dyson distribution. The Wigner–Dyson 
level statistics, along with ballistic growth of entanglement, rule out 
the integrability-based explanation of the non-ergodic dynamics in 
the model in equation (1).

Another feature prominent in the inset of Fig. 4 is the peak in 
the otherwise Gaussian density of states. This peak is caused by a 
large number of states annihilated by the Hamiltonian, ψ∣ ⟩ =H 0, 
which form a degenerate subspace of zero modes. We find that the 
number of zero modes is given by a Fibonacci number; that is, their 
number grows exponentially with system size. For open boundar-
ies and even system size L, the zero energy degeneracy is given by 

= +Z FL 1L
2

. When L is instead odd, we have instead = −Z FL L 1
2

. In the 
Methods section we demonstrate that the emergence of zero modes 
and their count can be understood from the interplay between 
inversion symmetry and sublattice structure present in the graph 
representation of the Hamiltonian (Fig. 1). This additional special 
property of the model in equation (1) appears to be compatible with 
the presence of scars: as can be seen in Fig. 3a, one of the special 
states is also a zero mode.

We note that zero modes are stable with respect to introducing 
potential energy as long as it commutes with particle-hole symme-
try P and anticommutes with the inversion operator. An example 
of such potential energy is provided by the staggered chemical 
potential, ∑ −= Z( )i

L i
i1 , which does not change the number of zero 

modes in the model in equation (1) with OBC for even system 
sizes. Although our symmetry arguments allow us to enumerate  
all zero modes, the complete understanding of their algebraic 

properties and the precise relation to scars appear to be much more 
difficult problems.

Discussion
In summary, we have demonstrated the weak breakdown of eigen-
state thermalization in the Fibonacci chain. This breakdown is 
associated with a band of special eigenstates that we identified as 
‘quantum many-body scars’. These eigenstates are analogues of sin-
gle-particle chaotic wavefunctions, but with scars concentrated in 
parts of the Hilbert space. Moreover, as shown transparently by our 
tight-binding method, scars can be experimentally probed by ini-
tializing the system in special states, such as ∣∙∘∙∘…⟩  and ∣∘∙∘∙…⟩ .  
The ensuing quantum dynamics then remains concentrated on a 
very specific subset of the Hilbert space, giving rise to robust oscil-
lations even in very large systems.

We emphasize that our findings are qualitatively different from 
previous proposals of many-body localization in translation-invari-
ant models22,38–48, where the potential energy was designed to make 
most of the processes off-resonant, leading to ergodicity breaking. 
In contrast, the model in equation (1) does not have any potential 
energy, and features ballistic propagation of entanglement. Our 
study thus suggests the existence of a new universality class of quan-
tum dynamics, which is neither fully thermalizing nor many-body 
localized, and which we attribute to the presence of a local dynami-
cal constraint. This opens many exciting research directions that 
could lead to a better understanding of weakly non-ergodic systems. 
In particular, the analogy with quantum scars should be put on a 
firmer footing. This requires a more rigorous generalization of the 
concept of ‘trajectory’ (in the sense of single-particle quantum scars) 
to the many-body case. Full classification and understanding of all 
such trajectories and their ‘parent states’ also remains an open prob-
lem. The FSA presented here may be regarded as a first step in these 
directions. Another open question concerns the precise relationship 
between quantum scars and other unusual aspects of the model, 
such as the existence of zero modes. We have demonstrated the 
compatibility of these two phenomena in the model of equation (1),  
but we expect scars to be more generic than the zero modes, as their 
existence does not appear to rely crucially on a symmetry of the 
model. In Supplementary Information we illustrate the stability of 
scarred eigenstates to various perturbations.

While the questions formulated above may be addressed in the 
context of the specific model of equation (1), our work motivates 
the search for similar behaviour in different kinetically constrained 
models. It would be highly desirable to understand the features of 
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to ⟨ ⟩P2 av. The exponential enhancement of PR2 is evident in Fig. 3d 
and its persistence for chains of up to L =  32 sites provides strong 
evidence for the existence of special states even in the thermody-
namic limit.

In addition, the enhancement of the participation ratio for special 
eigenstates evidences their concentration in some subregions of the 
Hilbert space. This suggests that special eigenstates are equivalent 
to the many-body version of quantum scarred wavefunctions that 
concentrate in the vicinity of unstable periodic classical orbits in 
the single-particle quantum chaos. The success of the FSA in yield-
ing a good approximation to special eigenstates shows that the ‘spe-
cial trajectory’ in the present case connects the two different charge 
density wave states, Z2 and Z ′

2. This provides a natural explanation 
for the unusual dynamics observed in Fig. 2 and in experiment25, 
including the revivals in the many-body fidelity starting from the 
Z2 initial state shown in Supplementary Information. Finally, we 
have found evidence that other states, for example, ∣∙∘∘∙∘∘…⟩ , lead 
to similar behaviour to the Z2 state, although at present it is not clear 
how to determine all such configurations.

Level statistics and zero modes
Above we suggested a connection between special states, non-ergo-
dic dynamics and quantum scars. However, an alternative explana-
tion for the unusual behaviour observed could be some proximate 
integrability33,34. Indeed, the Hamiltonian equation (1) can be seen 
as a deformation of the ‘golden chain’ introduced in ref. 15, which 
is Yang–Baxter integrable. However, the present model cannot be 
treated as a weak deformation of the ‘golden chain’15, as the two 
Hamiltonians differ by several terms with O(1) coefficients.

To investigate possible integrability, in Fig. 4 we studied the level 
statistics of the model in equation (1), which is a common diag-
nostic in the context of both single-particle and many-body quan-
tum systems35,36. Fig. 4 reveals that even for relatively small system 
size, there is a pronounced level repulsion and the distribution of 
the energy level spacing is close to the semi-Poisson distribution, 
P(s) =  4se−2s (ref. 37), characterized by the level repulsion at s →  0 and 
an exponential tail. This is in sharp contrast with integrable systems, 
which always have Poisson level statistics. Moreover, on increasing 
the system size to L =  32, we observe that the level statistics steadily 
approaches the Wigner–Dyson distribution. The Wigner–Dyson 
level statistics, along with ballistic growth of entanglement, rule out 
the integrability-based explanation of the non-ergodic dynamics in 
the model in equation (1).

Another feature prominent in the inset of Fig. 4 is the peak in 
the otherwise Gaussian density of states. This peak is caused by a 
large number of states annihilated by the Hamiltonian, ψ∣ ⟩ =H 0, 
which form a degenerate subspace of zero modes. We find that the 
number of zero modes is given by a Fibonacci number; that is, their 
number grows exponentially with system size. For open boundar-
ies and even system size L, the zero energy degeneracy is given by 

= +Z FL 1L
2

. When L is instead odd, we have instead = −Z FL L 1
2

. In the 
Methods section we demonstrate that the emergence of zero modes 
and their count can be understood from the interplay between 
inversion symmetry and sublattice structure present in the graph 
representation of the Hamiltonian (Fig. 1). This additional special 
property of the model in equation (1) appears to be compatible with 
the presence of scars: as can be seen in Fig. 3a, one of the special 
states is also a zero mode.

We note that zero modes are stable with respect to introducing 
potential energy as long as it commutes with particle-hole symme-
try P and anticommutes with the inversion operator. An example 
of such potential energy is provided by the staggered chemical 
potential, ∑ −= Z( )i

L i
i1 , which does not change the number of zero 

modes in the model in equation (1) with OBC for even system 
sizes. Although our symmetry arguments allow us to enumerate  
all zero modes, the complete understanding of their algebraic 

properties and the precise relation to scars appear to be much more 
difficult problems.

Discussion
In summary, we have demonstrated the weak breakdown of eigen-
state thermalization in the Fibonacci chain. This breakdown is 
associated with a band of special eigenstates that we identified as 
‘quantum many-body scars’. These eigenstates are analogues of sin-
gle-particle chaotic wavefunctions, but with scars concentrated in 
parts of the Hilbert space. Moreover, as shown transparently by our 
tight-binding method, scars can be experimentally probed by ini-
tializing the system in special states, such as ∣∙∘∙∘…⟩  and ∣∘∙∘∙…⟩ .  
The ensuing quantum dynamics then remains concentrated on a 
very specific subset of the Hilbert space, giving rise to robust oscil-
lations even in very large systems.

We emphasize that our findings are qualitatively different from 
previous proposals of many-body localization in translation-invari-
ant models22,38–48, where the potential energy was designed to make 
most of the processes off-resonant, leading to ergodicity breaking. 
In contrast, the model in equation (1) does not have any potential 
energy, and features ballistic propagation of entanglement. Our 
study thus suggests the existence of a new universality class of quan-
tum dynamics, which is neither fully thermalizing nor many-body 
localized, and which we attribute to the presence of a local dynami-
cal constraint. This opens many exciting research directions that 
could lead to a better understanding of weakly non-ergodic systems. 
In particular, the analogy with quantum scars should be put on a 
firmer footing. This requires a more rigorous generalization of the 
concept of ‘trajectory’ (in the sense of single-particle quantum scars) 
to the many-body case. Full classification and understanding of all 
such trajectories and their ‘parent states’ also remains an open prob-
lem. The FSA presented here may be regarded as a first step in these 
directions. Another open question concerns the precise relationship 
between quantum scars and other unusual aspects of the model, 
such as the existence of zero modes. We have demonstrated the 
compatibility of these two phenomena in the model of equation (1),  
but we expect scars to be more generic than the zero modes, as their 
existence does not appear to rely crucially on a symmetry of the 
model. In Supplementary Information we illustrate the stability of 
scarred eigenstates to various perturbations.

While the questions formulated above may be addressed in the 
context of the specific model of equation (1), our work motivates 
the search for similar behaviour in different kinetically constrained 
models. It would be highly desirable to understand the features of 
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Fig. 4 | Level statistics and zero modes in the Fibonacci chain. Level 
statistics P(s) interpolates between semi-Poisson (SP) and Wigner–Dyson 
(WD) distributions with increasing system size. Data are inconsistent 
with the Poisson statistics (P). P(s) is calculated for the zero-momentum 
inversion-symmetric (0+ ) sector of the model in equation (1) from the 
unfolded energy levels Ei in the bulk of the spectrum excluding the zero 
modes, that is, for i!∈ ![ D∣ ⟩+0 /5, D∣ ⟩+0 /2–500]. The inset shows the 
density of states for L!= !32, illustrating that it has a Gaussian form without 
any anomalies, except for the spike at E!= !0 due to zero modes.
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larger than the detuning and the Rabi frequency, the system is mod-
elled by the following spin-1/2 Hamiltonian16,

∑=
=

+ +H PX P (1)
i

L

i i i
1

1 2

where Xi, Yi, Zi are the Pauli operators, L denotes the length of the 
chain and we work in units ħ =  1. In what follows, we use ∣∘⟩  to refer 
the ground state and ∣∙⟩  to refer to the Rydberg state of a single 
atom. The operator Xi =  ∣∘⟩ ⟨∙∣ + ∣∙⟩ ⟨∘∣  creates or removes an exci-
tation at a given site, and projectors = ∣∘⟩ ⟨∘∣Pi  =  (1 −  Zi)/2, written 
in terms of Zi =  ∣∙⟩ ⟨∙∣−∣∘⟩ ⟨∘∣ , ensure that the nearby atoms are not 
simultaneously in the excited state. For example, P1X2P3 acting on 
∣∘∘∘⟩  gives ∣∘∙∘⟩  (and vice versa), while it annihilates any of the con-
figurations ∣∙∘∘⟩ , ∣∘∘∙⟩ , ∣∙∘∙⟩ .

The presence of projectors in the Hamiltonian (equation (1)) 
does not allow for relaxation of several adjacent Rydberg atoms. 
In other words, configurations ∣…∙∙…⟩  are ‘dark states’ breaking 
our chain into two disconnected parts. Hence, such configura-
tions are excluded in what follows and we consider a constrained 
Hilbert space without any adjacent Rydberg atoms. Such a con-
straint makes the Hilbert space identical to that of chains of non-
Abelian Fibonacci anyons, rather than spins-1/2 or fermions. For 
periodic boundary conditions (PBC), the Hilbert space dimension 
is equal to D =  FL−1 +  FL+1, where Fn is the nth Fibonacci number. For 
instance, in the case of the L =  6 chain we have D =  18, as shown in 
Fig. 1. For open boundary conditions (OBC), D scales as FL+2. Thus, 
the Hilbert space is evidently very different from, for example, the  
spin-1

2
 chain where the number of states grows as 2L.

The model in equation (1) is particle–hole symmetric: an opera-
tor = ∏P Zi i anticommutes with the Hamiltonian, PH =  − HP, and 
therefore each eigenstate ψ∣ ⟩  with energy E ≠  0 has a partner ψ∣ ⟩P  
with energy − E. Furthermore, the model has spatial inversion 
symmetry I which maps i →  L −  i +  1. In addition, with PBC, this 
model has translation symmetry. In what follows, unless specified 
otherwise, we restrict ourselves to PBC (thus identifying i =  L +  1 
and i =  1) and explicitly resolve translation and inversion symme-
tries which allow us to fully diagonalize systems of up to L =  32 sites 
(with +D0  =  77,436 states in the zero-momentum inversion-sym-
metric sector).

