

Spin Wave Logic: from Boolean to Neuromorphic Computing

DFG

Philipp Pirro

Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Germany

European Research Council Established by the European Commission

European Commission

www.physik.uni-kl.de/hillebrands

TE CHNISCHE UNIVERSITÄT KAISERSLAUTERN

Preface

Up to now with spin waves:

- No feedback loops, no large neuronal networks
- Only first concepts for learning / how to change the w_i's

- Wave-based logic and particular advantages of spin waves
- Prototype of linear spin-wave logic element: Majority Gate
- Frequency multiplexer and spectrum analyzer based on caustic beams
- Towards integrated magnonic circuits:
 - Magnonic Half adder (quasi binary)
 - Analog magnon adder

Wave-based computing

Spin waves and magnons

MAGNON quasi-particle :

Spintronics meets Neuromorphics

Effective field $B_{eff} = \mu_0 H_{eff}$

uispersioni (ferromagnetic ground state):

complex contribution

Philipp Pirro

Magnon- and photon dispersion relations

Magnons: about 10³-10⁵ higher wavenumbers for the same frequency range:

- Miniaturization is facilitated
- Magnons travel much slower than photons: direct time resolved investigation possible

Philipp Pirro

Spintronics meets Neuromorphics

TE TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Why SPIN waves?

- Scaling: frequency up to several THz, wavelength down to nanometers
- Efficient nonlinear effects
- Non-reciprocal effects (DMI, dipole-dipole interaction)
- Design of bandstructure, reconfigurable propagation
- Room temperature
- CMOS compatibility (frequency, converters, nano-technology)

Magnon Spintronics, Nature Phys. 11, 453 (2015)

Philipp Pirro

Spintronics meets Neuromorphics

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Examples of spin-wave logic

Non exhaustive list, many more approaches

Focusing on spin-wave physics

Majority Gate

Fischer et al., APL **110**, 152401 (2017)

Holographic Memory

F. Gertz et a., IEEE Magn. Lett. **7**, 3200204 (2016)

Magnon Transistor

Chumak et al., Nat. Commun. **5**, 4700 (2014)

Factorization Problem

Y. Khivintsev et a., JAP 120, 123901 (2016)

Focusing on technology

SCIENTIFIC REPORTS

OPEN Non-volatile Clocked Spin Wave Interconnect for Beyond-CMOS Nanomagnet Pipelines

Received: 06 November 2014 Accepted: 13 March 2015 Published: 08 May 2015

Sourav Dutta', Sou-Chi Chang', Nickvash Kani', Dmitri E. Nikonov², Sasikanth Manipatruni², Ian A. Young² & Azad Naeemi¹

Broadband on-chip detection

E. Egel, G. Csaba, et al , AIP Advances 8, 056001 (2018).

Benchmarks: Spin wave circuits interesting for low power applications (mobile devices, IOT..)

Philipp Pirro

Spintronics meets Neuromorphics

- Wave-based logic and particular advantages of spin waves
- Prototype of linear spin-wave logic element: Majority Gate
- Frequency multiplexer and spectrum analyzer based on caustic beams
- Towards integrated magnonic circuits:
 - Magnonic Half adder (quasi binary)
 - Analog magnon adder

Input A	Input B	Input C	Output	
0	0	0	0	
1	0	0	0	
0	1	0	0	
1	1	0	1	
0	0	1	0	
1	0	1	1	
0	1	1	1	
1	1	1	1	

0: φ=0 1: φ=π A. Khitun, et al., J. Phys. D. **43**, 264005 (2010)

- Simple realization (spin-wave combiner), all magnon, trivial inverter
- Majority gate + inverter are building blocks for full logic functionality: access to AND, OR, NAND, NOR and Full Adder gates with reduced complexity

Klingler, et al. APL 105, 152410 (2014) Klingler, et al. APL 106, 212406 (2015)

		-
Phil	inn	Dirro
	ημη	

TECHNISCHE UNIVERSITÄT

Spintronics meets Neuromorphics

Experimental realization

Macroscopic majority gate

Experimental setup

YIG sample:

- thickness 5.4 μm
- waveguide width 1.5 mm

Produced by Carat, Lviv, Ukraine

BVMSW 6.035 GHz 142.9 mT

T. Fischer et al., APL 110, 152401 (2017)

Philipp Pirro

Spintronics meets Neuromorphics

Superposition of all channels

Real time observation of the resulting spin-wave interference via fast oscilloscope:

- Wave-based logic and particular advantages of spin waves
- Prototype of linear spin-wave logic element: Majority Gate
- Frequency multiplexer and spectrum analyzer based on caustic beams
- Towards integrated magnonic circuits:
 - Magnonic Half adder (quasi binary)
 - Analog magnon adder

Frequency-division multiplexing (FDM)

Concept

Spin-wave realisation

- Signals are separated by frequency
- Simultaneous transport of data through one transmission line

Multiplexing

Multi-frequency magnonic logic circuits

Multiplexing

Multi-frequency magnonic logic circuits

- Simultaneous logic operations in a single device
 - \rightarrow Multiplication of the processing rate
- Efficient signal transport

Requirements:

