

Manipulating Magnetic Skyrmions

Axel Hoffmann

Materials Science Division Argonne National Laboratory

Outline

Moving Skyrmions

Generating Skyrmions

Neuromorphic Ideas

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Journal of Applied Physics: Special Topic

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Recent Review: W. Jiang et al., Phys. Rep. 704, 1 (2017)

Axel Hoffmann, MSD, Argonne National Laboratory

Discovery of Magnetic Skyrmions

Charge Current Manipulation of Skyrmions

Emergent Magnetic Field

J. Zang et al., Phys. Rev. Lett. 107, 136804 (2011)

$$h_i = \frac{\hbar c}{2e} \delta_{iz} \mathbf{n} \cdot (\partial_x \mathbf{n} \times \partial_y \mathbf{n}) = \pm \frac{\hbar c}{2e}$$

$$h \approx \frac{\Phi_0}{\pi R^2} \approx \frac{\Phi_0}{\pi a^2} (\frac{D}{J})^2$$

Back-action moves skyrmion

 $h \sim 100 \mathrm{T}$

Ultralow threshold Current

 $j_c \approx 10^6 \,\mathrm{A \cdot cm^{-2}}$ Domain Wall

$$j_c \approx 0.2 \mathrm{A \cdot cm^{-2}}$$

Skyrmion

Skyrmions are Stabilized by Chiral Interactions

W. Jiang et al., Phys. Rep. 704, 1 (2017)

 $H = \sum_{\langle ij \rangle} -JS_i \cdot S_j + D_{ij} \cdot (S_i \times S_j) - \sum_i B \cdot S_i$ Ferromagnetic Helical Spiral Skyrmion Dzyaloshinskii-Moriya Interaction (DMI) requires Inversion Symmetry Breaking

Bulk

Multilayers

e.g., B20 compounds (MnSi, etc.)

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

e.g., Co/Pt, Ni₈₀Fe₂₀/Ta, etc.

Stabilizing Skyrmions

Broken inversion symmetry leads to Dzyaloshinskii-Moriya Interaction (DMI) $H_{dmi} = -D_{ij} \cdot (S_i \times S_j)$

Bulk DMI

B20 compound MnSi, FeGe, FeCoSi

Interfacial DMI

Hedgehog (Néel)

Ta/CoFeB/MgO, Pt/Co/MgO, Ir/Fe/Pd

A. Fert *et al.*, Nature Nano. 8, 152 (2013) ivision. Argonne National Laboratory hoffmann@anl.gov

Topological Nature of Skyrmions

Courtesy of Jiadong Zang

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Skyrmions at Room Temperature

"Single" Layer

 $TaO_x/CoFeB/Ta: \approx 1 \ \mu m$

W. Jiang et al., Science 349, 283 (2015)

Multilayer

(Ir/Co/Pt)₁₀: ≈ 30–90 nm

C. Moreau-Luchaire *et al.,* Nature Nanotechn. **11**, 444 (2016)

Bulk

Co₈Zn₉Mn₃: ≈ 115–180 nm

Pt/Co/MgO: ≈ 130 nm

O. Boulle *et al.,* Nature Nanotechn. **11**, 449 (2016)

$(Pt/Co/Ta)_{15}$ and $(Pt/CoFeB/MgO)_{15}$: $\approx 100 \text{ nm}$

S. Woo *et al.,* Nature Mater. **15**, 501 (2016)

Y. Tokunaga *et al.,* Nature Comm. **6**, 7638 (2015)

Size Dependence on Number of Multilayers

Sample: Ta 2.0nm/ (Pt 1.5 nm/Co 1.0 nm/Ir 1.0 nm)n/ Pt 2.0 nm

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Axel Hoffmann, MSD, Argonne National Laboratory

Weak Pinning of Skyrmion Motion

Skyrmions can move around defects

A. Rosch, Nature Nano. 8, 160 (2013)

Skyrmion moving around obstacle

Micromagnetic Simulations

A. Fert *et al.,* Nature Nano. 8, 152 (2013)

Encoding Information in Spin Textures

W. Jiang et al., Phys. Rep. 704, 1 (2017)

Racetrack Memory

Skyrmions

S. S. P. Parkin, M. Hayashi, and L. Thomas, Science **320**, 190 (2008)

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

T = 0 ns T = 0 ns $\frac{20 \text{ nm}}{57 \text{ nm}}$ $\frac{57 \text{ nm}}{57 \text{ nm}}$ $\frac{20 \text{ nm}}{57 \text{ nm}}$ $\frac{20 \text{ nm}}{57 \text{ nm}}$ $\frac{100 \text{ nm}}{57 \text{ nm}}$

