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1. Neuromorphic Engineering

a) Early Work

b) My Work

c) The Future…

2. Stochastic Electronics

a) Some interesting (I hope!) algorithms

3. Stochastic Computation

a) It’s old but it’s cool



• Neuromorphic Engineering is a little over 30 years old.

• It was conceived through a collaboration between Carver Mead - a leading researcher in VLSI, Max 

Delbruck - a Nobel prize winning biochemist, Richard Feynmann - a Nobel prize winning physicist, 

and John Hopfield - a leading researcher in computational intelligence.
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THE EARLY YEARS
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THE EARLY DAYS

And the basic premise...



Two goals of Neuromorphic Engineering:

• Science: Understand the computational properties of biological neural systems using models 

implemented in Integrated Circuits;

• Engineering: Exploit the known properties of biological systems to design and implement efficient 

devices for engineering applications.
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MOTIVATIONS



Moore's Law

• Every time you think it's going to end...
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MOTIVATIONS



What will fill the gap when Moore's Law eventually ends?

• Memristors?

• Spintronics?

• Quantum computing?

• Can we do something different with CMOS?

• Something else?
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MOTIVATIONS



Early Neuromorphic Engineering (c. 1990 - 2008):

• Sensors

― Vision - event-based retina

― Hearing - silicon cochlea

• Integrated Circuit Design - low-power/current-mode

• Neuron modelling in Silicon

• Address-Event Representation (AER)

• Spiking computation
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RESEARCH



Silicon Neurons
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RESEARCH



Silicon Retina/Event-based Cameras (https://www.youtube.com/watch?v=feBozLYZhB8)
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RESEARCH

https://www.youtube.com/watch?v=feBozLYZhB8


Silicon Cochlea
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RESEARCH



Commercial Products
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RESEARCH



More recently:

• Computational Algorithms

• Neuromorphic Processors

• Spiking Neural Networks (SNNs)

• Machine Learning/Artificial Intelligence
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My Early Work

• Silicon Cochlea

• Silicon Neurons
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Silicon Cochlea
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Silicon Cochlea

• 2D coupled oscillator model

• implemented in 0.5um and 1.2um technology (Am I giving away my age here...?)
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RESEARCH



Looks good but...

• highly unstable

• upwards of 30 parameters to tune!

• current-mode, subthreshold - very noisy and mismatch between sections of the cochlea made it very 

hard!
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• The Generalized Integrate and Fire Neuron (Mihalas and Niebur 2008) 



Silicon neurons posed similar problems with added problem...what were they good for...? Nice plots...!?
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RESEARCH

A side note on “circuits”:

• for me circuit is a word to describe connected components rather than a "rigid" unchangeable structure

• circuits in neuromorphics must be parametric or tunable or they cannot be used in computation

• trained neural networks are rigid and only useful to the things that they have been trained - they are set 

in stone. These are useful things but they probably have dead-ends - scaling issues, saturating 

performance and so on.  They probably aren’t the best models if we want to understand and build a 

brain!
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Problems:

• Really, really difficult to scale. And how do we deal with all the connections???

• Low-power circuits (particularly using transistors in the subthreshold region) are too noisy and have too 

much mismatch between elements (even on the same chip). These were issues that the "neuromorphic 

approach" was supposed to overcome.

• Digital is so cheap, reliable, and power consumption continues to improve...

• Asynchronous, often spike-based, computation is really difficult to interface with. In the end, despite 

fancy, neuromorphic circuits and systems, outputs are often "framed" and much of the temporal detail 

is lost.



Neuromorphic Engineering

22

RESEARCH

But still neuromorphic approaches are appealing:

• parallel computation is expensive in digital

• matrix multiplication is expensive in digital

• these things we need for truly intelligent computation

• and (if you'll indulge me a little bit here)...digital "machine learning" is not elegant. It is brute force and 

lacks the artistry of an analog solution.
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INSPIRATIONS

The work of Jonathan Tapson:

• autocorrelation properties of single neurons

• cross-correlation using noisy neurons

• Stochastic/Neural ADC
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INSPIRATIONS

That (rather long) time I fell off the Neuromorphic wagon:

• Industry collaboration

• Time-to-Digital Converters (up to 10GHz)

― Dynamic Element Matching

― Random Element Switching (like injecting quantization noise)

• Nauta-Amplifier

• Using a cochlea as a spectrum analyser to measure impledance of bi-lipid layers
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INSPIRATIONS AND EARLY WORK

Stochastic/Neural ADC

Note: In this case the neuron "fires" when 

the membrane potential falls below a 

particular threshold (rather than the usual 

above threshold firing) 

Four neurons with approximately 10 Hz 

spiking rate can sample a 2kHz waveform.  

