Driving the Quantum Dynamics of Single Diamond Spins with Light

Brian Zhou University of Chicago @ SPICE Workshop, Mainz (7-12-2018)

University of Konstanz

V. Shkolnikov

A. Auer

G. Burkard

German Research Foundation

Two Scales of Quantum

Harnessing quantum mechanics for next-generation technologies:

	<i>Macroscopic Quantum Systems</i> $(N \gg 1)$	Single Quantum Systems (<i>N</i> ~ <i>O</i> (1))
Starting Point	Emergent many-body phenomena	Coherently-controlled single quantum systems
Examples	 Bose-Einstein condensates Fractional quantum hall "Quantum" materials 	Cold atoms Superconducting qubits Impurities/defects in solids

Image: EPFL

Image: Vescent

Two Scales of Quantum

Harnessing quantum mechanics for next-generation technologies:

	Macroscopic Quantum Systems $(N \gg 1)$	Single Quantum Systems (N~ O(1))	
Challenges	Address/control individual quasiparticles; multiplex information; extend phases to ambient	Scale entanglement to non-trivial sizes; extend coherence in time	
Cross-cutting resources	Hybrid quantum systems; novel materials for qubits; novel quantum sensors		
 This talk: ✓ Time-dependent driving ✓ Berry phase Image: EPFL 			

NV⁻ Center in Diamond

14 Phonon Sideband Zero Phonon Negatively-charged nitrogen-vacancy Normalized Photocounts (a.u.) Line center in diamond 85K **NV** Emission 6 electrons strongly localized at defect 110K ٠ Spectrum 150K Spin triplet (S = 1) ground state ٠ 200K Green excitation/red fluorescence • 250K M. Fukami (Awschalom 300K Lab) **Conduction Band** 1.6 1.8 1.4 2 Energy (eV) ξ phonon ES "molecule inside 5.5 V 1.95 V e semiconductor N vacuum" Š GS **Off-Resonant** substitutional N Excitation next to C vacancy Valence Band

What makes NV centers special?

- Optical spin readout and initialization: spin-dependent photoluminescence
- Superlative spin coherence:
 - ~1 ms T_2 (phase memory)
 - > 100 µs T_2^* at **room temperature** for ¹²C-purified samples!

 Resolving spin-orbit fine structure of excited state below <20 K

NV Emission Spectrum

Zoom in on zero-phonon transitions...

Low Temperature (<20 K)

PSB fluorescence (a.u.)

High-fidelity spin-selective transitions enables:

- Spin-photon entanglement spin to photon polarization spin to photon number
- Optical spin control

Quantum interface between spins and photons

High-fidelity spin-selective transitions enables:

- Spin-photon entanglement spin to photon polarization spin to photon number
- Optical spin control

Quantum interface between spins and photons

See works by: Hanson Group (Delft) Wratchrup (Stuttgart) Lukin (Harvard)...

Low Temperature (<20 K)

+ Versatile Sensor!

Ground State Hamiltonian:

Ground State Spin Energies

 $H_{GS} \approx D(\boldsymbol{T}, \boldsymbol{P}) \ S_Z^2 - d_{GS} \left(\boldsymbol{E}_{\boldsymbol{\chi}} \left(\boldsymbol{S}_{\boldsymbol{\chi}} \boldsymbol{S}_{\boldsymbol{y}} + \boldsymbol{S}_{\boldsymbol{y}} \boldsymbol{S}_{\boldsymbol{\chi}} \right) + \boldsymbol{E}_{\boldsymbol{y}} \left(\boldsymbol{S}_{\boldsymbol{\chi}}^2 - \boldsymbol{S}_{\boldsymbol{y}}^2 \right) \right) + \gamma \, \boldsymbol{\vec{S}} \cdot \boldsymbol{\vec{B}}$

E (GHz) $m_s = +1$ $m_s = -1$ $m_s = 0$ B (gauss)

Parameter (P)	Response
B_{\parallel}	2.8 MHz/Gauss
E_{\perp}	17 Hz/(V/cm)
Temp.	-80 kHz/Kelvin
Pressure	15 MHz/GPa

"Quantum Sensing"