A. Fert et al., Nature Nano. 8, 152 (2013)

Magnetization Dynamics with Spin-(Orbit) Torques

Landau-Lifshitz-Gilbert equation:

$$\frac{d\vec{M}}{dt} = -\gamma \vec{M} \times \vec{H}_{eff} + \frac{\alpha}{M_s} \left(\vec{M} \times \frac{d\vec{M}}{dt} \right) + \frac{\gamma \hbar \vec{J}_s}{2eM_s d_F}$$
$$\vec{J}_s = \frac{\text{Re}(G_{mix})}{e} \vec{M} \times (\vec{M} \times \vec{\mu}_s) + \frac{\text{Im}(G_{mix})}{e} \vec{M} \times \vec{\mu}_s$$
$$\text{damping-like} \qquad \text{field-like}$$

Axel Hoffmann, MSD, Argonne National Laboratory

Thiele Equation

A. A. Thiele, Phys. Rev. Lett. 30, 230 (1972)

Landau-Lifshitz-Gilbert equation

Rigid Skyrmion Texture

.......

$$G \times v - \alpha D \cdot v + 4\pi B J_c = 0$$

$$G = (0, 0, -4\pi Q) \qquad Q = \frac{1}{4\pi} \int \mathbf{m} \cdot (\partial_x \mathbf{m} \times \partial_y \mathbf{m}) dx dy$$

R. Tomasello et al., Sci. Rep. 4, 6784 (2014)

Net Force Depends on Skyrmion Structure and Spin Torque Mechanism

R. Tomasello *et al.*, Sci. Rep. **4**, 6784 (2014)

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Skyrmion Hall Effect

Classic Hall effect *Electric charge* q_e *Lorentz force* $q_e(v \times B)$

Skyrmion Hall effect *Topological charge* q_t Magnus force $4\pi q_t (v \times e_z)$

K. Everschor-Sitte and M. Sitte, J. Appl. Phys. 115, 172602 (2014)

Motion of Rotating Objects Famous Brazilian Expert: Roberto Carlos

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Skyrmion in Motion

- Different rotation sense on both sides
- Looks like "opposite fields" => magnetic field gradient
- Results in transverse motion

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Micromagnetic Simulation

W. Jiang *et al.,* Nature Phys. **13**, 162 (2017)

Thiele Equation:
$$G \times v - \alpha D \cdot v + 4\pi \vec{B}J_c = 0$$

$$G = (0, 0, -4\pi Q) \qquad Q = \frac{1}{4\pi} \int \mathbf{m} \cdot \left(\partial_x \mathbf{m} \times \partial_y \mathbf{m}\right) dx dy$$

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Skyrmion Motion with Homogeneous Current $j_e = +2.8 \times 10^6 \text{ A/cm}^2$ W. Jiang *et al.* Nature Phys.

W. Jiang *et al.*, Nature Phys. **13**, 162 (2017)

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Current Dependence of Motion

W. Jiang *et al.,* Nature Phys. **13**, 162 (2017)

Drive dependent Skyrmion Hall angle

Axel Hoffmann, MSD, Argonne National Laboratory

hoffmann@anl.gov

Nature Phys. **13**, 162 (2017)

Numerical Simulations

Noise fluctuations and drive dependence of the skyrmion Hall effect in disordered systems

C Reichhardt and C J Olson Reichhardt

Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

New J. Phys. 18, 095005 (2016)

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Antiferromagnetic Skyrmions

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Axel Hoffmann, MSD, Argonne National Laboratory

Generating Individual Skyrmions

Using spin-polarized scanning tunneling microscope

N. Romming, et al., Science 341, 636 (2013)

Spin-transfer torque switches skyrmion core reversibly

Generating Individual Skyrmions

Using spin-polarized scanning tunneling microscope

Applied Goal:

Use Topological Charge instead of Electronic Charge in Information Technologies

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Inhomogeneities may Nucleate Skyrmions

Without DMI: Nucleation of skyrmion/anti-skyrmion pair

K. Everschor-Sitte, et al., New J. Phys. 19, 092001 (2017)

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Inhomogeneities may Nucleate Skyrmions

With DMI or anti-DMI: Stabilize only one of the two pair-partners

K. Everschor-Sitte, et al., New J. Phys. **19**, 092001 (2017)

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Skyrmion Generation from Inhomogeneous Current

 B_{\perp} = +0.46 mT, *DC current* J_{e} = + 6.8 × 10⁴ A/cm² TaO_x/CoFeB/Ta

W. Jiang et al., Science **349**, 283 (2015)

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Inhomogeneous Chiral Spin Orbit Torques

