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1. Neuromorphic Engineering

a) Early Work

b) My Work

c) The Future...
2. Stochastic Electronics

a) Some interesting (I hope!) algorithms
3. Stochastic Computation

a) It’s old but it’s cool
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THE EARLY YEARS

» Neuromorphic Engineering is a little over 30 years old.

« It was conceived through a collaboration between Carver Mead - a leading researcher in VLSI, Max
Delbruck - a Nobel prize winning biochemist, Richard Feynmann - a Nobel prize winning physicist,
and John Hopfield - a leading researcher in computational intelligence.
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THE EARLY DAYS

And the basic premise...
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MOTIVATIONS

Two goals of Neuromorphic Engineering:

« Science: Understand the computational properties of biological neural systems using models
implemented in Integrated Circuits;

 Engineering: Exploit the known properties of biological systems to design and implement efficient
devices for engineering applications.
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Moore's Law
« Every time you think it's going to end...

Moore's Law — The number of transistors on integrated circuit chips (1971-2016) § ur World
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What will fill the gap when Moore's Law eventually ends?
 Memristors?

« Spintronics?

* Quantum computing?

« Can we do something different with CMOS?

* Something else?
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Early Neuromorphic Engineering (c. 1990 - 2008):
e Sensors
— Vision - event-based retina
— Hearing - silicon cochlea
* Integrated Circuit Design - low-power/current-mode
* Neuron modelling in Silicon
» Address-Event Representation (AER)
« Spiking computation
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Silicon Neurons

A silicon neuron
Misha Mahowald* & Rodney Douglasti

* Computation and hNawral Systems Labaoratary, Califarnia Institute of
Techrology, Pasadens, Calfomia 91125, USA

¥ MRC Anatamical Neuropharmacalogy Unit, University of Oxford,
Qafiora QX1 ITH, UK

By combining neurophysiological principles with silicon engineer-
ing, we have produced an analog integrated circuit with the func-
tional characteristics of real nerve cells. Beeanse the physics
underlving the conductivity of silicon devices and biological mem-
brames is similar, the *silicon nearon® is able to emulate efficiently
the jon currents thai cause nerve impulses and control the dynamics
of their discharge. It operates in real-time and consumes lirtle
power, and many ‘nesrons’ can be fabricaied on a single silicon
chip. The silicon meuron represents a step fowards constructing
artificial nervons systems that wse more realistic principles of
neural compuiation than do existing electronic neural neiworks.

The electrical properties of nerve cells enable brain circuits
to perform the prodigious feats of computation that make intelli-
gible the torrent of sensory information confronting us each
second. The electrical behaviour of each neuron is determined
by combinations of voltage-, ion- and neurotransmitter-sensitive
conductances, which control currents of various ions across the
membrane. These ion currents determine the voltage of the cell
membrane and hence the electrical properties of the nerve cell,
Here we use combinations of complementary metal-oxide-semi-
conductor (CMOS} circuits, fabricated in very-large-scale
integrated (VLSI) technelogy, to represent the different ion

1 o whom comesponriescn shou'd b acrinessed 8l Oclord. Abso sé e Deperdment of Prysoingy
Linweraiy of Cape Town, Sous Mncs 7535

MATURE - VOL 354 - 19/26 DECEMBER 1531

currents, Together they form the silicon analogue of a biological
neuren. This realistic *neuron’ is & considerable departure from
neural-net hardware'”, which implements muathematical or
engineering abstractions of neurons,