Experiment25 and numerical simulations on small systems29 
revealed that the relaxation under unitary dynamics specified by 
the Hamiltonian (equation (1)) strongly depends on the initial state 
of the system. In particular, starting from period-2 charge density 
wave states

Z Z∣ ⟩ = ∣∙∘∙∘…⟩ ∣ ⟩ = ∣∘∙∘∙…⟩′, (2)2 2

that are related by a translation by one lattice period, the system 
shows surprising long-time oscillations of local observables for long 
chains of up to L =  51 sites. Although this might suggest that the sys-
tem is non-ergodic, it was also observed that the initial state with all 
atoms in the state ∣∘⟩  shows fast relaxation and no revivals, charac-
teristic of thermalizing systems. Given that the model in equation (1)  
is translation invariant and has no disorder, many-body localization 
cannot be at play. Below we explain the origin of the observed oscil-
lations and the apparent non-ergodic dynamics.

Dynamics
We start by characterizing the dynamical evolution of the model 
in equation (1) for different initial conditions. Motivated by 
experiment25, we consider a family of charge density wave states 
Z∣ ⟩k  =  ∣…∙∘…∘∙…⟩ , where the atoms in excited states are separated 

by k −  1 atoms in the ground state, as well as the fully polarized state 
∣…∘∘∘…⟩ ≡ ∣ ⟩0 . We use the infinite time evolving block decima-
tion (iTEBD) method, which provides results valid in the thermo-
dynamic limit up to some finite time30. The bond dimension used is 
400, which limits the evolution time to t ~ 30.

Figure 2a reveals linear growth of entanglement entropy evalu-
ated for the midpoint bipartition for all considered initial states. 
Yet, the slope of entanglement growth strongly depends on the 
initial state, with the slowest growth observed when the system is 
prepared in the period-2 density wave state, Z∣ ⟩2 , in equation (2).  
In addition, the entanglement growth has weak oscillations on 
top of the linear growth. Relative to the magnitude of entropy, the 
oscillations are most significant for the Z∣ ⟩2  initial state. Figure 2b  
illustrates the oscillations in entanglement by subtracting the lin-
ear component. We note that the oscillations are periodic with 
the period Z ≈ .T 2 35

2
, in agreement with ref. 25. Similarly, periodic 

oscillations are clearly visible in the local correlation function, 
⟨ ⟩+Z Zi i 1  (Fig. 2c). The oscillations that persist for long times when 
the entanglement light-cone reaches a distance of ≳ 20 sites, as evi-
denced by the correlation function, are highly unusual. Although 
experimental work25 presented a variational ansatz capturing these 
oscillations, below we demonstrate that the oscillations actually 
arise due to the existence of special eigenstates within the rest of the 
many-body spectrum.

Special states
The special eigenstates become clearly visible when one arranges 
the entire many-body spectrum according to the overlap with 
the density-wave Z∣ ⟩2  state, as shown in Fig. 3a. This reveals the  
‘Z2-band’ of special eigenstates, which are distinguished by atypically  

0 1 2 3 4 5 6 Dz2

Fig. 1 | The Hilbert space graph of the Fibonacci chain with L!=!6 sites. 
The nodes of the graph label the allowed product states, while the edges 
connect configurations that result from a given product state due to the 
action of the Hamiltonian. Nodes of the graph are grouped according to the 
Hamming distance ZD

2
 from the Z∣ ⟩2  state.
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Figure 5. Finite size scaling of the energy gaps between
special states closest to the middle of the spectrum shows
the convergence of all gaps to the same value in the ther-
modynamic limit. Note that adjacent special states belong
to di↵erent momentum sectors. The gaps accurately follow
quadratic dependence on the system size. The prediction of
the forward scattering approximation, discussed in Sec. IV for
systems with up to Chris, please fill data L = . . . sites, is
shown by blue/orange points, corresponding to the two states
closest to the middle of the spectrum. Within this approx-
imation, the energies appear to follow linear dependence in
1/L (dashed line).

Interestingly, special eigenstates identified via a num-
ber of probes, including the overlap with |Z2i state,
are nearly equidistant in energy. Near the center of
the many-body band, they are separated in energy by
�E ⇡ 2.66. In addition there exists a band of the spe-
cial states from the ⇡-momentum inversion antisymmet-
ric sector that have energies exactly between the spe-
cial states from zero-momentum sector. Thus, combin-
ing both sectors, the energy separation between special
states becomes �E ⇡ 1.33 in the middle of the spec-
trum. Fig. 5 shows the finite-size scaling of the energy
gaps between the four special eigenstates closest to the
energy E = 0. All the gaps accurately follow the finite
size scaling �Ei = 1.337 + ci/L2, where the linear term
is absent. Constants ci depend on the chosen pair of
eigenstates, with c1 = 0.582, corresponding to the gap
between the special state at E = 0 and the closest one
with non-zero energy. In contrast, the distance between
special eigenstates at the edge of the spectrum is con-
siderably larger. In particular, the gap separating the
ground state from the first excited state in this model is
�E0 ⇡ 0.968. Specify symmetry sectors

D. Dynamical signatures of special eigenstates

Anomalously high overlaps of special eigenstates with
product states like |Z2i or |Z3i make them amenable to
a simple experimental probe – global quench (the for-
mer case has been studied in the experiment in Ref. 1).
We initialize the system at time t = 0 in the state

| (0)i = |Zki, and then follow the evolution of this ini-
tial state under the PXP Hamiltonian, Eq. (5), | (t)i =
exp(�iHt) | (0)i. The outcome of this evolution is deter-
mined by the overlaps between eigenstates of the system
with | (0)i, and their energies.

Figs. 4 and 5 demonstrate that there are a few eigen-
states with high overlaps and constant energy separation
in the middle of the band (where the overlaps are high-
est). Therefore, we expect that quantum quench from
|Z2i or |Z3i product state will give rise to coherent oscil-
lations, with a frequency determined by the energy sep-
aration between the towers of special states in Fig. 4.
These oscillations in the dynamics can be observed by
measuring the expectation values of certain local observ-
ables,1,2 or more generally, using the quantum fidelity (or
return probability) defined as | hZk| exp(�iHt) |Zki |2.

Fully consistent with these expectations, fidelity for
quenches from |Z2i, |Z3i initial states shown in Fig. 6
reveals pronounced periodic revivals. The period of these
revivals coincides with 2⇡/�E1, where �E1 ⇡ 1.33 is
the energy separation between the special states. We
note that revivals of a local observable – the density of
domain walls – were found in Ref. 1 for the |Z2i case. The
frequency of these revivals is identical to the frequency
of quantum fidelity. By contrast, for |Z4i initial state,
we do not observe any revivals in the fidelity. This is in
agreement with the absence of anomalously high overlaps
between eigenstates and |Z4i product state.

The return probability for the |Z3i initial state in Fig. 6
displays a beating pattern modulating the amplitude of
the revivals. These revivals can be attributed to yet an-
other band of special states, some of which are visible as
individual points in Fig. 4(b), which are in between the
topmost band and the continuum of bulk states. Prob-
ably still not very clear, maybe shade a few of
those states in the figure? This secondary band of
special eigenstates generally has enhanced overlaps with
product states containing a domain wall between two dif-
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Figure 6. Quantum fidelity shows periodic in time revivals
for |Z2i and |Z3i initial product states. In contrast, |Z4i initial
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Origin of periodic revivals?
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Figure 3. Bipartite entanglement entropy of eigenstates, S,
as a function of energy E for the 30-site PXP model. Region A
is chosen as one half of the chain. Bulk of the states have large
volume-law entropy (S & 5). The outliers with anomalously
low entropy (S . 2) are also visible. These states are labelled
by 0, . . . , 7, and they span the entire energy range between
the ground state (0) and the middle of the band (7).

tropy (S & 5) reveals the volume-law scaling, S / L
(not shown). In addition to the bulk of typical strongly-
entangled states, we also observe “outliers” with much
lower entropy. The outlier states with the lowest entan-
glement labeled as 0,..., 7 in Fig. 3 span the entire band-
width. These states coincide with the states that maxi-
mally violate the ETH, depicted by crosses in Fig. 2(a).

In Sec. IV we present an approach based on forward
scattering, which accurately captures the low-entropy
states in Fig. 3. Within the forward scattering approxi-
mation, we will be able to demonstrate that states 0,...,7
in Fig. 3 are highly atypical from the entanglement point
of view: their entanglement entropy scales with the log-
arithm of system size, i.e., S / ln L. This type of be-
haviour, which is very di↵erent from the ETH prediction,
is commonly encountered in critical systems58 and sys-
tems with Fermi surfaces.59,60 Similar phenomenology is
found in recent work,61 where exact expressions for ex-
cited eigenstates in a non-integrable AKLT model have
been constructed.

C. Overlap of special eigenstates with product
states

We demonstrated that the PXP model breaks the ETH
via the emergence of a relatively small number of atyp-
ical, non-thermal eigenstates. These states are distin-
guished by anomalous matrix elements of local observ-
ables, Fig. 2(a), and sub-thermal entanglement entropy,
Fig. 3. However there exist only L + 1 such states em-
bedded among an exponentially many (slowly) thermal-
izing eigenstates. Hence, naively one may think that
these states do not have direct physical relevance, as
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Figure 4. Add labels to plots (a) Density plot showing
the logarithm of the overlap between eigenstates of the PXP
model and |Z2i state as a function of energy E. The states
with largest overlap are identified with low-entropy states
0,...,7 in Fig. 3. (b) Same as the left plot but for overlap
with |Z3i state, which reveals a smaller number of additional
special states. Both plots are for L = 30 in zero-momentum
and inversion symmetric sector.

they might be hidden by the contribution of a much
larger number of typical eigenstates. Below we show that
this is not the case because the special eigenstates have
anomalously high overlap with certain product states.
This implies that superpositions of special eigenstates
can be e↵ectively prepared and probed using the global
quench starting from the experimentally accessible prod-
uct states. A class of product states which can be pre-
pared in the existing experiments1 are the charge density
wave (CDW) states

|Zki = | . . . •� . . . �• . . .i, (10)

where the atoms in excited states are separated by k � 1
atoms in the ground state.

Fig. 4 shows that simplest CDW states, the period-2
(Néel) state and the period-3 (Z3) state, allow one to
identify a dominant subset of special states. In particu-
lar, Fig. 4(a) shows the squared overlap between all the
eigenstates of the PXP model and |Z2i product state on
a logarithmic scale. From this plot, we see that there ex-
ists a set of eigenstates with anomalously large overlap,
which form regular tower structures. The states at the
top of each tower coincide with the special eigenstates
identified earlier in Figs. 2 and 3. We also see that for
each of the special states labeled 0, . . . 7, there are further
eigenstates belonging to the same tower (e.g. with simi-
lar eigenenergy) which have much larger overlap with the
Néel state than the majority of thermalizing states.

There are further states that also violate the ETH,
though more weakly. Fig. 4(b) reveals some of them by
examining the overlap of all eigenstates with |Z3i product
state. Here we can observe the existence of an additional
band of states, which is however much less clearly sep-
arated from the rest of the spectrum compared to the
Z2 case. A natural question is whether the set of spe-
cial states revealed by |Z2i intersects with that of |Z3i.
Cross comparison of overlaps (not shown) reveals that
these two sets of special states are di↵erent from each
other.

anomalously low entanglement 
entropy 
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Figure 3. Bipartite entanglement entropy of eigenstates, S,
as a function of energy E for the 30-site PXP model. Region A
is chosen as one half of the chain. Bulk of the states have large
volume-law entropy (S & 5). The outliers with anomalously
low entropy (S . 2) are also visible. These states are labelled
by 0, . . . , 7, and they span the entire energy range between
the ground state (0) and the middle of the band (7).

tropy (S & 5) reveals the volume-law scaling, S / L
(not shown). In addition to the bulk of typical strongly-
entangled states, we also observe “outliers” with much
lower entropy. The outlier states with the lowest entan-
glement labeled as 0,..., 7 in Fig. 3 span the entire band-
width. These states coincide with the states that maxi-
mally violate the ETH, depicted by crosses in Fig. 2(a).

In Sec. IV we present an approach based on forward
scattering, which accurately captures the low-entropy
states in Fig. 3. Within the forward scattering approxi-
mation, we will be able to demonstrate that states 0,...,7
in Fig. 3 are highly atypical from the entanglement point
of view: their entanglement entropy scales with the log-
arithm of system size, i.e., S / ln L. This type of be-
haviour, which is very di↵erent from the ETH prediction,
is commonly encountered in critical systems58 and sys-
tems with Fermi surfaces.59,60 Similar phenomenology is
found in recent work,61 where exact expressions for ex-
cited eigenstates in a non-integrable AKLT model have
been constructed.

C. Overlap of special eigenstates with product
states

We demonstrated that the PXP model breaks the ETH
via the emergence of a relatively small number of atyp-
ical, non-thermal eigenstates. These states are distin-
guished by anomalous matrix elements of local observ-
ables, Fig. 2(a), and sub-thermal entanglement entropy,
Fig. 3. However there exist only L + 1 such states em-
bedded among an exponentially many (slowly) thermal-
izing eigenstates. Hence, naively one may think that
these states do not have direct physical relevance, as
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Figure 4. Add labels to plots (a) Density plot showing
the logarithm of the overlap between eigenstates of the PXP
model and |Z2i state as a function of energy E. The states
with largest overlap are identified with low-entropy states
0,...,7 in Fig. 3. (b) Same as the left plot but for overlap
with |Z3i state, which reveals a smaller number of additional
special states. Both plots are for L = 30 in zero-momentum
and inversion symmetric sector.

they might be hidden by the contribution of a much
larger number of typical eigenstates. Below we show that
this is not the case because the special eigenstates have
anomalously high overlap with certain product states.
This implies that superpositions of special eigenstates
can be e↵ectively prepared and probed using the global
quench starting from the experimentally accessible prod-
uct states. A class of product states which can be pre-
pared in the existing experiments1 are the charge density
wave (CDW) states

|Zki = | . . . •� . . . �• . . .i, (10)

where the atoms in excited states are separated by k � 1
atoms in the ground state.