- Nanoscale resolution
- Ease of use, wide-temperature range

+ Versatile Sensor! Measure energies directly (spectroscopy). Normalized PL (a.u.) 0.9--8.0 BL -8.0 -8.0 Peak shift 2,790 2,820 2,850 Radio frequency (MHz) Or measure phase accumulation. **Ground State Spin** +1 $\boldsymbol{\phi} \sim \frac{E(\vec{\mathbf{P}})}{\hbar}t$ E (GHz) $m_{s} = +1$ Long coherence times key! **B**, **E** $(|0\rangle + e^{i\phi}|+1\rangle)/\sqrt{2}$ σ $\sim \frac{1}{\sqrt{T_{meas} \cdot T_{coh}}}$ 0 Temp. $m_{s} = -$ Pressure Ramsey Sequence (DC Fields) S_{noise}(ω) $m_{\rm s}=0$ XY8-k $\left(\frac{\pi}{2}\right)_{x}$ B (gauss) ×k Dynamical Decoupling Sequence (AC Fields)

+ Versatile Sensor!

BiFeO₃

Non-collinear magnetic order in BiFeO₃ (Gross *Nature* 549, 2017)

Wide-ranging applications in physics, chemistry, biology, medicine

Electron/spin transport in 2D materials

Controlling Quantum Dynamics (Optically)

Accelerating Adiabatic Quantum Control

- Engineering quantum shortcuts to adiabaticity
- Fast optical pulse shaping for state transfer via STIRAP

Manipulating Spins by Geometry

- Robustness of Berry phases to noise
- Arbitrary single qubit quantum gates by non-abelian holonomies

Our Lab – Low Temp Confocal Microscope

Closed-Cycle Cryostat (5 K)

> in-cryo objective

Optimized for phase/amplitude controlled two-color excitation of Λ systems

Robust state manipulation

- cooling atomic systems
- nuclear magnetic resonance (ensembles)
- adiabatic quantum simulation

System remains in instantaneous eigenstate if its rate of change is adiabatic.

Adiabatic Criterion:
$$\frac{dB(\tau)}{d\tau} \ll \Delta^2$$

$$H_{LZ} = \begin{bmatrix} B_z(t) & \Delta \\ \Delta & -B_z(t) \end{bmatrix}$$

Important consequences for more complex systems: **Quantum simulations Quantum thermodynamics**

(e.g. sweeping a magnetic field)

Quantum Adiabaticity as a Powerful Tool

Shortcuts to Adiabaticity – The Need for Speed

A classical analogy for non-adiabatic transitions:

Non-Adiabatic

Counterdiabatic (bank!)

Review: Torrontegui Advances in AMO Physics 62 (2013). Originally: Berry, Demirplak/Rice.

 $H_0(t) \rightarrow H_0(t) + H_{CD}(t)$

Engineering the quantum

track:

SPEED

Is $H_{CD}(t)$ experimentally practical?

(How to calculate $H_{CD}(t)$ without exact diagonalization?)

Jarzynski *PRA* 2013. Deffner *PRX* 2014. Vandermause *PRA* 2016. Ribeiro *PRX* 2017.

e.g. for Landau-Zener Hamiltonian:

$$H_{LZ} = \begin{bmatrix} B_{z}(t) & \Delta \\ \Delta & -B_{z}(t) \end{bmatrix}$$

$$H_{CD}(t) = -\frac{dB_{z}(t)}{dt} \frac{\Delta}{B_{z}(t)^{2} + \Delta^{2}} \hat{\sigma}_{y} \quad B_{y}(t)!$$

Review: Torrontegui Advances in AMO Physics 62 (2013). Originally: Berry, Demirplak/Rice.

Superadiabatic Transitionless Driving (SATD)

For state transfer, only initial t_i and final t_f times are important!

Follow dressed adiabatic eigenstates:

 $\hat{V}(t)|\varphi_k(t)\rangle$

 $H_0(t) \to H_0(t) + H_{SATD}(t)$

Multiple choices for $\hat{V}(t)$ gives multiple forms for $H_{SATD}(t)!$

A. Baksic, H. Ribeiro, A. Clerk, *PRL* 116 (2016).

Stimulated Raman Adiabatic Passage (STIRAP):

State transfer by dark state $|D\rangle$ of a lambda (Λ) system

Stimulated Raman Adiabatic Passage (STIRAP):

State transfer by dark state $|D\rangle$ of a lambda (Λ) system

Application: STIRAP

$$|\mathbf{D}\rangle = \cos(\theta/2)|\alpha\rangle - e^{i\phi}\sin(\theta/2)|\beta\rangle$$
$$\theta = 2\tan^{-1}(\Omega_{\alpha}/\Omega_{\beta})$$
$$\phi = \arg(\Omega_{\alpha}/\Omega_{\beta})$$

STIRAP:

Bergmann *Rev. Mod. Phys.* 70 (1998). Yale*, Heremans*, Zhou* *Nature Photon.*10 (2016). Golter *Phys Rev Lett* 112 (2014).

