Spontaneous out-of-equilibrium plasmonic magnetism

Justin Song

SPICE workshop on "Collective phenomena in driven quantum systems" Mainz, 2018

Berryogenesis: self-induced Berry flux and spontaneous out-of-equilibrium magnetism

MS Rudner, **JS**, arXiv 1807.01708 (2018)

Hidden (emergent) plasmon internal structure and plasmon Berry phase

LK Shi, JS, PRX 8, 021020 (2018)

Mark Rudner (KU)

Li-kun Shi (Singapore)

Funding:

determined by thermodynamics

Topological Insulators

Surfaces of 3D TIs: Bi₂Se₃, Bi₂Te₃ Bi_xSb_{1-x},...

Topological Crystalline Insulators: Sn Te, ...

Magnetic Topological Insulators: Cr-doped BiSbTe

Hg _xCd_{1-x}Te Quantum Wells, InAs/GaSb QWs

3D Dirac/Weyl

Experimentally Observed: Cd₃As₂, Na₃Bi, TiBiSe TaAs₂, ... Type II Weyl semimetals (candidates): (bulk) WTe2, MoTe2 Proposed in TI stacks; HgCdTe Stacks

Nodal-line semimetals

2D Dirac Materials

(materials that host Berry curvature)

Graphene heterostructures: G/hBN, dual-gated Bilayer graphene, ...

Transition metal dichalcogenides: MoS₂,WS₂,WSe₂, MoSe₂, MoTe₂,....

Monolayer WTe2

determined by thermodynamics

В С Α 1H-MX₂ 1T-MX₂ 1T'-MX₂ X1 X2 y → x z

variety of possible structures for MX2 monolayer

adapted from: Qian, Liu, Fu, Li Science (2014)

determined by thermodynamics

MoS2

adapted from Qian, Liu, Fu, Li Science (2014)

bandstructure evolution from bulk to monolayer

valley-locked spin structure

M Chhowalla et al, Nature Chemistry 2013

determined by thermodynamics

Wu, Fatemi, et al, Science (2018)

1T'-MX₂

 $\langle \rangle \rangle$

Qian, Liu, Fu, Li Science (2014)

adapted from Tang et al, Nature Physics (2017)

driven systems: out-of-equilibrium materials

overcoming the tyranny of thermodynamics

some strategies:

a. non-equilibrium driving for designer hamiltoniansb. unconventional out-of-equilibrium responsesc. exploiting collective modes for new phases/structure

Non-equilibrium driving: tailored hamiltonians

Floquet engineering

see e.g., Fahad's talk on Wednesday

F Mahmood, et al, Nature Physics (2016)

Floquet alchemy: transmuting trivial insulator into topological insulator

N Lindner, G Refael, V Galitski, Nature Physics (2011)

also large zoo of new Floquet effects: e.g., Rudner, Berg, Lindner, Levin PRX 2013

Driven systems and Berry curvature

designer hamiltonians: engineering band structure

Driven systems: Out-of-equilibrium phases

designer hamiltonians: engineering interactions

Light-induced superconductivity

equilibrium spectral weight transfer in K3C60

out-of-equilibrium spectral weight transfer in K3C60

M Mitrano, et al Nature (2016),

see e.g., D Fausti, et al Science (2011),

taken from cavilieri group website

driven systems: out-of-equilibrium materials

overcoming the tyranny of thermodynamics

some strategies:

a. non-equilibrium driving for designer hamiltonians
b. unconventional out-of-equilibrium responses
c. exploiting collective modes for new phases/structure

Hall responses in a TRS preserving system

nonlinear Hall effect

quench induced responses

remnant geometrical Hall effect in a quantum quench

J Wilson, JS, G Refael, PRL (2016)

see also Hu, Zoller, Buddich PRL (2016)

Anomalous Cyclotron motion without magnetic field

Slow center of mass/wavepacket dynamics

Group velocity "Anomalous velocity"

$$\dot{\mathbf{x}} = \frac{\partial \epsilon}{\partial \mathbf{p}} + \frac{1}{\hbar} \mathbf{\Omega}(\mathbf{p}) \times \dot{\mathbf{p}}$$

$$\dot{\mathbf{p}} = -\frac{\partial V}{\partial \mathbf{x}}$$

Anomalous Cyclotron motion without magnetic field

Slow center of mass/wavepacket dynamics

Group velocity "Anomalous velocity"

$$\dot{\mathbf{x}} = \frac{\partial \epsilon}{\partial \mathbf{p}} + \frac{1}{\hbar} \mathbf{\Omega}(\mathbf{p}) \times \dot{\mathbf{p}}$$

$$\dot{\mathbf{p}} = -\frac{\partial V}{\partial \mathbf{x}}$$

Intra-unit-cell dynamics

Pulse a (TRS broken) gapped Dirac system with $\mathbf{E} = A_x \delta(t) \hat{\mathbf{x}}$ /c