Stripe Domain with Homogeneous Current

Stripe Domain with Inhomogeneous Current

W. Jiang et al., Science **349**, 283 (2015)

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Skyrmion Generation Phase Diagram

 $-J_{\rm c}$

 $H_{\perp} = +0.5 \text{ mT}$

 $+J_{c} \longrightarrow$

W. Jiang et al., Science 349, 283 (2015)

 $H_{\perp} = -0.5 \text{ mT} + J_{c} \longrightarrow$

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Different Geometries

Skyrmion generation is robust Spatially divergent currents are the key

W. Jiang et al., Science 349, 283 (2015)

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Micromagnetic Simulation of Transformation


```
H = 5 Oe

M_s = 650 \text{ emu/cm}^3

H_a = 8868 \text{ Oe}

A = 3 µerg/cm

DMI = 0.5 erg/cm<sup>2</sup>

\alpha = 0.02

\sigma_{Ta} = 0.83 \text{ MS}

\theta_{sh} = 10\%
```

O. Heinonen *et al.,* Phys. Rev. B **93**, 094407 (2016)

```
Axel Hoffmann, Materials Science Division, Argonne National Laboratory
```

Micromagnetic Simulation of Transformation

H = 5 Oe $M_s = 650 \text{ emu/cm}^3$ $H_a = 8868 \text{ Oe}$ A = 3 µerg/cm DMI = 0.5 erg/cm² $\alpha = 0.02$ $\sigma_{Ta} = 0.83 \text{ MS}$ $\theta_{sh} = 10\%$

Two distinct mechanisms for skyrmion generation!

O. Heinonen *et al.,* Phys. Rev. B **93**, 094407 (2016)

Creation of Skyrmions via Nonmagnetic Contacts

No stripe domains through No heat involved Only divergence of current **Requires Larger Currents**

Pulse current: 15 V of duration 1 ms at 1 Hz

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Axel Hoffmann, MSD, Argonne National Laboratory

Basic Neuromorphic Concept

Possible Transfer Functions

https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons

Neural network algorithms adjust weights of synapses AND transfer function during training!

What nonlinear behavior can be used with skyrmions?

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Nonlinear Phenomena

Transverse Motion

Generation and Depinning

Depinning due to skyrmion accumulation

Tunable Transfer Function!

Z. He, S.Angizi , and D.Fan IEEE Magn. Lett. **8**, 4305705 (2017)

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

More complex ideas along these lines

Modulating DMI or anisotropy locally

Y.Huang, et al., Nanotechn. 28, 08LT02 (2017)

S. Li, et al., Nanotechn. 28, 31LT01 (2017)

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Reservoir Computing

G.Bourianoff et al., AIP Adv. 8, 055602 (2018)

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Complex Spin Textures

D.Prychynenko *et al.,* Phys Rev. Appl. **9**, 014034 (2018)

45

(nm)

300

400

500

200

100

50

Stochastic Behavior

 $H_{\perp} = -0.5 \text{ mT}$ + $J_{c} \longrightarrow$

W. Jiang et al., Science 349, 283 (2015)

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Skyrmion Reshuffler

Theoretical Concept

Experimental Demonstration

J.Zázvorka *et al.,* arXiv: 1805.05924

D. Pinna et al., Phys. Rev. Appl. 9, 064018 (2018)

Just the Beginning of the Fun!

Axel Hoffmann, MSD, Argonne National Laboratory

Just the Beginning of the Fun!

Axel Hoffmann, MSD, Argonne National Laboratory

Magnetic Films Group at Argonne

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

Thanks to

Wanjun Jiang, Wei Zhang, M. Benjamin Jungfleisch, Hamoud Somaily, John E. Pearson, Frank. Y. Fradin, Olle Heinonen, Suzanne G. E. te Velthuis Argonne National Laboratory

Pramey Upadhyaya, Guoqiang Yu, Yaroslav Tserkovnyak, and Kang L. Wang University of California Los Angeles

Xichao Zhang and Yan Zhou

The University of Hong Kong

Xiao Wang and Xuemei Cheng

Bryn Mawr College

Financial Support

DOE-BES Materials Science and Engineering Division

Conclusions

- Magnetic Skyrmions
 - Use interfacial interactions to stabilize them at room-temperature
- Motion of Skyrmions
 - Spin-orbit torques provide very efficient driving force
 - Topological charge gives rise to strong gyroscopic forces: skyrmion Hall effect

Generating Skyrmions

- Inhomogeneities in spin textures or driving force can nucleate new skyrmions
- Skyrmions for Neuromorphic Computing
 - Can exhibit threshold and non-linear behavior
 - Stochastic motion

Axel Hoffmann, Materials Science Division, Argonne National Laboratory

