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What is the problem: I. Classification

Sci-Hub: Where is Einstein? Postman: Cat /Dog ?

Recurrent Neural Network 
(RNN)

Deep Neural Network 
(DNN)
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Algorithmic calculation:

Complex, ambiguous behavior:

𝑦𝑛+1 =

𝑦𝑛 + 𝛿(
0.2𝑦𝑡

1 + 𝑦𝑡
10
− 0.1𝑦𝑡)

n=110000
Δt<0.1 s

?

What is the problem: II. Prediction
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Input
Reservoir 

(Complex network)

∑

∑

Output

Reservoirs: Dynamical, Complex, Simple

Input:
Random injection

Reservoir:
Random connection
Resting state

Output:
Linear weights
Linear regression

• Simple: 2 random matrix multiplications
• Echo state property: working memory
• Excellent performance for prediction

Jaeger, et al. Science 2004
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Operating a reservoir

∑

∑

Input:
𝒖(𝑛 + 1)

Network state:
𝒙 𝑛 + 1 =

𝒇[𝑊𝒙 𝑛 +𝑊𝑖𝑛𝑗𝒖 𝑛 + 1 + 𝒃]

Output:
𝒚 𝑛 + 1 =

𝑊𝑜𝑢𝑡𝒙(𝑛 + 1)

1. Training data: set of inputs 𝒖(𝑛) for which 𝒚 𝑛 is known
2. Collect 𝒙(𝑛) for 𝑛 𝜖[1,… , 𝑇]
3. Cross-validate: randomly label instances of input data by 𝑙 𝜖[1,… , 𝐿]
4. Select one 𝑙𝑐 𝜖[1,… , 𝐿]

• 𝑀𝑥: concatenated matrix of 𝒙(𝑛) in response to 𝒖(𝑛) for 𝑙 ≠ 𝑙𝑐
• 𝑇𝑇: concatenated matrix of 𝒚(𝑛) for 𝑙 ≠ 𝑙𝑐
• Obtain 𝑊𝑜𝑢𝑡 = 𝑀𝑥𝑀𝑥

𝑇 + 𝜆𝐼 −1(𝑀𝑥𝑇
𝑇)

5. Measure error for 𝑙𝑐
For hardware: Don’t care about system (𝒙 𝑛 + 1 = 𝒇[𝒙 𝑛 ]) 
• Good control of “distance” to criticality
• Good access to system state
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Why novel hardware???
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Big questions: What hardware

Neural Networks: What is special ???
o Large scale parallel dynamics
o Highly connected
o Direct, physical links (no address routing)

 Fully parallel
 Stand alone / unclocked
 Ideally energy efficient (no routing 

overhead)

© Ramón y Cajal

𝑥𝑖
𝑛+1 = 𝑓(෍

𝑗=1

𝑁

𝑊𝑖,𝑗
𝑓𝑏
𝑥𝑗
𝑛 +𝑊𝑖

𝑖𝑛𝑗
𝑢𝑛 + 𝜇)

N2

XEven TPU: ~200 KHz global frame rate
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Photonic RC: delay networks
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NL
delay τ

Spatially multiplexed reservoir Temporally multiplexed reservoir

L. Appeltant, et al., Nat. Comm. 2, 468 (2011).Jaeger and Haas, Science 304, 5667 (2004).

o Multiplexed in space:
– Injection weights constant in time 
– Data-rate: bandwidth of nodes

o Hardware implementation 
challenging

o Flexible network-connectivity 
structure

o Multiplexed in time:
– Injection weights based on temporal modulation
– Data-rate: bandwidth / N

o Simplistic hardware implementation
o Potentially large memory
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Neural Networks in Photonic Delay 
Systems
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Delay systems 101
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𝜀 ሶ𝑥 𝑠 + 𝑥 𝑠 = 𝑓 𝛽𝑥 𝑠 − 1 , 𝒃
𝑠 = 𝑡/𝜏, 𝜀 = 𝑇𝑅/𝜏

No feedback
Driven response

Fe
ed

ba
ck

N
o 

dr
iv

e

o Highly simplistic system
o High dimensional
o Critical transitionSoriano et al., RMP 85, 421 (2013).
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Delay systems are ring networks
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Arecchi et al., Phys. Rev. A 45, 4225 (1992).

