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Lowering the energy consumption reduces the stability
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Different energy barriers for different 
applications
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A stochastic oscillator powered by thermal noise
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“1”

“0”

No external energy source

Two-state signal easy to convert to digital signal

Stochasticity well understood and controlled



5

Spin torque controls the stochasticity

Stochastic analog to digital conversion
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1. Population coding with 
stochastic spiking neurons

2. Noise-induced 
synchronization of a 
stochastic oscillator



Encoding information in the spike rate of a 
stochastic neuron
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Rate coding
✓ Robust to errors
✓ Fast approximate results Rate varies with value of stimulus

Kumano et al., J. Neurophysiology 2010
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The stochastic magnetic tunnel junction emulates 
a stochastic spiking neuron

Switches ↔ spikes
Stimulus = current
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rates 𝑟𝑖
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Each neuron processes a range of 
inputs (directions)

The direction can be inferred from the 
rates of the neurons

Robust coding of information by a 
population of neurons
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𝐻 𝐼 =෍

𝑖=1

9

𝑤𝑖𝑟𝑖(𝐼eff
𝑖)

𝐼eff
𝑖 = 𝐼 − 𝐼bias

𝑖Shift the tuning curves
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Mizrahi et al., Nature 
Communications, 2018

Constructing non-linear transformation with a 
population of artificial neurons



11

𝑟𝑗
OUT =෍

𝑖=1

𝑁

𝑤𝑖𝑗𝑟𝑖
IN

Weights

Input

Output

𝑟1
IN 𝑟𝑁IN

INInput rates

𝑟1
OUT 𝑟𝑁OUT

OUTOutput rates

Input value I

Transformation F

Output value 
O = F(I)

Stochastic junctions 
as neurons (NIN)

Stochastic junctions 
as neurons (NOUT)

Stable junctions 
as binary encoded 
synaptic weights

(NIN x NOUT)

“Transfer of coded information from 
sensory to motor networks”

Salinas et Abbott, J. Neuroscience, 1995

An artificial neural net with magnetic tunnel junctions 
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Learning rule:
Catch → do nothing

Miss → modify the weights

Simulations with experimentally verified model
ΔEneuron = 6 kBT

The system is capable of learning a transformation

𝑟1
IN 𝑟𝑁IN

INInput rates

𝑟1
OUT 𝑟𝑁OUT

OUTOutput rates

Direction ϴ
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CMOS overhead: 
• Switch detection & count
• Calculation (rate and weights)
• Learning rule

Neurons

Synaptic Weights

Area and energy consumption of our system 
(Work of T. Hirtzlin at C2N)

Operation
7.8 nJ

12,000 
μm2

CMOS-only neurons:
Area > 20,000 μm2

Energy of operation > 20 nJ

Key asset = stochastic analog to 
digital conversion

The system consumes less energy and area than 
CMOS-only implementations
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Using unreliable synapses lowers the 
power consumption

𝐼 ∝ ∆𝐸𝑤

𝑃𝑜𝑤𝑒𝑟 ∝ ∆𝐸𝑤
2

Write power

Write current

(Sato et al., APL 2014)
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Using unreliable synapses lowers the 
power consumption

𝐼 ∝ ∆𝐸𝑤

𝑃𝑜𝑤𝑒𝑟 ∝ ∆𝐸𝑤
2

Write power

Write current

(Sato et al., APL 2014)
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Using unreliable synapses lowers the 
power consumption

𝐼 ∝ ∆𝐸𝑤

𝑃𝑜𝑤𝑒𝑟 ∝ ∆𝐸𝑤
2

Write power

Write current

(Sato et al., APL 2014)
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Using unreliable synapses lowers the 
power consumption

Example:
For 3% precision
→ 54 neurons in each 
population (2916 weights)
→ ΔEw = 12 kBT

𝐼 ∝ ∆𝐸𝑤

𝑃𝑜𝑤𝑒𝑟 ∝ ∆𝐸𝑤
2

Write power

Write current

(Sato et al., APL 2014)



A low energy continuously learning neural net 
with magnetic tunnel junctions
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Mizrahi et al., Nature Communications, 2018 Mizrahi et al., J. Applied Physics, 2018

Fully stochastic magnetic 
tunnel junction as neuron

Slightly stochastic magnetic 
tunnel junction as synapse

Continuous 
learning

+ +

Artificial neural network
Low energy

Capable of learning
Resilient to variability & unreliability

Adaptable to changes 
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Key application: smart sensors
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1. Population coding with 
stochastic spiking neurons

2. Noise-induced 
synchronization of a 
stochastic oscillator



Noise can induce low-power synchronization
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Noise controls frequency and phase locking 
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Vac = 63 mV while 
Vc = 235 mV @0K

ΔE = 22.5 kBT
Natural frequency ≈ 0.1 Hz

Thermal noise (room 
temperature)

+
Electrical noise (white 

Gaussian)

Mizrahi et al., Scientific Reports, 2016

Sync
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Fac = 50 Hz Vac = 82 mV

Natural frequency ≈ 0.1Hz
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Model Experiments

Sync
Sync

Boundaries of synchronization

Synchronization is possible at broad ranges of 
amplitudes and frequencies



Low-energy synchronization for computing
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Need to reinvent computing schemes for 
several coupled stochastic oscillators!

Mizrahi et al., Scientific Reports, 2016 ; Mizrahi et al., IEEE Transactions on Magnetism, 2015

How to use it for 
associative memory, 

pattern classification etc.?



The stochastic magnetic tunnel 
junction is a promising building block 

for low-power computing
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Powered by thermal noise
Driven by small signals
Analog to digital conversion
Stochasticity understood and controlled

Endurance
Reliability
CMOS compatibility
New handles (spin-orbit etc.)

Stochastic spiking 
neuron

Stochastic 
oscillator for 

synchronization