Take that Nyquist!
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THE MANIFESTO
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THE MANIFESTO
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SOME COOL ALGORITHMS

Neuromorphic Competitive Control
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SOME COOL ALGORITHMS

Neuromorphic Competitive Control
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SOME COOL ALGORITHMS

Neuromorphic Competitive Control



Stochastic Electronics

31

SOME COOL ALGORITHMS

Unsupervised Learning with the Synaptic Kernel Adaptation Neuron (SKAN)
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SOME COOL ALGORITHMS

Unsupervised Learning with the Synaptic Kernel Adaptation Neuron (SKAN)
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SOME COOL ALGORITHMS

Unsupervised Learning with the Synaptic Kernel Adaptation Neuron (SKAN)
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SOME COOL ALGORITHMS

Unsupervised Learning with the Synaptic Kernel Adaptation Neuron (SKAN)
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THEMES

Stochastic Electronics principles:

• decoherence - we do not want neurons to synchronize – this is where the noise and mismatch helps!

• random spreading - neurons need to fire randomly and approximately cover the sample space

• Inhibition – turning off paths
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ORIGINS

The Work of Gaines in the 1960s

• Stochastic Computation was borne out of the need to do pattern recognition and parallel learning tasks 

(sound familiar???) back in the day when computers were enormous and took up entire rooms

• Fell out of favour due to the introduction of Integrated Circuits and particularly CMOS – binary had won 

the day!
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THE STOCHASTIC COMPUTING CONCEPT

• Numbers are interpreted as probabilities, they fall naturally into the interval [0,1].

• Numbers are represented by bit-streams (0,1,1,1,0,0,1,0,0,0,0,1,1,0,1,..) that can be processed by very 

simple digital circuits.

• E.g. 0.5 = 0,1,1,1,0,0,1,0  or 0,0,0,0,1,1,1,1 and so on (order does not matter).



Stochastic Computation

38

ELEMENTS OF STOCHASTIC COMPUTATION

• Randomizer and derandomizer
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ELEMENTS OF STOCHASTIC COMPUTATION

• Multiplication and Addition
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ELEMENTS OF STOCHASTIC COMPUTATION

• Multiplication in blue

― X = 0.5, Y = 0.75

― Z = 0.375

― With 32 bits = 12

• Addition in green

― X = 0.5, Y = 0.75

― Z = 0.5(0.5+0.75) = 0.625

― (note output is scaled by 0.5)

― With 32 bits = 20
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ELEMENTS OF STOCHASTIC COMPUTATION
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ELEMENTS OF STOCHASTIC COMPUTATION

• Save digital resources in hardware, where area is precious

• High-fault tolerance capability and high reliability

• Noise tolerant…in fact noise can be a benefit
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• Neuromorphic Engineering is at a cross-roads

• Hardware needs algorithms to be developed with the hardware in mind – regardless of whether it is 

CMOS or Spintronics or Memristors or…”the next thing”

• Stochastic Electronics algorithms are very efficient in area and power because they were developed 

with a hardware mindset

• Stochastic Computation is quite similar to Stochastic Electronics but goes into the digital domain – it 

can remove the multiplier problem but is capable of so much more!
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INSPIRATIONS

Time-to-Digital Converters (TDCs)



Stochastic Electronics

46

INSPIRATIONS

Nauta Amplifier
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INSPIRATIONS

Cochlea as a spectrum analyser



Extreme Learning Machines
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Trainable Analog Blocks
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Synaptic Kernel Inverse Method (SKIM)
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Synaptic Kernel Inverse Method (SKIM)
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