Fig. 4 shows that simplest CDW states, the period-2
(Néel) state and the period-3 (Z3) state, allow one to
identify a dominant subset of special states. In particu-
lar, Fig. 4(a) shows the squared overlap between all the
eigenstates of the PXP model and |Z2i product state on
a logarithmic scale. From this plot, we see that there ex-
ists a set of eigenstates with anomalously large overlap,
which form regular tower structures. The states at the
top of each tower coincide with the special eigenstates
identified earlier in Figs. 2 and 3. We also see that for
each of the special states labeled 0, . . . 7, there are further
eigenstates belonging to the same tower (e.g. with simi-
lar eigenenergy) which have much larger overlap with the
Néel state than the majority of thermalizing states.

There are further states that also violate the ETH,
though more weakly. Fig. 4(b) reveals some of them by
examining the overlap of all eigenstates with |Z3i product
state. Here we can observe the existence of an additional
band of states, which is however much less clearly sep-
arated from the rest of the spectrum compared to the
Z2 case. A natural question is whether the set of spe-
cial states revealed by |Z2i intersects with that of |Z3i.
Cross comparison of overlaps (not shown) reveals that
these two sets of special states are di↵erent from each
other.
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larger than the detuning and the Rabi frequency, the system is mod-
elled by the following spin-1/2 Hamiltonian16,

∑=
=

+ +H PX P (1)
i

L

i i i
1

1 2

where Xi, Yi, Zi are the Pauli operators, L denotes the length of the 
chain and we work in units ħ =  1. In what follows, we use ∣∘⟩  to refer 
the ground state and ∣∙⟩  to refer to the Rydberg state of a single 
atom. The operator Xi =  ∣∘⟩ ⟨∙∣ + ∣∙⟩ ⟨∘∣  creates or removes an exci-
tation at a given site, and projectors = ∣∘⟩ ⟨∘∣Pi  =  (1 −  Zi)/2, written 
in terms of Zi =  ∣∙⟩ ⟨∙∣−∣∘⟩ ⟨∘∣ , ensure that the nearby atoms are not 
simultaneously in the excited state. For example, P1X2P3 acting on 
∣∘∘∘⟩  gives ∣∘∙∘⟩  (and vice versa), while it annihilates any of the con-
figurations ∣∙∘∘⟩ , ∣∘∘∙⟩ , ∣∙∘∙⟩ .

The presence of projectors in the Hamiltonian (equation (1)) 
does not allow for relaxation of several adjacent Rydberg atoms. 
In other words, configurations ∣…∙∙…⟩  are ‘dark states’ breaking 
our chain into two disconnected parts. Hence, such configura-
tions are excluded in what follows and we consider a constrained 
Hilbert space without any adjacent Rydberg atoms. Such a con-
straint makes the Hilbert space identical to that of chains of non-
Abelian Fibonacci anyons, rather than spins-1/2 or fermions. For 
periodic boundary conditions (PBC), the Hilbert space dimension 
is equal to D =  FL−1 +  FL+1, where Fn is the nth Fibonacci number. For 
instance, in the case of the L =  6 chain we have D =  18, as shown in 
Fig. 1. For open boundary conditions (OBC), D scales as FL+2. Thus, 
the Hilbert space is evidently very different from, for example, the  
spin-1

2
 chain where the number of states grows as 2L.

The model in equation (1) is particle–hole symmetric: an opera-
tor = ∏P Zi i anticommutes with the Hamiltonian, PH =  − HP, and 
therefore each eigenstate ψ∣ ⟩  with energy E ≠  0 has a partner ψ∣ ⟩P  
with energy − E. Furthermore, the model has spatial inversion 
symmetry I which maps i →  L −  i +  1. In addition, with PBC, this 
model has translation symmetry. In what follows, unless specified 
otherwise, we restrict ourselves to PBC (thus identifying i =  L +  1 
and i =  1) and explicitly resolve translation and inversion symme-
tries which allow us to fully diagonalize systems of up to L =  32 sites 
(with +D0  =  77,436 states in the zero-momentum inversion-sym-
metric sector).

Experiment25 and numerical simulations on small systems29 
revealed that the relaxation under unitary dynamics specified by 
the Hamiltonian (equation (1)) strongly depends on the initial state 
of the system. In particular, starting from period-2 charge density 
wave states

Z Z∣ ⟩ = ∣∙∘∙∘…⟩ ∣ ⟩ = ∣∘∙∘∙…⟩′, (2)2 2

that are related by a translation by one lattice period, the system 
shows surprising long-time oscillations of local observables for long 
chains of up to L =  51 sites. Although this might suggest that the sys-
tem is non-ergodic, it was also observed that the initial state with all 
atoms in the state ∣∘⟩  shows fast relaxation and no revivals, charac-
teristic of thermalizing systems. Given that the model in equation (1)  
is translation invariant and has no disorder, many-body localization 
cannot be at play. Below we explain the origin of the observed oscil-
lations and the apparent non-ergodic dynamics.

Dynamics
We start by characterizing the dynamical evolution of the model 
in equation (1) for different initial conditions. Motivated by 
experiment25, we consider a family of charge density wave states 
Z∣ ⟩k  =  ∣…∙∘…∘∙…⟩ , where the atoms in excited states are separated 

by k −  1 atoms in the ground state, as well as the fully polarized state 
∣…∘∘∘…⟩ ≡ ∣ ⟩0 . We use the infinite time evolving block decima-
tion (iTEBD) method, which provides results valid in the thermo-
dynamic limit up to some finite time30. The bond dimension used is 
400, which limits the evolution time to t ~ 30.

Figure 2a reveals linear growth of entanglement entropy evalu-
ated for the midpoint bipartition for all considered initial states. 
Yet, the slope of entanglement growth strongly depends on the 
initial state, with the slowest growth observed when the system is 
prepared in the period-2 density wave state, Z∣ ⟩2 , in equation (2).  
In addition, the entanglement growth has weak oscillations on 
top of the linear growth. Relative to the magnitude of entropy, the 
oscillations are most significant for the Z∣ ⟩2  initial state. Figure 2b  
illustrates the oscillations in entanglement by subtracting the lin-
ear component. We note that the oscillations are periodic with 
the period Z ≈ .T 2 35

2
, in agreement with ref. 25. Similarly, periodic 

oscillations are clearly visible in the local correlation function, 
⟨ ⟩+Z Zi i 1  (Fig. 2c). The oscillations that persist for long times when 
the entanglement light-cone reaches a distance of ≳ 20 sites, as evi-
denced by the correlation function, are highly unusual. Although 
experimental work25 presented a variational ansatz capturing these 
oscillations, below we demonstrate that the oscillations actually 
arise due to the existence of special eigenstates within the rest of the 
many-body spectrum.

Special states
The special eigenstates become clearly visible when one arranges 
the entire many-body spectrum according to the overlap with 
the density-wave Z∣ ⟩2  state, as shown in Fig. 3a. This reveals the  
‘Z2-band’ of special eigenstates, which are distinguished by atypically  

0 1 2 3 4 5 6 Dz2

Fig. 1 | The Hilbert space graph of the Fibonacci chain with L!=!6 sites. 
The nodes of the graph label the allowed product states, while the edges 
connect configurations that result from a given product state due to the 
action of the Hamiltonian. Nodes of the graph are grouped according to the 
Hamming distance ZD

2
 from the Z∣ ⟩2  state.
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larger than the detuning and the Rabi frequency, the system is mod-
elled by the following spin-1/2 Hamiltonian16,

∑=
=

+ +H PX P (1)
i

L

i i i
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1 2

where Xi, Yi, Zi are the Pauli operators, L denotes the length of the 
chain and we work in units ħ =  1. In what follows, we use ∣∘⟩  to refer 
the ground state and ∣∙⟩  to refer to the Rydberg state of a single 
atom. The operator Xi =  ∣∘⟩ ⟨∙∣ + ∣∙⟩ ⟨∘∣  creates or removes an exci-
tation at a given site, and projectors = ∣∘⟩ ⟨∘∣Pi  =  (1 −  Zi)/2, written 
in terms of Zi =  ∣∙⟩ ⟨∙∣−∣∘⟩ ⟨∘∣ , ensure that the nearby atoms are not 
simultaneously in the excited state. For example, P1X2P3 acting on 
∣∘∘∘⟩  gives ∣∘∙∘⟩  (and vice versa), while it annihilates any of the con-
figurations ∣∙∘∘⟩ , ∣∘∘∙⟩ , ∣∙∘∙⟩ .

The presence of projectors in the Hamiltonian (equation (1)) 
does not allow for relaxation of several adjacent Rydberg atoms. 
In other words, configurations ∣…∙∙…⟩  are ‘dark states’ breaking 
our chain into two disconnected parts. Hence, such configura-
tions are excluded in what follows and we consider a constrained 
Hilbert space without any adjacent Rydberg atoms. Such a con-
straint makes the Hilbert space identical to that of chains of non-
Abelian Fibonacci anyons, rather than spins-1/2 or fermions. For 
periodic boundary conditions (PBC), the Hilbert space dimension 
is equal to D =  FL−1 +  FL+1, where Fn is the nth Fibonacci number. For 
instance, in the case of the L =  6 chain we have D =  18, as shown in 
Fig. 1. For open boundary conditions (OBC), D scales as FL+2. Thus, 
the Hilbert space is evidently very different from, for example, the  
spin-1
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 chain where the number of states grows as 2L.

The model in equation (1) is particle–hole symmetric: an opera-
tor = ∏P Zi i anticommutes with the Hamiltonian, PH =  − HP, and 
therefore each eigenstate ψ∣ ⟩  with energy E ≠  0 has a partner ψ∣ ⟩P  
with energy − E. Furthermore, the model has spatial inversion 
symmetry I which maps i →  L −  i +  1. In addition, with PBC, this 
model has translation symmetry. In what follows, unless specified 
otherwise, we restrict ourselves to PBC (thus identifying i =  L +  1 
and i =  1) and explicitly resolve translation and inversion symme-
tries which allow us to fully diagonalize systems of up to L =  32 sites 
(with +D0  =  77,436 states in the zero-momentum inversion-sym-
metric sector).

Experiment25 and numerical simulations on small systems29 
revealed that the relaxation under unitary dynamics specified by 
the Hamiltonian (equation (1)) strongly depends on the initial state 
of the system. In particular, starting from period-2 charge density 
wave states
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that are related by a translation by one lattice period, the system 
shows surprising long-time oscillations of local observables for long 
chains of up to L =  51 sites. Although this might suggest that the sys-
tem is non-ergodic, it was also observed that the initial state with all 
atoms in the state ∣∘⟩  shows fast relaxation and no revivals, charac-
teristic of thermalizing systems. Given that the model in equation (1)  
is translation invariant and has no disorder, many-body localization 
cannot be at play. Below we explain the origin of the observed oscil-
lations and the apparent non-ergodic dynamics.

Dynamics
We start by characterizing the dynamical evolution of the model 
in equation (1) for different initial conditions. Motivated by 
experiment25, we consider a family of charge density wave states 
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by k −  1 atoms in the ground state, as well as the fully polarized state 
∣…∘∘∘…⟩ ≡ ∣ ⟩0 . We use the infinite time evolving block decima-
tion (iTEBD) method, which provides results valid in the thermo-
dynamic limit up to some finite time30. The bond dimension used is 
400, which limits the evolution time to t ~ 30.

Figure 2a reveals linear growth of entanglement entropy evalu-
ated for the midpoint bipartition for all considered initial states. 
Yet, the slope of entanglement growth strongly depends on the 
initial state, with the slowest growth observed when the system is 
prepared in the period-2 density wave state, Z∣ ⟩2 , in equation (2).  
In addition, the entanglement growth has weak oscillations on 
top of the linear growth. Relative to the magnitude of entropy, the 
oscillations are most significant for the Z∣ ⟩2  initial state. Figure 2b  
illustrates the oscillations in entanglement by subtracting the lin-
ear component. We note that the oscillations are periodic with 
the period Z ≈ .T 2 35
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, in agreement with ref. 25. Similarly, periodic 

oscillations are clearly visible in the local correlation function, 
⟨ ⟩+Z Zi i 1  (Fig. 2c). The oscillations that persist for long times when 
the entanglement light-cone reaches a distance of ≳ 20 sites, as evi-
denced by the correlation function, are highly unusual. Although 
experimental work25 presented a variational ansatz capturing these 
oscillations, below we demonstrate that the oscillations actually 
arise due to the existence of special eigenstates within the rest of the 
many-body spectrum.

Special states
The special eigenstates become clearly visible when one arranges 
the entire many-body spectrum according to the overlap with 
the density-wave Z∣ ⟩2  state, as shown in Fig. 3a. This reveals the  
‘Z2-band’ of special eigenstates, which are distinguished by atypically  
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high overlaps with the Z∣ ⟩2  product state. The energy separation 
between states stays approximately constant near the centre of the 
band and is given by Ω ≈  1.33. This energy separation matches half 
the frequency of the real-time oscillations observed in the iTEBD 
numerical simulations in Fig. 2. The factor of two comes from the 
fact that the measured correlator does not distinguish between the 
Z∣ ⟩2  and Z∣ ⟩′

2  states.
Next, we show that it is possible to construct accurate approxi-

mations to the entire band of special states. This is surprising 
because the model in equation (1) is not frustration free; hence 
even its ground state cannot be exactly expressed as a matrix prod-
uct state with bond dimension equal to 2 (ref. 31). Remarkably, the 
eigenstates in the Z∣ ⟩2 -band can still be accurately described within 
an effective tight-binding approximation. In this effective descrip-
tion, a ‘site’ will turn out to be a superposition of product states at a 
fixed Hamming distance ZD

2
 from the Z∣ ⟩2  product state, which is 

defined as the minimum number of spin flips required to transform 
those states into Z∣ ⟩2  (see Fig. 1). Despite the apparent simplicity 
of this representation, special eigenstates have larger than area-law 
entanglement entropy and cannot be expressed as matrix product 
states of finite bond dimension, in contrast to the states considered 
in ref. 32.