Neurons communicate with each other using nerve impulses,
which are self-regenerating spikes of the membrane voltage.
Dwuring a nerve impulse, sev different conductances are acti
vated in the membrane, which allow selecied ions to llow down
the voliage gradient hetween the membrane voltage and the
equilibrium potential of the ions concerned; the equilibrium
potential of each jon is determined by its relative concentration
on either side of the semipermeable cell membrane. Cur circuits
emulate jon currents in neurons of the negcortex”, which is the
principal region of high-level processing in the brain, The nerve
impulse itself is generated by a current carried by sodium ions
(1WA, see Fig. 1 legend For explanation of abhreviations) and
a current carried by potassium ions (1KD, delayed rectifier
current . The rate at which impulses are produced is controlled
by two further potassium currents with slower dynamics,
the so.called A-current (IKA) and the calcium-dependent
potassivm current (IAHP, after-hyperpelarizing current). The
activation and inactivation of the membrane conductances that
control these curremss are both time- and voltage-dependent
The voltage-dependent conductances of hiological membranes
in steady state have a sigmoidal conductance-voltage relation®
which is similar to the current-voltage relation gencrated by
CMOS transistors arranged to form a “differential pair'®. We
have exploited this analogy between silicon devices and biologi-
cal membranes.

In the circuits of the silicon peuron, the cell membrane is
represented by a iixed capacitor and variable leak conductance.
The conductances in the membrane and their control mechan-
isms are represented by individual circuits of the kind shown
in Fig. 1. The basic pnnciple of these circuits 1s thal the output
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Silicon Retina/Event-based Cameras (https://www.youtube.com/watch?v=feBozLYZhB8)
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Silicon Cochlea
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Commercial Products

) Audience —

Be Heard -
Be Understood
Be There :

Introducng the workds first
Smart Sound Processor
for mobdie devices.

Loam Mare shout e5515

V 1S4 0.0
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More recently:

Computational Algorithms
Neuromorphic Processors

Spiking Neural Networks (SNNs)
Machine Learning/Artificial Intelligence

1 M Neurons
256 M Synapses
Real time

73 mW

13
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My Early Work
e Silicon Cochlea
* Silicon Neurons

14
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Silicon Cochlea

Temporal Perilymph in scala vestibuli .
bone Vestibular
Vestibular Hair (receptor) Tectorial membrane
membrane cells of spiral membrane
organ of Corti
Pinna — Afferent fibers
of the cochlear .
nerve 3 =
Temporal \
bone 3

Concha Eardrum

Ear canal Round

; Cochlear T
window i i Fibers of
duct (contains  perjlymph in Basilar Supporting the cochlear
endolymph)  scaja tympani membrane  cells nerve

Outer ear Middle ear Inner ear
(a) (b)

2012 Pearson Education, Inc.



MACQUARIE
University

Neuromorphic Engineering
RESEARCH

Silicon Cochlea
« 2D coupled oscillator model
* implemented in 0.5um and 1.2um technology (Am | giving away my age here...?)
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Looks good but...
* highly unstable

« upwards of 30 parameters to tune!
« current-mode, subthreshold - very noisy and mismatch between sections of the cochlea made it very

hard!
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« The Generalized Integrate and Fire Neuron (Mihalas and Niebur 2008)

- |
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Silicon neurons posed similar problems with added problem...what were they good for...~

Nice plots...!?
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A side note on “circuits”:
» for me circuit is a word to describe connected components rather than a "rigid" unchangeable structure
« circuits in neuromorphics must be parametric or tunable or they cannot be used in computation

« trained neural networks are rigid and only useful to the things that they have been trained - they are set
in stone. These are useful things but they probably have dead-ends - scaling issues, saturating
performance and so on. They probably aren’t the best models if we want to understand and build a
brain!
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Problems:

Really, really difficult to scale. And how do we deal with all the connections???

Low-power circuits (particularly using transistors in the subthreshold region) are too noisy and have too
much mismatch between elements (even on the same chip). These were issues that the "neuromorphic

approach" was supposed to overcome.
Digital is so cheap, reliable, and power consumption continues to improve...