Coupling = convolution with previous NL-transformed states

𝜀 ሶ𝑥 𝑠 + 𝑥 𝑠 = 𝑓 𝑥 𝑠 − 1

Solving via Green’s function approach

𝑥 𝑠 = ∞−׬
𝑠

ℎ(𝑠 − 𝜉) ∙ 𝑓 𝑥 𝜉 − 1 𝑑𝜉, ℎ(𝑠): Impulse response

Temporal reorganization
𝑥𝜎 𝑛 = 𝑥 𝑠 , 𝜎 ∈ 0,1 + 𝛾 , 1 + 𝛾 𝑛 + 𝜎 = 𝑠, 𝑛 = 0,1,2, …

𝑛=time, 𝜎=node

𝑥𝜎 𝑛 ≈ න
𝜎−1

𝜎

ℎ(𝜎 − 𝜉) ∙ 𝑓[𝑥 𝜉 − 1 ]𝑑𝜉
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Delay reservoirs:
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Input:
𝑊𝑖𝑛𝑗𝒖 𝑛 + 1

𝑊𝑖𝑛𝑗 is temporal modulation

Network state:
𝜀 ሶ𝑥 𝑠 + 𝑥 𝑠 =

𝑓 𝑥 𝑠 − 1 , 𝒖 𝑠

Output:
𝑊𝑜𝑢𝑡𝒙(𝑛 + 1)

𝑊𝑜𝑢𝑡 is temporal modulation
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Tour de ville for delay substrates
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Electronic:
• Mackey-Glass nonlinearity
Appeltant et al., Nat. Comm. 2, 468 (2011).

Opto-electronic:
• Ikeda nonlinearity
Larger et al., Opt. Exp. 20, (3) (2012).
Paquot et al., Sci. Rep. 2, 287 (2012).

Brunner et al., Nat. Commun. 4, 1364 (2013).
Duport et al., Opt. Express 20, 22783 (2012). 

All optical:
•Semicondcutor devices

Photonic RC: Van der Sande, et al., Nanophotonics 6, 561 (2017)
Photonic delay RC: Brunner, et al., JAP, Special issue (2018)

Nano-electronics:
• Spin-torque oscillator
Torrejon, et al., Nature 547, 7664 (2017).
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Neural Networks in spatio-temporal 
photonic systems
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Why Optics? Connections!
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Why optical connections?
• Parallel
• 2D substrate not sufficient

• Negligible distance tradeoff
• Zero induction
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Photonic neural network

Polarization

filtering

2xDOE
DOE DOE

• Parallel state, analogue
• Single element

• DOE > 90.000 nodes
• SLM > 480.000 nodes

Network: holographic fan-out

Neurons: liquid crystal pixels
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Recurrent coupling:

Electro-optical networks
• Nodes: Pixels of SLM

• Density: 6400 / mm2

• Coupling: DOE + imaging
• 4f architecture:

• Self-coupling

• 2025 network nodes
• Dynamic evolution: iterative update 

Camera -> SLM

𝐼𝑖
𝑛+1 = sin2(β|෍

𝑗=1

𝑁

κ𝑖,𝑗
𝐷𝑂𝐸 𝐸𝑗

𝑛|2 + 𝛾κ𝑖
𝑖𝑛𝑗
𝑢𝑛+1 + Θ0)

Readout weights:
• Digital Micro-mirror Array
• Image SLM onto DMD
• Result: analog power meter

BUT
• Full state not known
• State detection non-linear
• Matrix inversion not possible

𝑦𝑛+1 ∝ |෍

𝑖=1

𝑁

𝑊𝑖,𝑘
𝐷𝑂𝐸 (𝐸𝑖

0 − 𝐸𝑖
𝑛+1)|2

Matlab:
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Coupling matrix

Diffractive networks: coupling a neighborhood
• For 45x45 nodes: 100 KFlOP / per state
• For 300x300 nodes: 4.5 MFLOP / per state
• More complex / larger range trivial to create

Bueno, et al., under review Optica.
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Autonomous dynamics

PC

Coupling

𝐼𝑖
𝑛+1 = sin2(β𝐼𝑗

𝑛 + Θ0) 𝐼𝑖
𝑛+1 = sin2(β(෍

𝑗=1

𝑁

κ𝑖,𝑗
𝐷𝑂𝐸 𝐸𝑗

𝑛)2 + Θ0)
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1. Training of Boolean readout

1. Select mirror with bias to “not yet modified”
2. Flip mirror (1 → 0, 0 → 1)
3. Record output for 200 steps
4. Compare current with previous NMSE

• Error reduces efficiently
• Close to state of the art (remember: Boolean weights only)

Bueno, et al., under review Optica.
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No negative values (uni-polarity)

1. SLM: plane wave illumination

2. Polarization filtering: only constructive interaction
 Only positive addition possible

3. Diffractive coupling: only constructive interaction
 Only positive addition possible

4. Boolean readout weights: 0 / 1
 Only positive addition possible

+ No phase effects: stable

- Connection weights always positive!
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A way around unipolar weights

𝐼𝑖
𝑛+1 =

sin2(β|෍

𝑗=1

𝑁

κ𝑖,𝑗
𝐷𝑂𝐸 𝐸𝑗

𝑛|2 + 𝛾κ𝑖
𝑖𝑛𝑗
𝑢𝑛+1 + Θ0)

𝜣𝟎 is a Matrix:
• (1 − 𝜇) – Values: Θ0 = 42

• (𝜇) – Values: Θ0 = 109

Bueno, et al., Optica 5, 756 (2018).