We start by splitting the Hamiltonian as H =  H+ +  H−, where we 
have introduced the operator

∑ ∑σ σ= ++

∈
−

+
+

∈
−

−
+H P P P P (3)

i
i i i

i
i i i

even
1 1

odd
1 1

with σ = ∣∙⟩ ⟨∘∣+
i  and σ = ∣∘⟩ ⟨∙∣−

i . This decomposition reflects 
the fact that H+ increases ZD

2
 by one (similarly, H− lowers ZD

2
).  

To derive the tight-binding model, we want to construct a basis ∣ ⟩n{ }  
in which the Hamiltonian in equation (1) is tridiagonal. We pro-
ceed iteratively, starting from the initial state ∣ ⟩0  =  Z∣ ⟩2 , and prop-
agating forward by the application of H+; that is, ∣ ⟩n  =  Z∣ ⟩+H( ) n

2 / 
Z∥ ∣ ⟩∥+H( ) n

2 . We dub this method the ‘forward scattering 
approximation’ (FSA). As suggested by the notation, the basis vec-
tors of the FSA can be labelled by the Hamming distance n from 
the initial Z∣ ⟩2  state. This is possible because, for the model in 
equation (1) and the chosen initial state, there is no intersection 
between the product state supports of different FSA vectors ∣ ⟩n ,  
∣ ⟩m  for m ≠  n. Another special feature, due to the fact that the 
Hamming distance must be n ≤  L, is that the FSA basis must con-
tain exactly L +  1 vectors.

The FSA results in a tridiagonal matrix which is the effective 
tight-binding Hamiltonian that describes the band of special states 
in Fig. 3a,

∑ β= ∣ ⟩ ⟨ + ∣ + . .
=

H n n( 1 h c ) (4)
n

L

nFSA
0

where h.c. stands for Hermitian conjugate and the hopping ampli-
tude is given by

β = ⟨ + ∣ ∣ ⟩ = ⟨ ∣ ∣ + ⟩+ −n H n n H n1 1 (5)n

Although equations (4) and (5) are formally reminiscent of the 
Lanczos recurrence, in the latter case the initial vector can be 
arbitrary and the propagation is instead performed by the full 
Hamiltonian. In the Methods section we discuss the approximation 
involved in the FSA and estimate the associated errors to be less 
than 1% for chains of L =  32 sites.

Finally, we compare the eigenstates of HFSA with exact eigen-
states from the special band obtained numerically in the L =  32 
chain with PBC. In Fig. 3b we observe that the lowest-energy spe-
cial state has exactly the same overlaps with the basis states ∣ ⟩n  
as the FSA eigenstate. For the special eigenstates in the middle of 
the many-body band, such as the one shown in Fig. 3c, the FSA 
overestimates the overlap, yet captures the oscillations. The agree-
ment between the FSA and exact eigenstates is highly surprising, 
and it further supports the unusual nature of the special eigen-
states. Indeed, a basis that has only L +  1 states, each concentrated 
in small parts of the Hilbert space, would provide an extremely 
poor approximation for a generic highly excited eigenstate of a  
thermalizing system of size L.

To provide further insights into the structure of special eigen-
states, we study their participation ratios in the product state basis. 
The second participation ratio, PR2, of the eigenstate ψ∣ ⟩  is defined 
as a sum of all wavefunction coefficients, α ψ= ∑ ∣⟨ ∣ ⟩ ∣αPR 2

4, where 
α labels all distinct product states in the inversion symmetric zero-
momentum sector. For ergodic states, one expects that PR2 decreases 
as the inverse Hilbert space dimension of the corresponding sector. 
This is indeed what we observe in Fig. 3d for ⟨ ⟩PR 2 av averaged over 
all eigenstates (with E ≠  0, see below) in the middle two-thirds of the 
full energy band. At the same time, PR2 averaged over special eigen-
states from the same energy interval also decreases exponentially 
with the system size, yet being exponentially enhanced compared 
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high overlaps with the Z∣ ⟩2  product state. The energy separation 
between states stays approximately constant near the centre of the 
band and is given by Ω ≈  1.33. This energy separation matches half 
the frequency of the real-time oscillations observed in the iTEBD 
numerical simulations in Fig. 2. The factor of two comes from the 
fact that the measured correlator does not distinguish between the 
Z∣ ⟩2  and Z∣ ⟩′

2  states.
Next, we show that it is possible to construct accurate approxi-

mations to the entire band of special states. This is surprising 
because the model in equation (1) is not frustration free; hence 
even its ground state cannot be exactly expressed as a matrix prod-
uct state with bond dimension equal to 2 (ref. 31). Remarkably, the 
eigenstates in the Z∣ ⟩2 -band can still be accurately described within 
an effective tight-binding approximation. In this effective descrip-
tion, a ‘site’ will turn out to be a superposition of product states at a 
fixed Hamming distance ZD

2
 from the Z∣ ⟩2  product state, which is 

defined as the minimum number of spin flips required to transform 
those states into Z∣ ⟩2  (see Fig. 1). Despite the apparent simplicity 
of this representation, special eigenstates have larger than area-law 
entanglement entropy and cannot be expressed as matrix product 
states of finite bond dimension, in contrast to the states considered 
in ref. 32.

We start by splitting the Hamiltonian as H =  H+ +  H−, where we 
have introduced the operator
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i . This decomposition reflects 
the fact that H+ increases ZD

2
 by one (similarly, H− lowers ZD
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).  

To derive the tight-binding model, we want to construct a basis ∣ ⟩n{ }  
in which the Hamiltonian in equation (1) is tridiagonal. We pro-
ceed iteratively, starting from the initial state ∣ ⟩0  =  Z∣ ⟩2 , and prop-
agating forward by the application of H+; that is, ∣ ⟩n  =  Z∣ ⟩+H( ) n
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Z∥ ∣ ⟩∥+H( ) n

2 . We dub this method the ‘forward scattering 
approximation’ (FSA). As suggested by the notation, the basis vec-
tors of the FSA can be labelled by the Hamming distance n from 
the initial Z∣ ⟩2  state. This is possible because, for the model in 
equation (1) and the chosen initial state, there is no intersection 
between the product state supports of different FSA vectors ∣ ⟩n ,  
∣ ⟩m  for m ≠  n. Another special feature, due to the fact that the 
Hamming distance must be n ≤  L, is that the FSA basis must con-
tain exactly L +  1 vectors.

The FSA results in a tridiagonal matrix which is the effective 
tight-binding Hamiltonian that describes the band of special states 
in Fig. 3a,

∑ β= ∣ ⟩ ⟨ + ∣ + . .
=

H n n( 1 h c ) (4)
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L

nFSA
0

where h.c. stands for Hermitian conjugate and the hopping ampli-
tude is given by

β = ⟨ + ∣ ∣ ⟩ = ⟨ ∣ ∣ + ⟩+ −n H n n H n1 1 (5)n

Although equations (4) and (5) are formally reminiscent of the 
Lanczos recurrence, in the latter case the initial vector can be 
arbitrary and the propagation is instead performed by the full 
Hamiltonian. In the Methods section we discuss the approximation 
involved in the FSA and estimate the associated errors to be less 
than 1% for chains of L =  32 sites.

Finally, we compare the eigenstates of HFSA with exact eigen-
states from the special band obtained numerically in the L =  32 
chain with PBC. In Fig. 3b we observe that the lowest-energy spe-
cial state has exactly the same overlaps with the basis states ∣ ⟩n  
as the FSA eigenstate. For the special eigenstates in the middle of 
the many-body band, such as the one shown in Fig. 3c, the FSA 
overestimates the overlap, yet captures the oscillations. The agree-
ment between the FSA and exact eigenstates is highly surprising, 
and it further supports the unusual nature of the special eigen-
states. Indeed, a basis that has only L +  1 states, each concentrated 
in small parts of the Hilbert space, would provide an extremely 
poor approximation for a generic highly excited eigenstate of a  
thermalizing system of size L.

To provide further insights into the structure of special eigen-
states, we study their participation ratios in the product state basis. 
The second participation ratio, PR2, of the eigenstate ψ∣ ⟩  is defined 
as a sum of all wavefunction coefficients, α ψ= ∑ ∣⟨ ∣ ⟩ ∣αPR 2

4, where 
α labels all distinct product states in the inversion symmetric zero-
momentum sector. For ergodic states, one expects that PR2 decreases 
as the inverse Hilbert space dimension of the corresponding sector. 
This is indeed what we observe in Fig. 3d for ⟨ ⟩PR 2 av averaged over 
all eigenstates (with E ≠  0, see below) in the middle two-thirds of the 
full energy band. At the same time, PR2 averaged over special eigen-
states from the same energy interval also decreases exponentially 
with the system size, yet being exponentially enhanced compared 
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high overlaps with the Z∣ ⟩2  product state. The energy separation 
between states stays approximately constant near the centre of the 
band and is given by Ω ≈  1.33. This energy separation matches half 
the frequency of the real-time oscillations observed in the iTEBD 
numerical simulations in Fig. 2. The factor of two comes from the 
fact that the measured correlator does not distinguish between the 
Z∣ ⟩2  and Z∣ ⟩′

2  states.
Next, we show that it is possible to construct accurate approxi-

mations to the entire band of special states. This is surprising 
because the model in equation (1) is not frustration free; hence 
even its ground state cannot be exactly expressed as a matrix prod-
uct state with bond dimension equal to 2 (ref. 31). Remarkably, the 
eigenstates in the Z∣ ⟩2 -band can still be accurately described within 
an effective tight-binding approximation. In this effective descrip-
tion, a ‘site’ will turn out to be a superposition of product states at a 
fixed Hamming distance ZD

2
 from the Z∣ ⟩2  product state, which is 

defined as the minimum number of spin flips required to transform 
those states into Z∣ ⟩2  (see Fig. 1). Despite the apparent simplicity 
of this representation, special eigenstates have larger than area-law 
entanglement entropy and cannot be expressed as matrix product 
states of finite bond dimension, in contrast to the states considered 
in ref. 32.

We start by splitting the Hamiltonian as H =  H+ +  H−, where we 
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the fact that H+ increases ZD

2
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To derive the tight-binding model, we want to construct a basis ∣ ⟩n{ }  
in which the Hamiltonian in equation (1) is tridiagonal. We pro-
ceed iteratively, starting from the initial state ∣ ⟩0  =  Z∣ ⟩2 , and prop-
agating forward by the application of H+; that is, ∣ ⟩n  =  Z∣ ⟩+H( ) n
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2 . We dub this method the ‘forward scattering 
approximation’ (FSA). As suggested by the notation, the basis vec-
tors of the FSA can be labelled by the Hamming distance n from 
the initial Z∣ ⟩2  state. This is possible because, for the model in 
equation (1) and the chosen initial state, there is no intersection 
between the product state supports of different FSA vectors ∣ ⟩n ,  
∣ ⟩m  for m ≠  n. Another special feature, due to the fact that the 
Hamming distance must be n ≤  L, is that the FSA basis must con-
tain exactly L +  1 vectors.

The FSA results in a tridiagonal matrix which is the effective 
tight-binding Hamiltonian that describes the band of special states 
in Fig. 3a,

∑ β= ∣ ⟩ ⟨ + ∣ + . .
=

H n n( 1 h c ) (4)
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where h.c. stands for Hermitian conjugate and the hopping ampli-
tude is given by

β = ⟨ + ∣ ∣ ⟩ = ⟨ ∣ ∣ + ⟩+ −n H n n H n1 1 (5)n

Although equations (4) and (5) are formally reminiscent of the 
Lanczos recurrence, in the latter case the initial vector can be 
arbitrary and the propagation is instead performed by the full 
Hamiltonian. In the Methods section we discuss the approximation 
involved in the FSA and estimate the associated errors to be less 
than 1% for chains of L =  32 sites.

Finally, we compare the eigenstates of HFSA with exact eigen-
states from the special band obtained numerically in the L =  32 
chain with PBC. In Fig. 3b we observe that the lowest-energy spe-
cial state has exactly the same overlaps with the basis states ∣ ⟩n  
as the FSA eigenstate. For the special eigenstates in the middle of 
the many-body band, such as the one shown in Fig. 3c, the FSA 
overestimates the overlap, yet captures the oscillations. The agree-
ment between the FSA and exact eigenstates is highly surprising, 
and it further supports the unusual nature of the special eigen-
states. Indeed, a basis that has only L +  1 states, each concentrated 
in small parts of the Hilbert space, would provide an extremely 
poor approximation for a generic highly excited eigenstate of a  
thermalizing system of size L.