Track the dynamics of the current:

EH Hasdeo, AJ Frenzel, JS arXiv (2018)

driven systems: out-of-equilibrium materials

overcoming the tyranny of thermodynamics

some strategies:

a. non-equilibrium driving for designer hamiltoniansb. unconventional out-of-equilibrium responses

c. exploiting collective modes for new phases/structure

what we will focus on in this talk

Rich tapestry of out-of-equilibrium excitations

large variety of excited states beyond nominal single-particle (bandstructure) excitations

Plan

Part I. Exploiting out-of-equilibrium matter

Part II.

Spontaneous symmetry breaking in a collective mode out-of-equilibrium plasmonic magnetism

MS Rudner JS, arXiv (2018)

Part III.

Emergent internal structure of plasmons and geometry

Mark Rudner (KU)

Claim: collective motion of plasmons gives rise to spontaneous TRS breaking

Plasmons are collective density oscillations in metals

Plasmons

$$\phi(\mathbf{x},t) = -e \int d^2 \mathbf{x}' \frac{\delta n(\mathbf{x}',t)}{\kappa |\mathbf{x} - \mathbf{x}'|}$$

continuity equation:

$$\partial_t \delta n + \nabla \cdot \mathbf{v} = 0$$

force equation:

$$\partial_t \mathbf{p} + e n_0 \mathbf{E} = 0$$

"constitutive" relation:

$$\mathbf{v}=\mathbf{p}/m$$

Plasmons and strong light-matter interaction

Large wavelength mismatch = high compression

imaging/exciting plasmons in 2D materials using Scanning near-field optical microscope (SNOM)

e.g., Woesnner, et al, Nature Materials (2015) first achieved in Koppens group (Nature 2013), and Basov group (Nature 2013)

High quality plasmons in graphene

	Confinement ratio	Quality factor	Lifetime (fs)
Definition	$\lambda_{\rm IR}/\lambda_{\rm p}$	$Q_{\rm p} = q_{\rm p}'/q_{\rm p}''$	$\tau = 2Q_{\rm p}/\omega$
T = 60 K	60	130	1,600
Graphene (intrinsic, $T = 60$ K)	66	970	12,000
$Ag^{a,b}$ (T=10K)	~1	36	14
n-InSb ^c , n-CdO ^a ($T=$ 300K)	<10	37	270

Ni et al., Nature (2018)

Equations of motion in a disk

$$\frac{d\{\mathbf{r}\}}{dt} = \frac{\{\mathbf{p}\}}{m} - \frac{\mathcal{F}[\mathbf{E}_{\text{tot}}(t)]}{\hbar n_0} \hat{\mathbf{z}} \times e\mathbf{E}_{\text{tot}}(t),$$
$$\frac{d\{\mathbf{p}\}}{dt} = -m\omega_0^2\{\mathbf{r}\} - \gamma\{\mathbf{p}\} - e\mathbf{E}_{\text{drive}}(t),$$

Equations of motion in a disk

JS, M Rudner, PNAS (2016)

Generation of Berry flux

Generation of Berry flux

$$\mathcal{H}_K = E_F [\tilde{\mathbf{k}} - \tilde{\mathbf{A}}(t)] \cdot \boldsymbol{\sigma}, \quad \mathcal{H}_{K'} = E_F [\tilde{\mathbf{k}} - \tilde{\mathbf{A}}(t)] \cdot \boldsymbol{\sigma}^* \quad \tilde{\mathbf{A}}(t) = \frac{ev}{cE_F} \mathbf{A}(t),$$

Feedback: Flux induced plasmon non-linearity

Generated by rotating electric fields (drive + internal)

internally plasmonic enhanced electric fields internal electric fields up to Q times larger

$$\mathcal{F} = 0 + \mathcal{F}[\mathbf{E}_{ ext{tot}}(t)]$$
 internally plasm internal electric $e\mathbf{E}_{ ext{tot}}(t) = e\mathbf{E}_{ ext{drive}}(t) + m\omega_0^2\{\mathbf{r}\}$

graphene has zero flux

Flux depends on plasmon motion/displacement: plasmon non-linear

$$\bar{\mathcal{F}} = f(|\mathcal{Z}_{-}^{(0)}|^2/l^2, |\mathcal{Z}_{+}^{(0)}|^2/l^2), \quad l^{-1} = \frac{vm\omega_0^2}{E_F\omega_d},$$

complex representation for circular basis

$$\mathcal{Z}_{\pm}^{(0)} = \frac{1}{\sqrt{2}} [x^{(0)} \pm i y^{(0)}]$$

Feedback: nonlinearity and bistability

case I: circularly polarized driving

Captures the amplitude of the circular motion of the plasmons

Feedback: nonlinearity and bistability

TRS preserving drives (e.g., linear polarization)?