A 'Shortcut to Adiabaticity' for STIRAP

Time (ns)

A 'Shortcut to Adiabaticity' for STIRAP

Transfer efficiency vs speeding up protocol: MOD-SATD is 3x faster than the adiabatic protocol to reach 90% transfer.

Constant optical power Vary protocol duration

Accelerated State Transfer with STIRAP

THE INSTITUTE FOR MOLECULAR ENGINEERING THE UNIVERSITY OF CHICAGO

Time-Resolved Excited State Population:

Geometric Phases in Physics

Geometric Phases in Physics

Classical Parallel TransportQuantum Electronic Wavefunctions π Berry phase for graphene $\int final geometric initial rotation \gamma$

Intrinsic to cyclic evolution, reflecting the underlying geometry of the space.

Control cyclic evolutions of a single quantum system (real spin)! Use geometric phases as robust logic operations.

Leek Science 318, 1889 (2007). Berger PRA 87, 060303 (2013). Zu Nature 514, 72 (2014).

Optically Controlled Berry Phase

Optically Controlled Berry Phase

Berry phase robust to noise in long cycle time limit!

Non-Adiabatic Holonomic Quantum Gates

Geometric rotation around arbitrary axis?

an optical excitation cycle (in time). A_2 Set rot. angle: Δ Result is rotation by arbitrary angle around any desired $|B\rangle/|D\rangle$ axis. $\Omega_{\text{+1}}(t)e^{i\varphi}$ $\Omega_{-1}(t)$ Cycle $|+1\rangle$ **Bloch Sphere** $|+1\rangle$ |-1) IN = (a 🔵 + b 🔴 IN: $|B(\theta, \phi)|$ $|B\rangle$ Set axis: (θ, ϕ) $|D\rangle$ Gate **Bright state** $|\boldsymbol{D}(\boldsymbol{\theta},\boldsymbol{\phi})\rangle$ = (a \bigcirc + b e^{i γ}) OUT: Gate **Dark State** Matrix-valued geometric phase: OUT $G = |D\rangle\langle D| + e^{i\gamma} |B\rangle\langle B|$ $|-1\rangle$ $\theta = 2 \tan^{-1}(\Omega_{+1}/\Omega_{-1})$ $\phi = \arg(\Omega_{+1}/\Omega_{-1})$

E. Sjöqvist, Phys. Lett. A 380, 65 (2016):

Use non-adiabatic geometric phase from

Non-Adiabatic Holonomic Quantum Gates

Since transformation is **purely geometric** and **non-commuting** (non-Abelian), they are known as "holonomic" quantum gates.

 $+ \Delta^2$

Microwave

∼ 637 nm

$$\boldsymbol{\gamma} = \boldsymbol{\pi} \left(\mathbf{1} - \frac{\boldsymbol{\Delta}}{\sqrt{\boldsymbol{\Omega}^2 + \boldsymbol{\Delta}^2}} \right)$$

Detuned gates (less maximal excitation, shorter gate time) achieve higher fidelities.

Full Quantum Process Tomography

- Gate fidelities limited by excited state decoherence (~12 ns).
- Current gate speeds < 6 ns. Relatively fast/efficient!
- Detuned gates achieve higher fidelities.

B. B. Zhou et al. Phys. Rev. Lett. 119, 150403 (2017). See also Sekiguchi et al. Nat. Photon. 11, 309 (2017).

Conclusions

All-optical quantum control with engineered dynamics

- Accelerated adiabatic passage (~3x speed-up for STIRAP, fidelities > 0.90)
- **Robust** Berry phases and **efficient/arbitrary** single-qubit gates via geometric phases

B. B. Zhou et al., Nat. Phys. 13, 330 (2017). B. B. Zhou et al., Phys. Rev. Lett. 119, 150401 (2017).

C. G. Yale*, F. J. Heremans*, B. B. Zhou*, et al, Nat. Phot. 10, 184 (2016).

NV electro

Quantum sensing of condensed matter systems