To provide further insights into the structure of special eigen-
states, we study their participation ratios in the product state basis. 
The second participation ratio, PR2, of the eigenstate ψ∣ ⟩  is defined 
as a sum of all wavefunction coefficients, α ψ= ∑ ∣⟨ ∣ ⟩ ∣αPR 2

4, where 
α labels all distinct product states in the inversion symmetric zero-
momentum sector. For ergodic states, one expects that PR2 decreases 
as the inverse Hilbert space dimension of the corresponding sector. 
This is indeed what we observe in Fig. 3d for ⟨ ⟩PR 2 av averaged over 
all eigenstates (with E ≠  0, see below) in the middle two-thirds of the 
full energy band. At the same time, PR2 averaged over special eigen-
states from the same energy interval also decreases exponentially 
with the system size, yet being exponentially enhanced compared 
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Projected Hamiltonian = tridiagonal matrix  
Captures properties of highly excited special states



Structure of special eigenstates

10

Figure 7. Two eigenstates of the PXP model represented on
the Hilbert space graph for L = 10 sites and PBC. The color
of the vertices reflects the weight of the corresponding prod-
uct state in the eigenvector normalized to have the largest
weight equal to one. Similar to Fig. 1, the Néel states are the
left/right most vertices of the graph, while the fully polarized
state is located in the center of the graph. (a) Wave function
of the special eigenstate closest to the zero energy is concen-
trated in the vicinity of the Néel states. In contrast, the wave
function of the ground state (b) is concentrated in the center
of the graph.

of approximate eigenvectors and their energies. The pro-
jection of exact eigenvectors onto the FSA basis shows
good agreement with the FSA eigenvectors.2 Moreover,
the eigenenergies agree with exact diagonalization data
for large system sizes within few percent. For instance,
crosses in Fig. 2(a) represent estimates for the eigenen-
ergies and expectation values of local observables within
the FSA, and show excellent agreement with exact diag-
onalization data. Finally, the extrapolation of the FSA
energy gaps between adjacent special eigenstates agrees
within 2% with the extrapolation of the same gaps ob-
tained by exact diagonalization, see Fig. 5. As noted
previously, the finite-size corrections to the FSA energy
are linear in 1/L, while exact results appear to follow
1/L2 corrections. The origin of this discrepancy remains
to be understood.

It is possible to obtain the energies of special eigen-
states within the FSA by calculating �j and diagonalizing
a (L + 1) ⇥ (L + 1) matrix. In contrast, the access to the
FSA wave functions requires one to store at least L + 1
basis vectors, each of the dimension of full Hilbert space,
i.e., exponentially large in L. However, as Fig. 3 demon-
strates, special eigenstates have considerably lower en-
tropy than other eigenstates in the same energy density.
This suggest that matrix product state (MPS)63 repre-
sentation of FSA basis and special eigenstates should be
highly e�cient in the present case.

In order to formulate the FSA recurrence in the MPS
basis, we use the matrix product operator representation
of H+ from Eq. (17) and construct the basis by applying
the MPS operator to Néel state. The only di↵erence with
respect to the exact FSA is that a compression similar to
DMRG algorithms63 is performed every time an operator
is applied to the state or two states are summed. That
is, we truncate the state for all bipartitions, so that for
each reduced density matrix the truncated probability is
< 10�8 and then renormalize the state.

As a proof of principle of our MPS implementation of
the FSA, we show entropy scaling of special eigenstates
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Figure 8. Logarithmic scaling of entropy for two adjacent
FSA eigenstates in the middle of the spectrum. Black trian-
gles correspond to the state at energy E1 ⇡ 1.33 and blue
crosses to E2 ⇡ 2.66 (the two data sets lie on top of each
other how well do the two data sets agree?). The fit
gives S / 0.48 log(L). Green curve corresponds to the en-
tropy of the exact special eigenstate at E1 ⇡ 1.33. The
non-monotonic behavior of entropy in this case is attributed
to weak hybridization with volume-law entangled states at
nearby energies. The inset displays the entropy of the FSA
ground state. The weak growth of entropy with L is an arte-
fact of the approximation, since the exact ground state is
gapped and obeys area law for entropy.

in Fig. 8. Despite the entropy being a non-local quan-
tity, we again find good agreement between the FSA and
exact eigenstates for system sizes up to L = 30. The
logarithmic growth of entanglement suggests that spe-
cial eigenstates cannot be e�ciently represented by MPS
in the thermodynamic limit. We note that the jumps in
the entropy growth of the exact eigenstate can be under-
stood as accidental hybridization with eigenstates in the
bulk. Because the majority of eigenstates carry extensive
amount of entropy in the middle of the spectrum, such
jumps can be attributed to two-eigenstate resonances.

Notably, the FSA overestimates the entanglement for
small system sizes. This trend is even more pronounced
in the inset of Fig. 8 which shows the scaling of the
ground state entropy within FSA. From exact diagonal-
ization it is known that the system is gapped, and the en-
tropy is expected to saturate at a value S ⇡ 0.346 in the
thermodynamic limit. The observed slow linear growth
is an indication of the error of the approximation and we
expect it to reside within all eigenstates. However, since
the prefactor is very small, for the system sizes consid-
ered, it is not visible in the logarithmic entropy growth
of the highly excited states.

D. Forward scattering approximation as a
trajectory in Hilbert space

The FSA approximation provides a framework for un-
derstanding the phenomenology of special eigenstates

Low entanglement 
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Figure 5. Finite size scaling of the energy gaps between
special states closest to the middle of the spectrum shows
the convergence of all gaps to the same value in the ther-
modynamic limit. Note that adjacent special states belong
to di↵erent momentum sectors. The gaps accurately follow
quadratic dependence on the system size. The prediction of
the forward scattering approximation, discussed in Sec. IV for
systems with up to Chris, please fill data L = . . . sites, is
shown by blue/orange points, corresponding to the two states
closest to the middle of the spectrum. Within this approx-
imation, the energies appear to follow linear dependence in
1/L (dashed line).

Interestingly, special eigenstates identified via a num-
ber of probes, including the overlap with |Z2i state,
are nearly equidistant in energy. Near the center of
the many-body band, they are separated in energy by
�E ⇡ 2.66. In addition there exists a band of the spe-
cial states from the ⇡-momentum inversion antisymmet-
ric sector that have energies exactly between the spe-
cial states from zero-momentum sector. Thus, combin-
ing both sectors, the energy separation between special
states becomes �E ⇡ 1.33 in the middle of the spec-
trum. Fig. 5 shows the finite-size scaling of the energy
gaps between the four special eigenstates closest to the
energy E = 0. All the gaps accurately follow the finite
size scaling �Ei = 1.337 + ci/L2, where the linear term
is absent. Constants ci depend on the chosen pair of
eigenstates, with c1 = 0.582, corresponding to the gap
between the special state at E = 0 and the closest one
with non-zero energy. In contrast, the distance between
special eigenstates at the edge of the spectrum is con-
siderably larger. In particular, the gap separating the
ground state from the first excited state in this model is
�E0 ⇡ 0.968. Specify symmetry sectors

D. Dynamical signatures of special eigenstates

Anomalously high overlaps of special eigenstates with
product states like |Z2i or |Z3i make them amenable to
a simple experimental probe – global quench (the for-
mer case has been studied in the experiment in Ref. 1).
We initialize the system at time t = 0 in the state

| (0)i = |Zki, and then follow the evolution of this ini-
tial state under the PXP Hamiltonian, Eq. (5), | (t)i =
exp(�iHt) | (0)i. The outcome of this evolution is deter-
mined by the overlaps between eigenstates of the system
with | (0)i, and their energies.

Figs. 4 and 5 demonstrate that there are a few eigen-
states with high overlaps and constant energy separation
in the middle of the band (where the overlaps are high-
est). Therefore, we expect that quantum quench from
|Z2i or |Z3i product state will give rise to coherent oscil-
lations, with a frequency determined by the energy sep-
aration between the towers of special states in Fig. 4.
These oscillations in the dynamics can be observed by
measuring the expectation values of certain local observ-
ables,1,2 or more generally, using the quantum fidelity (or
return probability) defined as | hZk| exp(�iHt) |Zki |2.

Fully consistent with these expectations, fidelity for
quenches from |Z2i, |Z3i initial states shown in Fig. 6
reveals pronounced periodic revivals. The period of these
revivals coincides with 2⇡/�E1, where �E1 ⇡ 1.33 is
the energy separation between the special states. We
note that revivals of a local observable – the density of
domain walls – were found in Ref. 1 for the |Z2i case. The
frequency of these revivals is identical to the frequency
of quantum fidelity. By contrast, for |Z4i initial state,
we do not observe any revivals in the fidelity. This is in
agreement with the absence of anomalously high overlaps
between eigenstates and |Z4i product state.

The return probability for the |Z3i initial state in Fig. 6
displays a beating pattern modulating the amplitude of
the revivals. These revivals can be attributed to yet an-
other band of special states, some of which are visible as
individual points in Fig. 4(b), which are in between the
topmost band and the continuum of bulk states. Prob-
ably still not very clear, maybe shade a few of
those states in the figure? This secondary band of
special eigenstates generally has enhanced overlaps with
product states containing a domain wall between two dif-

Figure 6. Quantum fidelity shows periodic in time revivals
for |Z2i and |Z3i initial product states. In contrast, |Z4i initial
state shows a complete absence of revivals. Data is for system
with L = 24 sites with periodic boundary conditions.
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Figure 7. Two eigenstates of the PXP model represented on
the Hilbert space graph for L = 10 sites and PBC. The color
of the vertices reflects the weight of the corresponding prod-
uct state in the eigenvector normalized to have the largest
weight equal to one. Similar to Fig. 1, the Néel states are the
left/right most vertices of the graph, while the fully polarized
state is located in the center of the graph. (a) Wave function
of the special eigenstate closest to the zero energy is concen-
trated in the vicinity of the Néel states. In contrast, the wave
function of the ground state (b) is concentrated in the center
of the graph.

of approximate eigenvectors and their energies. The pro-
jection of exact eigenvectors onto the FSA basis shows
good agreement with the FSA eigenvectors.2 Moreover,
the eigenenergies agree with exact diagonalization data
for large system sizes within few percent. For instance,
crosses in Fig. 2(a) represent estimates for the eigenen-
ergies and expectation values of local observables within
the FSA, and show excellent agreement with exact diag-
onalization data. Finally, the extrapolation of the FSA
energy gaps between adjacent special eigenstates agrees
within 2% with the extrapolation of the same gaps ob-
tained by exact diagonalization, see Fig. 5. As noted
previously, the finite-size corrections to the FSA energy
are linear in 1/L, while exact results appear to follow
1/L2 corrections. The origin of this discrepancy remains
to be understood.

It is possible to obtain the energies of special eigen-
states within the FSA by calculating �j and diagonalizing
a (L + 1) ⇥ (L + 1) matrix. In contrast, the access to the
FSA wave functions requires one to store at least L + 1
basis vectors, each of the dimension of full Hilbert space,
i.e., exponentially large in L. However, as Fig. 3 demon-
strates, special eigenstates have considerably lower en-
tropy than other eigenstates in the same energy density.
This suggest that matrix product state (MPS)63 repre-
sentation of FSA basis and special eigenstates should be
highly e�cient in the present case.

In order to formulate the FSA recurrence in the MPS
basis, we use the matrix product operator representation
of H+ from Eq. (17) and construct the basis by applying
the MPS operator to Néel state. The only di↵erence with
respect to the exact FSA is that a compression similar to
DMRG algorithms63 is performed every time an operator
is applied to the state or two states are summed. That
is, we truncate the state for all bipartitions, so that for
each reduced density matrix the truncated probability is
< 10�8 and then renormalize the state.

As a proof of principle of our MPS implementation of
the FSA, we show entropy scaling of special eigenstates

Figure 8. Logarithmic scaling of entropy for two adjacent
FSA eigenstates in the middle of the spectrum. Black trian-
gles correspond to the state at energy E1 ⇡ 1.33 and blue
crosses to E2 ⇡ 2.66 (the two data sets lie on top of each
other how well do the two data sets agree?). The fit
gives S / 0.48 log(L). Green curve corresponds to the en-
tropy of the exact special eigenstate at E1 ⇡ 1.33. The
non-monotonic behavior of entropy in this case is attributed
to weak hybridization with volume-law entangled states at
nearby energies. The inset displays the entropy of the FSA
ground state. The weak growth of entropy with L is an arte-
fact of the approximation, since the exact ground state is
gapped and obeys area law for entropy.

in Fig. 8. Despite the entropy being a non-local quan-
tity, we again find good agreement between the FSA and
exact eigenstates for system sizes up to L = 30. The
logarithmic growth of entanglement suggests that spe-
cial eigenstates cannot be e�ciently represented by MPS
in the thermodynamic limit. We note that the jumps in
the entropy growth of the exact eigenstate can be under-
stood as accidental hybridization with eigenstates in the
bulk. Because the majority of eigenstates carry extensive
amount of entropy in the middle of the spectrum, such
jumps can be attributed to two-eigenstate resonances.

Notably, the FSA overestimates the entanglement for
small system sizes. This trend is even more pronounced
in the inset of Fig. 8 which shows the scaling of the
ground state entropy within FSA. From exact diagonal-
ization it is known that the system is gapped, and the en-
tropy is expected to saturate at a value S ⇡ 0.346 in the
thermodynamic limit. The observed slow linear growth
is an indication of the error of the approximation and we
expect it to reside within all eigenstates. However, since
the prefactor is very small, for the system sizes consid-
ered, it is not visible in the logarithmic entropy growth
of the highly excited states.