• Problem with unipolarity: no negative ‘slopes’

• Solution: harvest periodic nonlinearity
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No negative weights

• Distribute operation points strongly aids performance

• Best points: close to 50/50 division Bueno, et al., under review Optica
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1. Training of Boolean readout

1. Clear orientation toward  “one-step leader”
2. Divergence largely close to local extrema

Bueno, et al., under review Optica
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2. Feedback of RNN output

• Prediction target: future state
 Output approximates future input

• Output feedback: self consistent, autonomous system
• Morphing into target system (Neuronal Network → Butterfly effect)
• Important: principle of motor control

Input
Reservoir 

(Complex network)

∑

Output

Image:
© http://testoil.com/did-you-know/the-butterfly-effect/
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2. Feedback of readout result

• RNN creates 
autonomous, 
nonlinear oscillator

• Period very close to 
target
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2. Feedback of RNN output

• Output reassemble MG attractor
• Readout weights fully passive
• Readout weights have no bandwidth limitation
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How do Neural Networks predict 
(chaos)
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What is chaos?
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Chaotic systems are sensitive 
to initial conditions: point in 
phase space not suffficient

This sensitivity creates
unpredictability: impossibility to 
determine future development for all 
times.

M. C. Mackey and L. Glass, Science 197, 287 (1977).

Mackey-Glass system
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Mackey-Glass attractor

Takens embedding theorem

reconstructed!original

reconstructed!

F. Takens, Detecting strange attractors in turbulence, Dynamical Systems and Turbulence, Lecture Notes in Mathematics, 1981.

State space chaotic systems

Temporal position of delay 
vectors:
• min |(𝐴𝐶(𝑥 𝑡 )|

or
• min(𝑀𝐼(𝑥 𝑡 , 𝑥 𝑡 − 𝑛 )
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Attractor reconstruction in rRNNs

Cross-correlation analysis
for Mackey-Glass for μ=1.3

Attractor reconstruction from
the rRNN

According to Cross-correlation analysis,
RNN does:

1. Takens-like embedding
2. Increases sampling
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Characterize nearest neighbors:
Random Projections theory

This proposition states that the distances
between two consecutive states of the

attractor are bound to the range

where are arbitrary constant values.

Example of a distribution of nearest
neighbor states in rRNN
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NN limits according to Random Projection:
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Limits of nearest neighbour-distances bind good prediction conditions

I. Sampling dense
but short-range

II. Sampling dense
and long range

III. Sampling not 
dense but long-
range
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NN limits according to Random Projection:

34
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New scheme: Taken RNN

35

Scheme of the TrRNN

Introduce first-in 
first-out memory 
specifically with 
depth of Taken 

embedding delay
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Operation at BAD parameters
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rRNN

TrRNN

Cross-correlation analysis
for Mackey-Glass for μ=0.2
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Applied to model for cardiac arrest
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Interspike intervals (ISI) of an
arrhythmic excitable system
comparable to a heart

Comparison between the
stabilized mean of the TrRNN and
the classical rRNN

Stabilization of the system 
based on our TrRNN

TrRNN

rRNN

The TrRNN requires 15 times less
nodes, simultaneously achieving

superior performance.

A. Garfinkel, M. L. Spano, W. L. Ditto, J. N. Weiss, Science 257, 1230 (1992). Marquez, et al., IEEE ICRC (2017).
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Organizing Committee:
• Dr. Daniel Brunner
• Prof. Herbert Jaeger
• Prof. Gordon Pipa
• Prof. Stuart Parkin

Topical Sessions:
• Cognitive neurosciences: how they may guide 

novel computing technologies

• Cognitive applications of current systems

• Theoretical concepts and mathematical 
foundations

• Towards neuronal hardware networks

• Novel substrates

International conference on:

Cognitive Computing: Merging Concepts and Hardware

http://www.cognitive-comp.org/

18th - 20th of December 2018

at Herrenhausen Castle, Hannover, Germany

• Kwabena Boahen
• Joanna J. Bryson
• Chris Eliasmith

• Edward A. Lee
• Demetri Psaltis
• Pieter Roelfsema

• Susan Stepney
• Ipke Wachsmuth
• David Wolpert
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Summary

• 2025 EO network nodes, much larger to be expected

• Learning / analog, passive readout fully implemented

• Stability (?), noise (?)

• Approaching understanding of prediction in ANN

http://neuroqnet.com/