Self-Floquet: spontaneous collective mode magnetism case II: linearly polarized driving

$$\begin{split} &\frac{d\{\mathbf{r}\}}{dt} = \frac{\{\mathbf{p}\}}{m} - \frac{\mathcal{F}[\mathbf{E}_{\text{tot}}(t)]}{\hbar n_0} \hat{\mathbf{z}} \times e\mathbf{E}_{\text{tot}}(t), \\ &\frac{d\{\mathbf{p}\}}{dt} = -m\omega_0^2\{\mathbf{r}\} - \gamma\{\mathbf{p}\} - e\mathbf{E}_{\text{drive}}(t), \end{split}$$

self-consistent equation for symmetry breaking $\eta\equiv |\mathcal{Z}_+^{(0)}|^2-|\mathcal{Z}_-^{(0)}|^2$.

$$\eta \left[1 + 4\nu \omega_d (\omega_d^2 + \gamma^2 - \omega_0^2) \frac{|eE_{\rm rms}/m|^2}{D_+ D_-} \right] = 0,$$

where

$$D_{\pm} = [\omega_0^2 - \omega_d^2 \mp \nu \omega_d \eta]^2 + \gamma^2 (\omega_d \pm \nu \eta)^2$$

Spontaneous collective mode magnetism

case II: linearly polarized driving

*sold lines from analytic expression of steady states, green dots from self-consistent full numerical simulation

Spontaneous collective mode *magnetism* case II: linearly polarized driving drive Response $1.0 \overline{}^{\times 10^{-2}}$ Frequency Berry Flux, *J* 0.0 2.0 2.0 2.0 0.5Linearly polarized driving gives circular plasmon motion (spontaneously chosen)! -1.050100150U Drive amplitude, $E_{\rm rms}$ (V/cm)

*sold lines from analytic expression of steady states, green dots from self-consistent full numerical simulation

M Rudner, **JS**, arXiv (2018)

Spontaneous collective mode magnetism

case II: linearly polarized driving

*sold lines from analytic expression of steady states, green dots from self-consistent full numerical simulation

M Rudner, **JS**, arXiv (2018)

Tuning the type of phase transition

case II: linearly polarized driving

Drives are outside particle-hole continuum

Figure from: Hwang and Das Sarma, PRB (2007)

Direct inter-band transitions are Pauli Blocked:

Plan

Part I. Exploiting out-of-equilibrium matter

Part II.

Spontaneous symmetry breaking in a collective mode out-of-equilibrium plasmonic magnetism

MS Rudner JS, arXiv (2018)

Part III.

Emergent internal structure of plasmons and geometry

Li-kun Shi

Plasmons: electric fields, density, and current density

Longitudinal electric mode

locked orientations: $({\bf q}, {\bf E}, {\bf j})$

charge dynamics:

$$\partial_t \delta n(\mathbf{r}, t) + \mathbf{\nabla} \cdot [\boldsymbol{\sigma} \mathbf{E}(\mathbf{r}, t)] = 0$$

Plasmon internal current density structure

Internal current density structure

Formal treatment

Electric potential of plasmon determined by (full 3D) Maxwell's equation

$$\mathbf{\nabla} \times [\mathbf{\nabla} \times \boldsymbol{\mathcal{E}}(\mathbf{r}, z, t)] = \frac{\omega^2}{c^2} \boldsymbol{\mathcal{E}}(\mathbf{r}, z, t) - i \frac{4\pi\omega}{c^2} \boldsymbol{\mathcal{J}}(\mathbf{r}, z, t),$$

As a result, Maxwell demands that electric field inside the metallic (2D) plane is related to the current density

$$\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \mathcal{F} \begin{pmatrix} j_x \\ j_y \end{pmatrix}, \quad \mathcal{F} = \frac{2\pi i}{\omega\beta} \begin{pmatrix} \beta^2 - q_y^2 & q_x q_y \\ q_x q_y & \beta^2 - q_x^2 \end{pmatrix}, \quad \begin{array}{c} \text{in non-retarded limit} \\ \beta = \sqrt{\mathbf{q}^2 - \omega^2/c^2} \approx |\mathbf{q}| \\ \end{array}$$