D. Forward scattering approximation as a
trajectory in Hilbert space

The FSA approximation provides a framework for un-
derstanding the phenomenology of special eigenstates
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of Hilbert space



Special eigenstates as quantum many-body scars

• Concentration, low entanglement, participation ratio
• Constant energy separation
• Remaining eigenstates are “conventional”
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high overlaps with the Z∣ ⟩2  product state. The energy separation 
between states stays approximately constant near the centre of the 
band and is given by Ω ≈  1.33. This energy separation matches half 
the frequency of the real-time oscillations observed in the iTEBD 
numerical simulations in Fig. 2. The factor of two comes from the 
fact that the measured correlator does not distinguish between the 
Z∣ ⟩2  and Z∣ ⟩′

2  states.
Next, we show that it is possible to construct accurate approxi-

mations to the entire band of special states. This is surprising 
because the model in equation (1) is not frustration free; hence 
even its ground state cannot be exactly expressed as a matrix prod-
uct state with bond dimension equal to 2 (ref. 31). Remarkably, the 
eigenstates in the Z∣ ⟩2 -band can still be accurately described within 
an effective tight-binding approximation. In this effective descrip-
tion, a ‘site’ will turn out to be a superposition of product states at a 
fixed Hamming distance ZD

2
 from the Z∣ ⟩2  product state, which is 

defined as the minimum number of spin flips required to transform 
those states into Z∣ ⟩2  (see Fig. 1). Despite the apparent simplicity 
of this representation, special eigenstates have larger than area-law 
entanglement entropy and cannot be expressed as matrix product 
states of finite bond dimension, in contrast to the states considered 
in ref. 32.

We start by splitting the Hamiltonian as H =  H+ +  H−, where we 
have introduced the operator

∑ ∑σ σ= ++

∈
−

+
+

∈
−

−
+H P P P P (3)

i
i i i

i
i i i

even
1 1

odd
1 1

with σ = ∣∙⟩ ⟨∘∣+
i  and σ = ∣∘⟩ ⟨∙∣−

i . This decomposition reflects 
the fact that H+ increases ZD

2
 by one (similarly, H− lowers ZD

2
).  

To derive the tight-binding model, we want to construct a basis ∣ ⟩n{ }  
in which the Hamiltonian in equation (1) is tridiagonal. We pro-
ceed iteratively, starting from the initial state ∣ ⟩0  =  Z∣ ⟩2 , and prop-
agating forward by the application of H+; that is, ∣ ⟩n  =  Z∣ ⟩+H( ) n

2 / 
Z∥ ∣ ⟩∥+H( ) n

2 . We dub this method the ‘forward scattering 
approximation’ (FSA). As suggested by the notation, the basis vec-
tors of the FSA can be labelled by the Hamming distance n from 
the initial Z∣ ⟩2  state. This is possible because, for the model in 
equation (1) and the chosen initial state, there is no intersection 
between the product state supports of different FSA vectors ∣ ⟩n ,  
∣ ⟩m  for m ≠  n. Another special feature, due to the fact that the 
Hamming distance must be n ≤  L, is that the FSA basis must con-
tain exactly L +  1 vectors.

The FSA results in a tridiagonal matrix which is the effective 
tight-binding Hamiltonian that describes the band of special states 
in Fig. 3a,

∑ β= ∣ ⟩ ⟨ + ∣ + . .
=

H n n( 1 h c ) (4)
n

L

nFSA
0

where h.c. stands for Hermitian conjugate and the hopping ampli-
tude is given by

β = ⟨ + ∣ ∣ ⟩ = ⟨ ∣ ∣ + ⟩+ −n H n n H n1 1 (5)n

Although equations (4) and (5) are formally reminiscent of the 
Lanczos recurrence, in the latter case the initial vector can be 
arbitrary and the propagation is instead performed by the full 
Hamiltonian. In the Methods section we discuss the approximation 
involved in the FSA and estimate the associated errors to be less 
than 1% for chains of L =  32 sites.

Finally, we compare the eigenstates of HFSA with exact eigen-
states from the special band obtained numerically in the L =  32 
chain with PBC. In Fig. 3b we observe that the lowest-energy spe-
cial state has exactly the same overlaps with the basis states ∣ ⟩n  
as the FSA eigenstate. For the special eigenstates in the middle of 
the many-body band, such as the one shown in Fig. 3c, the FSA 
overestimates the overlap, yet captures the oscillations. The agree-
ment between the FSA and exact eigenstates is highly surprising, 
and it further supports the unusual nature of the special eigen-
states. Indeed, a basis that has only L +  1 states, each concentrated 
in small parts of the Hilbert space, would provide an extremely 
poor approximation for a generic highly excited eigenstate of a  
thermalizing system of size L.

To provide further insights into the structure of special eigen-
states, we study their participation ratios in the product state basis. 
The second participation ratio, PR2, of the eigenstate ψ∣ ⟩  is defined 
as a sum of all wavefunction coefficients, α ψ= ∑ ∣⟨ ∣ ⟩ ∣αPR 2

4, where 
α labels all distinct product states in the inversion symmetric zero-
momentum sector. For ergodic states, one expects that PR2 decreases 
as the inverse Hilbert space dimension of the corresponding sector. 
This is indeed what we observe in Fig. 3d for ⟨ ⟩PR 2 av averaged over 
all eigenstates (with E ≠  0, see below) in the middle two-thirds of the 
full energy band. At the same time, PR2 averaged over special eigen-
states from the same energy interval also decreases exponentially 
with the system size, yet being exponentially enhanced compared 
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Fig. 3 | Scarred many-body states in the FSA approximation. a, Scatter plot of the overlap of many-body eigenstates of the Hamiltonian equation (1) with 
the Z∣ ⟩2  product state reveals a band of special eigenstates separated from the remaining eigenstates. Crosses denote overlaps with eigenstates from the 
FSA approximation, which agree very well with exact results. The density of data points (shown in the middle of the graph) illustrates the tower structure 
in the overlaps. b,c, Squared overlap between the basis vectors of the FSA approximation ∣ ⟩n  and the exact eigenstates (black) or approximate FSA 
eigenstates (red) for the ground state (b) and for the state in the special band adjacent to energy E!= !0 (c). d, Participation ratios of special eigenstates 
decay parametrically slower compared to the average participation ratio of all states within the same energy range. Dashed line shows the inverse Hilbert 
space dimension. All data are for L!= !32 in the inversion-symmetric, zero-momentum sector (equivalent results are obtained in the other symmetry sector 
where Z∣ ⟩2  has support).
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Quantum scars in single-particle chaos

typical  
eigenstates

[Heller, PRL’84]
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Unstable classical orbits influence quantum eigenstates



Quantum many-body scars 



Properties of single-particle quantum scars

I. Different trajectories with small Lyapunov exponent �LT ⌧ 1

Do these properties hold in many-body system?

Small Lyapunov exponent  → stronger scarring 

II. Stability to perturbations when periodic orbit is not destroyed 



Trajectories and special bands: Z2 and Z3

Z2 special eigenstates 
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Even more striking is the coherent and persistent oscillation 
of the crystalline order after the quantum quench. With respect 
to the quenched Hamiltonian (∆ =  0), the energy density of our  
Z2-ordered state corresponds to that of an infinite-temperature 
ensemble within the manifold constrained by Rydberg blockade. 
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist 
well beyond the natural timescale of local relaxation (1/Ω) and the 
fastest timescale (1/Vi,i+1).

To understand these observations, we consider a simplified model 
in which the effect of long-range interactions is neglected, and nearest- 
neighbour interactions are replaced by hard constraints on neigh-
bouring excitations of Rydberg states30. In this limit, the qualitative 
behaviour of the quench dynamics can be understood in terms of 
dimerized spins (Fig. 6c); owing to the blockade constraint, each dimer 
forms an effective spin-1 system with three states (|rg〉, |gg〉 and |gr〉), 
in which the resonant drive ‘rotates’ the three states over the period 

Ωπ/2 (2 ), which is close to that observed experimentally. Although 
this qualitative picture does not take into account the strong interac-
tions (constraints) between neighbouring dimers, it can be extended 
by considering a minimal variational ansatz for the many-body wave 
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we 
derive analytical equations of motion and obtain a crystalline-order 
oscillation with a frequency of about Ω/1.51 (see Extended Data  
Fig. 9), which is within 10% of the experimental observations. These 
considerations are supported by various numerical simulations. The 
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy 
grows at a rate much smaller than Ω, indicating that the oscillation 
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a 

timescale that is determined by 1/Vi,i+2, in good agreement with experi-
mental observations (Fig. 6b); the entanglement entropy also grows on 
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of 
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected, 
because our Hamiltonian, with or without long-range interactions, is 
far from any known integrable system30, and features neither strong 
disorder nor explicitly conserved quantities38. Instead, our observations 
are probably associated with constrained dynamics due to Rydberg 
blockade and large separations of timescales ( Ω+ +≫ ≫V Vi i i i, 1 , 2 ;  
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio + /(1 5 ) 2N N  (refs 40, 41). The evolution 
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics42. 
Although these considerations provide important insights into the 
origin of robust emergent dynamics, our results challenge conventional 
theoretical concepts and so warrant further studies.

Outlook
Our observations demonstrate that Rydberg excitation of arrays of 
neutral atoms is a promising way of studying quantum dynamics and 
quantum simulations in large systems. Our method can be extended 
and improved in several ways. Individual qubit rotations around the z 
axis could be implemented using light shifts associated with trap light, 
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding 
qubits into hyperfine sublevels of the electronic ground state and using 
state-selective Rydberg excitation23. Implementing two-dimensional 
arrays could provide a path towards realizing thousands of traps. 
Such two-dimensional configurations could be realized by using a  
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Figure 6 | Emergent oscillations in many-body dynamics after sudden 
quench. a, A schematic of the sequence (top, showing ∆(t)), which 
involves adiabatic preparation and then a sudden quench to single-atom 
resonance. The single-atom trajectories are shown (bottom) for a 9-atom 
cluster, with the colour scale indicating the Rydberg probability. We 
observe that the initial crystal with a Rydberg excitation at every odd trap 
site (left inset) collapses after the quench, and a crystal with an excitation 
at every even site builds up (middle inset). At a later time, the initial crystal 
revives with a frequency of Ω/1.38(1) (right inset). Error bars denote 
68% confidence intervals. b, Domain-wall density after the quench. The 
dynamics decay slowly on a timescale of 0.88 µs. Shaded region represents 

the standard error of the mean. Solid blue line is a fully coherent matrix 
product state (MPS) simulation with bond dimension D =  256, taking into 
account measurement fidelity. c, Toy model of non-interacting dimers  
(see main text). Blue (white) circles represent atoms in state |g〉 (|r〉).  
d, Numerical calculations of the dynamics after a quench, starting from an 
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall 
density (red) and the growth of entanglement entropy of the half chain  
(13 atoms; blue) are shown as functions of time after the quench. Dashed 
lines take into account only the nearest-neighbour (NN) blockade 
constraint. Solid lines correspond to the full 1/R6 interaction potential.
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Figure 5. Finite size scaling of the energy gaps between
special states closest to the middle of the spectrum shows
the convergence of all gaps to the same value in the ther-
modynamic limit. Note that adjacent special states belong
to di↵erent momentum sectors. The gaps accurately follow
quadratic dependence on the system size. The prediction of
the forward scattering approximation, discussed in Sec. IV for
systems with up to Chris, please fill data L = . . . sites, is
shown by blue/orange points, corresponding to the two states
closest to the middle of the spectrum. Within this approx-
imation, the energies appear to follow linear dependence in
1/L (dashed line).

Interestingly, special eigenstates identified via a num-
ber of probes, including the overlap with |Z2i state,
are nearly equidistant in energy. Near the center of
the many-body band, they are separated in energy by
�E ⇡ 2.66. In addition there exists a band of the spe-
cial states from the ⇡-momentum inversion antisymmet-
ric sector that have energies exactly between the spe-
cial states from zero-momentum sector. Thus, combin-
ing both sectors, the energy separation between special
states becomes �E ⇡ 1.33 in the middle of the spec-
trum. Fig. 5 shows the finite-size scaling of the energy
gaps between the four special eigenstates closest to the
energy E = 0. All the gaps accurately follow the finite
size scaling �Ei = 1.337 + ci/L2, where the linear term
is absent. Constants ci depend on the chosen pair of
eigenstates, with c1 = 0.582, corresponding to the gap
between the special state at E = 0 and the closest one
with non-zero energy. In contrast, the distance between
special eigenstates at the edge of the spectrum is con-
siderably larger. In particular, the gap separating the
ground state from the first excited state in this model is
�E0 ⇡ 0.968. Specify symmetry sectors

D. Dynamical signatures of special eigenstates

Anomalously high overlaps of special eigenstates with
product states like |Z2i or |Z3i make them amenable to
a simple experimental probe – global quench (the for-
mer case has been studied in the experiment in Ref. 1).
We initialize the system at time t = 0 in the state

| (0)i = |Zki, and then follow the evolution of this ini-
tial state under the PXP Hamiltonian, Eq. (5), | (t)i =
exp(�iHt) | (0)i. The outcome of this evolution is deter-
mined by the overlaps between eigenstates of the system
with | (0)i, and their energies.

Figs. 4 and 5 demonstrate that there are a few eigen-
states with high overlaps and constant energy separation
in the middle of the band (where the overlaps are high-
est). Therefore, we expect that quantum quench from
|Z2i or |Z3i product state will give rise to coherent oscil-
lations, with a frequency determined by the energy sep-
aration between the towers of special states in Fig. 4.
These oscillations in the dynamics can be observed by
measuring the expectation values of certain local observ-
ables,1,2 or more generally, using the quantum fidelity (or
return probability) defined as | hZk| exp(�iHt) |Zki |2.

Fully consistent with these expectations, fidelity for
quenches from |Z2i, |Z3i initial states shown in Fig. 6
reveals pronounced periodic revivals. The period of these
revivals coincides with 2⇡/�E1, where �E1 ⇡ 1.33 is
the energy separation between the special states. We
note that revivals of a local observable – the density of
domain walls – were found in Ref. 1 for the |Z2i case. The
frequency of these revivals is identical to the frequency
of quantum fidelity. By contrast, for |Z4i initial state,
we do not observe any revivals in the fidelity. This is in
agreement with the absence of anomalously high overlaps
between eigenstates and |Z4i product state.