Asynchronous, often spike-based, computation is really difficult to interface with. In the end, despite
fancy, neuromorphic circuits and systems, outputs are often "framed" and much of the temporal detail

IS lost.
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But still neuromorphic approaches are appealing:
« parallel computation is expensive in digital
* matrix multiplication is expensive in digital

» these things we need for truly intelligent computation
« and (if you'll indulge me a little bit here)...digital "machine learning" is not elegant. It is brute force and
lacks the artistry of an analog solution.
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The work of Jonathan Tapson:

« autocorrelation properties of single neurons
» cross-correlation using noisy neurons

« Stochastic/Neural ADC



Stochastic Electronics " MACQUARIE
INSPIRATIONS

That (rather long) time | fell off the Neuromorphic wagon:
* Industry collaboration
« Time-to-Digital Converters (up to 10GHz)
— Dynamic Element Matching
— Random Element Switching (like injecting quantization noise)
« Nauta-Amplifier
» Using a cochlea as a spectrum analyser to measure impledance of bi-lipid layers
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Stochastic/Neural ADC

10 H single neuron n
8
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Four neurons with approximately 10 Hz

spiking rate can sample a 2kHz waveform.
Take that Nyquist!
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(a)
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SOME COOL ALGORITHMS

Neuromorphic Competitive Control
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Neuromorphic Competitive Control
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Neuromorphic Competitive Control
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SOME COOL ALGORITHMS

Unsupervised Learning with the Synaptic Kernel Adaptation Neuron (SKAN)

input  adaptable synapto-dendritic kernels soma output
g — - ey ——— ) r A ~ ——
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SOME COOL ALGORITHMS

Unsupervised Learning with the Synaptic Kernel Adaptation Neuron (SKAN)
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SOME COOL ALGORITHMS

Unsupervised Learning with the Synaptic Kernel Adaptation Neuron (SKAN)
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SOME COOL ALGORITHMS

Unsupervised Learning with the Synaptic Kernel Adaptation Neuron (SKAN)
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Stochastic Electronics principles:
« decoherence - we do not want neurons to synchronize — this is where the noise and mismatch helps!

« random spreading - neurons need to fire randomly and approximately cover the sample space
* Inhibition — turning off paths
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ORIGINS

The Work of Gaines in the 1960s

« Stochastic Computation was borne out of the need to do pattern recognition and parallel learning tasks
(sound familiar???) back in the day when computers were enormous and took up entire rooms

* Fell out of favour due to the introduction of Integrated Circuits and particularly CMOS — binary had won
the day!
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 Numbers are interpreted as probabilities, they fall naturally into the interval [0,1].

 Numbers are represented by bit-streams (0,1,1,1,0,0,1,0,0,0,0,1,1,0,1,..) that can be processed by very
simple digital circuits.

- E0.05=0,1,1,1,0,0,1,0 0or0,0,0,0,1,1,1,1 and so on (order does not matter).

37
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Randomizer and derandomizer

Comparator
Binary m
X
number
y<X
Random m
number y
generator
(a)
clk =—
Stochastic
—1en Counter
number
clk ——

Stochastic

(b)

number

Binary
number
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« Multiplication and Addition
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Stochastic Computation

ELEMENTS OF STOCHASTIC COMPUTATION
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« Save digital resources in hardware, where area is precious
 High-fault tolerance capability and high reliability
* Noise tolerant...in fact noise can be a benefit

Voltage
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« Neuromorphic Engineering is at a cross-roads

« Hardware needs algorithms to be developed with the hardware in mind — regardless of whether it is
CMOS or Spintronics or Memristors or..."the next thing”

» Stochastic Electronics algorithms are very efficient in area and power because they were developed
with a hardware mindset

« Stochastic Computation is quite similar to Stochastic Electronics but goes into the digital domain — it
can remove the multiplier problem but is capable of so much more!
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INSPIRATIONS

Time-to-Digital Converters (TDCs)
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Nauta Amplifier
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Cochlea as a spectrum analyser

Noise
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Synaptic Kernel Inverse Method (SKIM) B causre
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