Supplemented with the conductivity (constitutive relation of the metal) plasmons can be obtained as zero modes of

$$\mathcal{M}\mathbf{j} = 0, \quad \mathcal{M} = \mathcal{F} - \boldsymbol{\sigma}^{-1}, \quad \substack{\text{where} \\ \sigma_{xx} = \frac{(1 + i\omega\tau) \sigma_0}{(1 + i\omega\tau)^2 + (\omega_c\tau)^2}, \quad \sigma_{xy} = \frac{-\omega_c\tau \sigma_0}{(1 + i\omega\tau)^2 + (\omega_c\tau)^2}$$

yielding magneto-plasmon solutions as

$$\omega = \sqrt{2\pi D_0 |\mathbf{q}| + \omega_c^2} \qquad \mathbf{u}(\mathbf{q}) = \begin{pmatrix} j_x(\mathbf{q}) \\ j_y(\mathbf{q}) \end{pmatrix} = \frac{\mathcal{N}}{q} \begin{pmatrix} -iq_x + \eta_q q_y \\ +iq_y - \eta_q q_x \end{pmatrix}.$$
looks like a "spinor wavefunction"!

Plasmon emergent pseudo-spin

plasmon "pseudo-spin" tracks canted orientation

Zero magnetic field $\omega_c = 0$

Finite magnetic field $\omega_c \neq 0$

Plasmon emergent pseudo-spin

Zero magnetic field $\omega_c = 0$

Finite magnetic field $\omega_c \neq 0$

Plasmon emergent pseudo-spin

plasmon "pseudo-spin" tracks canted orientation

Zero magnetic field $\omega_c = 0$

Finite magnetic field $\omega_c \neq 0$

"hidden" internal current density

Hall current does not contribute to dispersion relation in bulk

$$\mathcal{M}\mathbf{j} = 0, \quad \mathcal{M} = \mathcal{F} - \boldsymbol{\sigma}^{-1},$$

yielding solutions as

$$\mathbf{u}(\mathbf{q}) = \begin{pmatrix} j_x(\mathbf{q}) \\ j_y(\mathbf{q}) \end{pmatrix} = \frac{\mathcal{N}}{q} \begin{pmatrix} -iq_x + \eta_q q_y \\ +iq_y - \eta_q q_x \end{pmatrix}.$$

current density pattern possesses hedge-hog like texture

* note that even though current density cants in the presence of B field, electric field remains Longitudinal. Longitudinal electric modes (as required for deep sub wavelength plasmons)

 $\boldsymbol{\varepsilon}(\mathbf{q}) = \boldsymbol{\mathcal{F}}(\mathbf{q})\mathbf{u}(\mathbf{q}) = (2\pi \mathcal{N}/\omega_q)\mathbf{q},$

Plasmon geometrical phases

Plasmon geometrical phases

Plasmon geometrical phases

written more suggestively (take ϕ continuous determined by **q**)

$$\nabla_{\mathbf{q}}
ho(\mathbf{q}) = \mathcal{A}(\mathbf{q}_0^{\mathrm{r}}, \hat{\mathbf{n}}) - \mathcal{A}(\mathbf{q}_0^{\mathrm{i}}, \hat{\mathbf{n}})$$

phase shift depends on a geometrical connection

$$\mathcal{A}(\mathbf{q}, \hat{\mathbf{n}}) = \langle u_{\hat{\mathbf{n}}}(\mathbf{q}) | i \nabla_{\mathbf{q}} | u_{\hat{\mathbf{n}}}(\mathbf{q}) \rangle$$

* not quite the berry connection since only normal component of **u** matters, nevertheless it captures geometry of pseudo-spinor texture

plasmon current density spinor

Geometrical phases: Plasmon Hall effect

Geometric phase for multiple waves in a wave packet accumulate shifting the reflection trajectories

Geometrical phases: Plasmon Hall effect

Plasmon wavepackets acquire geometrical phases, shifting their reflection trajectories

Collective modes are platform for new out-of-equilibrium phenomena

* Collective modes can be a platform to realize new spontaneously broken phases

* Collective modes can possess an emergent structure distinct from that of the underlying crystal

References:

Berryogenesis: spontaneous out-of-equilibrium magnetism MS Rudner, JS, arXiv (2018)

Plasmon internal structure and geometric phase

LK Shi, **JS**, PRX (2018)

We gratefully acknowledge our Funding sources:

NATIONAL RESEARCH FOUNDATION