The return probability for the |Z3i initial state in Fig. 6
displays a beating pattern modulating the amplitude of
the revivals. These revivals can be attributed to yet an-
other band of special states, some of which are visible as
individual points in Fig. 4(b), which are in between the
topmost band and the continuum of bulk states. Prob-
ably still not very clear, maybe shade a few of
those states in the figure? This secondary band of
special eigenstates generally has enhanced overlaps with
product states containing a domain wall between two dif-
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Figure 6. Quantum fidelity shows periodic in time revivals
for |Z2i and |Z3i initial product states. In contrast, |Z4i initial
state shows a complete absence of revivals. Data is for system
with L = 24 sites with periodic boundary conditions.



Time dependent variational principle

Z2 band trajectory with TDVP

[Haegeman et al’11]  
[Bernien et al, Nature’17]  
[WW Ho et al, arXiv:1807.01815] 

Z3 trajectory  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Figure 3. Bipartite entanglement entropy of eigenstates, S,
as a function of energy E for the 30-site PXP model. Region A
is chosen as one half of the chain. Bulk of the states have large
volume-law entropy (S & 5). The outliers with anomalously
low entropy (S . 2) are also visible. These states are labelled
by 0, . . . , 7, and they span the entire energy range between
the ground state (0) and the middle of the band (7).

tropy (S & 5) reveals the volume-law scaling, S / L
(not shown). In addition to the bulk of typical strongly-
entangled states, we also observe “outliers” with much
lower entropy. The outlier states with the lowest entan-
glement labeled as 0,..., 7 in Fig. 3 span the entire band-
width. These states coincide with the states that maxi-
mally violate the ETH, depicted by crosses in Fig. 2(a).

In Sec. IV we present an approach based on forward
scattering, which accurately captures the low-entropy
states in Fig. 3. Within the forward scattering approxi-
mation, we will be able to demonstrate that states 0,...,7
in Fig. 3 are highly atypical from the entanglement point
of view: their entanglement entropy scales with the log-
arithm of system size, i.e., S / ln L. This type of be-
haviour, which is very di↵erent from the ETH prediction,
is commonly encountered in critical systems58 and sys-
tems with Fermi surfaces.59,60 Similar phenomenology is
found in recent work,61 where exact expressions for ex-
cited eigenstates in a non-integrable AKLT model have
been constructed.

C. Overlap of special eigenstates with product
states

We demonstrated that the PXP model breaks the ETH
via the emergence of a relatively small number of atyp-
ical, non-thermal eigenstates. These states are distin-
guished by anomalous matrix elements of local observ-
ables, Fig. 2(a), and sub-thermal entanglement entropy,
Fig. 3. However there exist only L + 1 such states em-
bedded among an exponentially many (slowly) thermal-
izing eigenstates. Hence, naively one may think that
these states do not have direct physical relevance, as
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Figure 4. Add labels to plots (a) Density plot showing
the logarithm of the overlap between eigenstates of the PXP
model and |Z2i state as a function of energy E. The states
with largest overlap are identified with low-entropy states
0,...,7 in Fig. 3. (b) Same as the left plot but for overlap
with |Z3i state, which reveals a smaller number of additional
special states. Both plots are for L = 30 in zero-momentum
and inversion symmetric sector.

they might be hidden by the contribution of a much
larger number of typical eigenstates. Below we show that
this is not the case because the special eigenstates have
anomalously high overlap with certain product states.
This implies that superpositions of special eigenstates
can be e↵ectively prepared and probed using the global
quench starting from the experimentally accessible prod-
uct states. A class of product states which can be pre-
pared in the existing experiments1 are the charge density
wave (CDW) states

|Zki = | . . . •� . . . �• . . .i, (10)

where the atoms in excited states are separated by k � 1
atoms in the ground state.

Fig. 4 shows that simplest CDW states, the period-2
(Néel) state and the period-3 (Z3) state, allow one to
identify a dominant subset of special states. In particu-
lar, Fig. 4(a) shows the squared overlap between all the
eigenstates of the PXP model and |Z2i product state on
a logarithmic scale. From this plot, we see that there ex-
ists a set of eigenstates with anomalously large overlap,
which form regular tower structures. The states at the
top of each tower coincide with the special eigenstates
identified earlier in Figs. 2 and 3. We also see that for
each of the special states labeled 0, . . . 7, there are further
eigenstates belonging to the same tower (e.g. with simi-
lar eigenenergy) which have much larger overlap with the
Néel state than the majority of thermalizing states.

There are further states that also violate the ETH,
though more weakly. Fig. 4(b) reveals some of them by
examining the overlap of all eigenstates with |Z3i product
state. Here we can observe the existence of an additional
band of states, which is however much less clearly sep-
arated from the rest of the spectrum compared to the
Z2 case. A natural question is whether the set of spe-
cial states revealed by |Z2i intersects with that of |Z3i.
Cross comparison of overlaps (not shown) reveals that
these two sets of special states are di↵erent from each
other.
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Z3 band trajectories
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Perturbations that remove scars restore “canonical” ETH 

Oscillations can persists  
with O(1) perturbation
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identified in Sec. III. In particular, |Z2i product state,
which was the starting point for the FSA recurrence, may
be viewed as a “parent” of the corresponding band of spe-
cial eigenstates. Then, the FSA basis e↵ectively allows
to capture the dynamical trajectory which connects the
|Z2i = |•�•� . . .i product state and its translated ver-
sion, |Z0

2i = |�•�• . . .i. Such a trajectory may be intu-
itively viewed as a coherent collective “rotation” of atoms
•� $ �• between two di↵erent configurations of the unit
cell. One can also capture this trajectory using an MPS-
based variational approach.1 somehow the meaning of
trajectory is not very well defined. Do we mean
FSA-trajectory or trajectory generated by exact
evolution? Let’s clarify.

The notion of a trajectory provides complementary
understanding for the kaleidoscope of di↵erent physical
properties of special eigenstates found within the FSA.
The eigenstates with energy near zero correspond to the
“slowest rotation”, hence they should be localized near
|Z2i and |Z0

2i configurations where the dynamics is max-
imally blocked by the projector terms in PXP Hamilto-
nian. This was indeed observed in Fig. 7; also Fig. 7(a)
illustrates that the states with E ⇡ 0 have largest over-
lap with the Néel state. Such “localization” of special
states near |Z2i product state also explains their anoma-
lous expectation value of the observable

P
j
Zj presented

in Fig. 2(a). Finally, constant energy di↵erence be-
tween special eigenstates was understood within the FSA
as stemming from the local hypercube structure of the
Hilbert space graph. what is local hypercube struc-
ture? this is somehow unclear At the same time, it
reflects periodic dynamics of the underlying trajectory.

In addition to special eigenstates with enhanced weight
on |Z2i product state, we also observed |Z3i-related band
of special states in Fig. 4(b). This reveals that the present
model has more than one periodic trajectory that leads
to quantum scars. quantum scar appears here even
though its not mention in this section before. So
maybe we should either mention it above as well,
or rephrase In particular, |Z3i-band of special eigen-
states is related to oscillations between the •�� three-
site configuration and its translated counterparts �•� and
��•. One can also capture these eigenstates using the
FSA scheme starting from |Z3i product state. Moreover,
the first step of the FSA recurrence still remains exact.
However, in this case the FSA recurrence is frustrated:
starting from the •�� state forward propagation brings
one into either of the translated configurations, �•� or
��•. This fact may potentially explain the observation
that |Z3i-band of special eigenstates is less separated
from the continuum of other eigenstates in Fig. 4(b).
In other words, the trajectory starting from |Z3i prod-
uct state is more unstable, leading to a weaker quantum
many-body scars. Nevertheless one still observes distinct
periodic revivals of many-body fidelity starting from |Z3i
state, see Fig. 6.

The observation of |Z2i and |Z3i trajectories naively
suggests that density wave states with larger period will

also give rise to scars. Clearly, Fig. 6 reveals that this
is not the case as already |Z4i product state shows a
complete absence of revivals. We attribute this to the
fact that the FSA approximation stops being exact for
|Zni product state even at the first step for n � 4. This
signals that underlying trajectories become too unstable
to produce quantum scars. On the other hand, product
states that contain domain walls between di↵erent |Z2i
and |Z3i patterns can potentially lead to another set of
scarred eigenstates. We leave further investigation of this
issue to future work.

V. BEYOND FORWARD SCATTERING: THE
EFFECT OF PERTURBATIONS

as mentioned below, we should do a better job
explaining what we mean by ”trajectories” In the
previous Section we argued that the FSA allows to obtain
quantum scarred eigenstates corresponding to particular
trajectories which connect di↵erent product states. From
this interpretation, we expect that weak perturbations to
the PXP model do not immediately destroy these tra-
jectories and the associated band of special eigenstates.
why do we expect this? Below we demonstrate that
this is indeed the case. Moreover, we use the intuition
provided by the FSA approach to understand why special
eigenstates are robust with respect to certain perturba-
tions. We also identify other classes of perturbations that
are more e↵ective in destroying the periodic orbits, and
hence quickly remove the bands of special eigenstates. Fi-
nally, we discuss several deformations of the PXP model
into Bethe-ansatz integrable points, and argue that these
perturbations are “strong” in a sense that deformed mod-
els do not have any signatures of quantum scars.

A. Physical perturbations

Below we consider the following perturbations,

�H0 = g0

X

j

Qj , (19a)

�Hnn = gnn

X

j

Pj�1(�
+
j

��
j+1 + ��

j
�+

j+1)Pj+2,(19b)

�Hnnn = gnnn

X

j

Pj�1XjPj+1Xj+2Pj+3. (19c)

where the uniform chemical potential, �H0, and con-
strained nearest neighbour hopping, �Hnn, are motivated
by the terms from the second order terms arising in the
Schrie↵er-Wolf transformation, see Eq. (7). The last per-
turbation physically corresponds to correlated next near-
est neighbour flips and it will be motivated below. We
note that these perturbation split the exponential num-
ber of degenerate zero-modes away from zero energy as
they either remove the bipartite structure of the Hilbert

[Turner et al., arXiv:1806.10933]

Enhancing entanglement  
growth ≠ destroying orbit
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Quantum many-body scars 

• Weak ergodicity breaking:
✴ special eigenstates: low entanglement, large Z2,3 overlaps, no ETH
✴ explains recent experiments; stable to perturbations  

• Open questions: 
✴ classes of models with quantum scars? 
✴ quasiclassics, meaning of Lyapunov exponent?
✴ use scars and/or zero modes to protect quantum information? 
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Figure 3. Bipartite entanglement entropy of eigenstates, S,
as a function of energy E for the 30-site PXP model. Region A
is chosen as one half of the chain. Bulk of the states have large
volume-law entropy (S & 5). The outliers with anomalously
low entropy (S . 2) are also visible. These states are labelled
by 0, . . . , 7, and they span the entire energy range between
the ground state (0) and the middle of the band (7).

tropy (S & 5) reveals the volume-law scaling, S / L
(not shown). In addition to the bulk of typical strongly-
entangled states, we also observe “outliers” with much
lower entropy. The outlier states with the lowest entan-
glement labeled as 0,..., 7 in Fig. 3 span the entire band-
width. These states coincide with the states that maxi-
mally violate the ETH, depicted by crosses in Fig. 2(a).

In Sec. IV we present an approach based on forward
scattering, which accurately captures the low-entropy
states in Fig. 3. Within the forward scattering approxi-
mation, we will be able to demonstrate that states 0,...,7
in Fig. 3 are highly atypical from the entanglement point
of view: their entanglement entropy scales with the log-
arithm of system size, i.e., S / ln L. This type of be-
haviour, which is very di↵erent from the ETH prediction,
is commonly encountered in critical systems58 and sys-
tems with Fermi surfaces.59,60 Similar phenomenology is
found in recent work,61 where exact expressions for ex-
cited eigenstates in a non-integrable AKLT model have
been constructed.

C. Overlap of special eigenstates with product
states

We demonstrated that the PXP model breaks the ETH
via the emergence of a relatively small number of atyp-
ical, non-thermal eigenstates. These states are distin-
guished by anomalous matrix elements of local observ-
ables, Fig. 2(a), and sub-thermal entanglement entropy,
Fig. 3. However there exist only L + 1 such states em-
bedded among an exponentially many (slowly) thermal-
izing eigenstates. Hence, naively one may think that
these states do not have direct physical relevance, as
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Figure 4. Add labels to plots (a) Density plot showing
the logarithm of the overlap between eigenstates of the PXP
model and |Z2i state as a function of energy E. The states
with largest overlap are identified with low-entropy states
0,...,7 in Fig. 3. (b) Same as the left plot but for overlap
with |Z3i state, which reveals a smaller number of additional
special states. Both plots are for L = 30 in zero-momentum
and inversion symmetric sector.

they might be hidden by the contribution of a much
larger number of typical eigenstates. Below we show that
this is not the case because the special eigenstates have
anomalously high overlap with certain product states.
This implies that superpositions of special eigenstates
can be e↵ectively prepared and probed using the global
quench starting from the experimentally accessible prod-
uct states. A class of product states which can be pre-
pared in the existing experiments1 are the charge density
wave (CDW) states

|Zki = | . . . •� . . . �• . . .i, (10)

where the atoms in excited states are separated by k � 1
atoms in the ground state.

Fig. 4 shows that simplest CDW states, the period-2
(Néel) state and the period-3 (Z3) state, allow one to
identify a dominant subset of special states. In particu-
lar, Fig. 4(a) shows the squared overlap between all the
eigenstates of the PXP model and |Z2i product state on
a logarithmic scale. From this plot, we see that there ex-
ists a set of eigenstates with anomalously large overlap,
which form regular tower structures. The states at the
top of each tower coincide with the special eigenstates
identified earlier in Figs. 2 and 3. We also see that for
each of the special states labeled 0, . . . 7, there are further
eigenstates belonging to the same tower (e.g. with simi-
lar eigenenergy) which have much larger overlap with the
Néel state than the majority of thermalizing states.

There are further states that also violate the ETH,
though more weakly. Fig. 4(b) reveals some of them by
examining the overlap of all eigenstates with |Z3i product
state. Here we can observe the existence of an additional
band of states, which is however much less clearly sep-
arated from the rest of the spectrum compared to the
Z2 case. A natural question is whether the set of spe-
cial states revealed by |Z2i intersects with that of |Z3i.
Cross comparison of overlaps (not shown) reveals that
these two sets of special states are di↵erent from each
other.
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Figure 5. Finite size scaling of the energy gaps between
special states closest to the middle of the spectrum shows
the convergence of all gaps to the same value in the ther-
modynamic limit. Note that adjacent special states belong
to di↵erent momentum sectors. The gaps accurately follow
quadratic dependence on the system size. The prediction of
the forward scattering approximation, discussed in Sec. IV for
systems with up to Chris, please fill data L = . . . sites, is
shown by blue/orange points, corresponding to the two states
closest to the middle of the spectrum. Within this approx-
imation, the energies appear to follow linear dependence in
1/L (dashed line).

Interestingly, special eigenstates identified via a num-
ber of probes, including the overlap with |Z2i state,
are nearly equidistant in energy. Near the center of
the many-body band, they are separated in energy by
�E ⇡ 2.66. In addition there exists a band of the spe-
cial states from the ⇡-momentum inversion antisymmet-
ric sector that have energies exactly between the spe-
cial states from zero-momentum sector. Thus, combin-
ing both sectors, the energy separation between special
states becomes �E ⇡ 1.33 in the middle of the spec-
trum. Fig. 5 shows the finite-size scaling of the energy
gaps between the four special eigenstates closest to the
energy E = 0. All the gaps accurately follow the finite
size scaling �Ei = 1.337 + ci/L2, where the linear term
is absent. Constants ci depend on the chosen pair of
eigenstates, with c1 = 0.582, corresponding to the gap
between the special state at E = 0 and the closest one
with non-zero energy. In contrast, the distance between
special eigenstates at the edge of the spectrum is con-
siderably larger. In particular, the gap separating the
ground state from the first excited state in this model is
�E0 ⇡ 0.968. Specify symmetry sectors

D. Dynamical signatures of special eigenstates

Anomalously high overlaps of special eigenstates with
product states like |Z2i or |Z3i make them amenable to
a simple experimental probe – global quench (the for-
mer case has been studied in the experiment in Ref. 1).
We initialize the system at time t = 0 in the state

| (0)i = |Zki, and then follow the evolution of this ini-
tial state under the PXP Hamiltonian, Eq. (5), | (t)i =
exp(�iHt) | (0)i. The outcome of this evolution is deter-
mined by the overlaps between eigenstates of the system
with | (0)i, and their energies.

Figs. 4 and 5 demonstrate that there are a few eigen-
states with high overlaps and constant energy separation
in the middle of the band (where the overlaps are high-
est). Therefore, we expect that quantum quench from
|Z2i or |Z3i product state will give rise to coherent oscil-
lations, with a frequency determined by the energy sep-
aration between the towers of special states in Fig. 4.
These oscillations in the dynamics can be observed by
measuring the expectation values of certain local observ-
ables,1,2 or more generally, using the quantum fidelity (or
return probability) defined as | hZk| exp(�iHt) |Zki |2.

Fully consistent with these expectations, fidelity for
quenches from |Z2i, |Z3i initial states shown in Fig. 6
reveals pronounced periodic revivals. The period of these
revivals coincides with 2⇡/�E1, where �E1 ⇡ 1.33 is
the energy separation between the special states. We
note that revivals of a local observable – the density of
domain walls – were found in Ref. 1 for the |Z2i case. The
frequency of these revivals is identical to the frequency
of quantum fidelity. By contrast, for |Z4i initial state,
we do not observe any revivals in the fidelity. This is in
agreement with the absence of anomalously high overlaps
between eigenstates and |Z4i product state.

The return probability for the |Z3i initial state in Fig. 6
displays a beating pattern modulating the amplitude of
the revivals. These revivals can be attributed to yet an-
other band of special states, some of which are visible as
individual points in Fig. 4(b), which are in between the
topmost band and the continuum of bulk states. Prob-
ably still not very clear, maybe shade a few of
those states in the figure? This secondary band of
special eigenstates generally has enhanced overlaps with
product states containing a domain wall between two dif-
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Figure 6. Quantum fidelity shows periodic in time revivals
for |Z2i and |Z3i initial product states. In contrast, |Z4i initial
state shows a complete absence of revivals. Data is for system
with L = 24 sites with periodic boundary conditions.
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(a)

Figure 7. Two eigenstates of the PXP model represented on
the Hilbert space graph for L = 10 sites and PBC. The color
of the vertices reflects the weight of the corresponding prod-
uct state in the eigenvector normalized to have the largest
weight equal to one. Similar to Fig. 1, the Néel states are the
left/right most vertices of the graph, while the fully polarized
state is located in the center of the graph. (a) Wave function
of the special eigenstate closest to the zero energy is concen-
trated in the vicinity of the Néel states. In contrast, the wave
function of the ground state (b) is concentrated in the center
of the graph.

of approximate eigenvectors and their energies. The pro-
jection of exact eigenvectors onto the FSA basis shows
good agreement with the FSA eigenvectors.2 Moreover,
the eigenenergies agree with exact diagonalization data
for large system sizes within few percent. For instance,
crosses in Fig. 2(a) represent estimates for the eigenen-
ergies and expectation values of local observables within
the FSA, and show excellent agreement with exact diag-
onalization data. Finally, the extrapolation of the FSA
energy gaps between adjacent special eigenstates agrees
within 2% with the extrapolation of the same gaps ob-
tained by exact diagonalization, see Fig. 5. As noted
previously, the finite-size corrections to the FSA energy
are linear in 1/L, while exact results appear to follow
1/L2 corrections. The origin of this discrepancy remains
to be understood.

It is possible to obtain the energies of special eigen-
states within the FSA by calculating �j and diagonalizing
a (L + 1) ⇥ (L + 1) matrix. In contrast, the access to the
FSA wave functions requires one to store at least L + 1
basis vectors, each of the dimension of full Hilbert space,
i.e., exponentially large in L. However, as Fig. 3 demon-
strates, special eigenstates have considerably lower en-
tropy than other eigenstates in the same energy density.
This suggest that matrix product state (MPS)63 repre-
sentation of FSA basis and special eigenstates should be
highly e�cient in the present case.

In order to formulate the FSA recurrence in the MPS
basis, we use the matrix product operator representation
of H+ from Eq. (17) and construct the basis by applying
the MPS operator to Néel state. The only di↵erence with
respect to the exact FSA is that a compression similar to
DMRG algorithms63 is performed every time an operator
is applied to the state or two states are summed. That
is, we truncate the state for all bipartitions, so that for
each reduced density matrix the truncated probability is
< 10�8 and then renormalize the state.

As a proof of principle of our MPS implementation of
the FSA, we show entropy scaling of special eigenstates

Figure 8. Logarithmic scaling of entropy for two adjacent
FSA eigenstates in the middle of the spectrum. Black trian-
gles correspond to the state at energy E1 ⇡ 1.33 and blue
crosses to E2 ⇡ 2.66 (the two data sets lie on top of each
other how well do the two data sets agree?). The fit
gives S / 0.48 log(L). Green curve corresponds to the en-
tropy of the exact special eigenstate at E1 ⇡ 1.33. The
non-monotonic behavior of entropy in this case is attributed
to weak hybridization with volume-law entangled states at
nearby energies. The inset displays the entropy of the FSA
ground state. The weak growth of entropy with L is an arte-
fact of the approximation, since the exact ground state is
gapped and obeys area law for entropy.

in Fig. 8. Despite the entropy being a non-local quan-
tity, we again find good agreement between the FSA and
exact eigenstates for system sizes up to L = 30. The
logarithmic growth of entanglement suggests that spe-
cial eigenstates cannot be e�ciently represented by MPS
in the thermodynamic limit. We note that the jumps in
the entropy growth of the exact eigenstate can be under-
stood as accidental hybridization with eigenstates in the
bulk. Because the majority of eigenstates carry extensive
amount of entropy in the middle of the spectrum, such
jumps can be attributed to two-eigenstate resonances.

Notably, the FSA overestimates the entanglement for
small system sizes. This trend is even more pronounced
in the inset of Fig. 8 which shows the scaling of the
ground state entropy within FSA. From exact diagonal-
ization it is known that the system is gapped, and the en-
tropy is expected to saturate at a value S ⇡ 0.346 in the
thermodynamic limit. The observed slow linear growth
is an indication of the error of the approximation and we
expect it to reside within all eigenstates. However, since
the prefactor is very small, for the system sizes consid-
ered, it is not visible in the logarithmic entropy growth
of the highly excited states.

D. Forward scattering approximation as a
trajectory in Hilbert space

The FSA approximation provides a framework for un-
derstanding the phenomenology of special eigenstates
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Figure 7. Two eigenstates of the PXP model represented on
the Hilbert space graph for L = 10 sites and PBC. The color
of the vertices reflects the weight of the corresponding prod-
uct state in the eigenvector normalized to have the largest
weight equal to one. Similar to Fig. 1, the Néel states are the
left/right most vertices of the graph, while the fully polarized
state is located in the center of the graph. (a) Wave function
of the special eigenstate closest to the zero energy is concen-
trated in the vicinity of the Néel states. In contrast, the wave
function of the ground state (b) is concentrated in the center
of the graph.

of approximate eigenvectors and their energies. The pro-
jection of exact eigenvectors onto the FSA basis shows
good agreement with the FSA eigenvectors.2 Moreover,
the eigenenergies agree with exact diagonalization data
for large system sizes within few percent. For instance,
crosses in Fig. 2(a) represent estimates for the eigenen-
ergies and expectation values of local observables within
the FSA, and show excellent agreement with exact diag-
onalization data. Finally, the extrapolation of the FSA
energy gaps between adjacent special eigenstates agrees
within 2% with the extrapolation of the same gaps ob-
tained by exact diagonalization, see Fig. 5. As noted
previously, the finite-size corrections to the FSA energy
are linear in 1/L, while exact results appear to follow
1/L2 corrections. The origin of this discrepancy remains
to be understood.

It is possible to obtain the energies of special eigen-
states within the FSA by calculating �j and diagonalizing
a (L + 1) ⇥ (L + 1) matrix. In contrast, the access to the
FSA wave functions requires one to store at least L + 1
basis vectors, each of the dimension of full Hilbert space,
i.e., exponentially large in L. However, as Fig. 3 demon-
strates, special eigenstates have considerably lower en-
tropy than other eigenstates in the same energy density.
This suggest that matrix product state (MPS)63 repre-
sentation of FSA basis and special eigenstates should be
highly e�cient in the present case.

In order to formulate the FSA recurrence in the MPS
basis, we use the matrix product operator representation
of H+ from Eq. (17) and construct the basis by applying
the MPS operator to Néel state. The only di↵erence with
respect to the exact FSA is that a compression similar to
DMRG algorithms63 is performed every time an operator
is applied to the state or two states are summed. That
is, we truncate the state for all bipartitions, so that for
each reduced density matrix the truncated probability is
< 10�8 and then renormalize the state.

As a proof of principle of our MPS implementation of
the FSA, we show entropy scaling of special eigenstates

Figure 8. Logarithmic scaling of entropy for two adjacent
FSA eigenstates in the middle of the spectrum. Black trian-
gles correspond to the state at energy E1 ⇡ 1.33 and blue
crosses to E2 ⇡ 2.66 (the two data sets lie on top of each
other how well do the two data sets agree?). The fit
gives S / 0.48 log(L). Green curve corresponds to the en-
tropy of the exact special eigenstate at E1 ⇡ 1.33. The
non-monotonic behavior of entropy in this case is attributed
to weak hybridization with volume-law entangled states at
nearby energies. The inset displays the entropy of the FSA
ground state. The weak growth of entropy with L is an arte-
fact of the approximation, since the exact ground state is
gapped and obeys area law for entropy.

in Fig. 8. Despite the entropy being a non-local quan-
tity, we again find good agreement between the FSA and
exact eigenstates for system sizes up to L = 30. The
logarithmic growth of entanglement suggests that spe-
cial eigenstates cannot be e�ciently represented by MPS
in the thermodynamic limit. We note that the jumps in
the entropy growth of the exact eigenstate can be under-
stood as accidental hybridization with eigenstates in the
bulk. Because the majority of eigenstates carry extensive
amount of entropy in the middle of the spectrum, such
jumps can be attributed to two-eigenstate resonances.

Notably, the FSA overestimates the entanglement for
small system sizes. This trend is even more pronounced
in the inset of Fig. 8 which shows the scaling of the
ground state entropy within FSA. From exact diagonal-
ization it is known that the system is gapped, and the en-
tropy is expected to saturate at a value S ⇡ 0.346 in the
thermodynamic limit. The observed slow linear growth
is an indication of the error of the approximation and we
expect it to reside within all eigenstates. However, since
the prefactor is very small, for the system sizes consid-
ered, it is not visible in the logarithmic entropy growth
of the highly excited states.

D. Forward scattering approximation as a
trajectory in Hilbert space

The FSA approximation provides a framework for un-
derstanding the phenomenology of special eigenstates

[Turner et al., arXiv:1806.10933]
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