Frequency-division multiplexer for magnonic networks: Combining and separating multi-frequency spin-wave signals

Caustic-like spin-wave beams

Microfocused Brillouin Light Scattering measurement

- Low-diffractive spin-wave beams in 2D magnetic films (in-plane magnetized)
- Formation due to the anisotropy of the spin-wave dispersion (dipole-dipole)

Anisotropic spin-wave dispersion

Material parameters of the Heusler compound Co₂Mn_{0.6}Fe_{0.4}Si (CMFS)

T. Sebastian et al., PRL 110, 067201 (2013)

Anisotropic spin-wave dispersion

Material parameters of the Heusler compound Co₂Mn_{0.6}Fe_{0.4}Si (CMFS)

T. Sebastian et al., PRL 110, 067201 (2013)

Excitation scheme of spin-wave caustics

Excitation scheme of spin-wave caustics

Excitation scheme of spin-wave caustics

Concentration of the spin-wave amplitude at angle $\theta_{\rm B} \rightarrow$ **Beam formation**

Philipp Pirro

Frequency dependency of propagation direction

SW caustic direction is tunable by frequency

Frequency Demultiplexer (FDM-DEMUX)

- Frequency dependent channeling of caustic beams into output waveguides
- Passive element, only proper structuring necessary
- Very compact device

Separation of SW signals of different frequencies

Heusner et al., Phys. Status Solidi RRL 2018, 1800409, (in print)

Spintronics meets Neuromorphics

Experimental realization

Measurement technique:

Brillouin light scattering (BLS) process

= inelastic scattering of photons from spin waves

$$f_{\text{scattered L}} = f_{\text{L}} \pm f$$
$$\vec{q}_{\text{scattered L}} = \vec{q}_{\text{L}} \pm \vec{q}$$

Philipp Pirro

Microfocused BLS microscopy

Features:

Spectral resolution:

 $\Delta f \approx 100 \text{ MHz}$

Spatial resolution:

≈ 300 nm

- Wave vector range: $q \in [0;17] \text{ rad/}\mu\text{m}$
- Loss of wave vector selectivity

→ Study of *microstructured* spin-wave samples

Review: T. Sebastian *et al.*, "*Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale*" Front. Phys. 3:35 (2015)

Philipp Pirro

Spintronics meets Neuromorphics

Microstructured sample

- Made of CoFeB: <u>M_S = 1550 kA/m</u>, A_{ex} = 17.6 pJ/m, α = 0.0043, t = 30 nm
- Microstrip antenna (Au): spin-wave excitation by microwave magnetic field

Demultiplexer: experimental results

Frequency dependence of output signals:

• Efficient caustic creation and channeling into output waveguides

Demultiplexer: experimental results

Frequency dependence of output signals:

- Efficient caustic creation and channeling into output waveguides
- Signals in different outputs are clearly separated in frequency

Philipp Pirro

TECHNISCHE UNIVERSITÄT

Spintronics meets Neuromorphics

Demultiplexer: experimental results

Frequency dependence of output signals:

- Efficient caustic creation and channeling into output waveguides
- Signals in different outputs are clearly separated in frequency

Philipp Pirro

Two-dimensional spin-wave intensity maps:

Input signals of different frequencies channeled into different outputs

 \rightarrow Experimental realization of the spin-wave frequency demultiplexer

Philipp Pirro

Caustics for KAISERSLAUTERN microscaled GHz spectrum analyzer

Frequency dependence of output signals:

 Strong frequency dependence of the channeling direction can be used to determine the frequency based on a intensity measurement

Philipp Pirro

- Wave-based logic and particular advantages of spin waves
- Prototype of linear spin-wave logic element: Majority Gate
- Frequency multiplexer and spectrum analyzer based on caustic beams
- Towards integrated magnonic circuits:
 - Magnonic Half adder (quasi binary)
 - Analog magnon adder

Why integrated magnon circuits ?

Energy consumption in a prototype magnonic device:

Energy/Power

- Most energy is consumed for moving the signal between the electrical and the spin-wave domain
- \rightarrow "All-magnonic logic" reduces conversion losses and gives access to low power computation
- Improve conversion efficiency in nanostructures (Spin-orbit torques, Voltage controlled anisotropy, magneto-electric and –acoustic coupling...)

Acknowledgements: IMEC team, Leuven and G. Csaba, Budapest

Integrated circuit: Half adder

Standard element of binary data processing

Truth table of Half adder

Input A	Input B	"S"	"C"	
0	0	0	0	
U	0	0	U	
0	1	1	0	
1	0	1	0	
1	1	0	1	
		<i>//</i>		

"Sum" "Carry"

Realization:

Integrated circuits require crossed interconnects

Crossed interconnects

Copper interconnects for semiconductor circuits (Intel)

Complex and expensive 3D interconnects

Waveguide coupling

A.V. Sadovnikov et al., Appl. Phys. Lett. 107, 202405 (2015) and Appl. Phys. Lett. 109, 042407 (2016)

2D interconnects made of single material with one lithography step

Philipp Pirro

Spintronics meets Neuromorphics

Dipolar coupled waveguides

Micromagnetic simulation:

Philipp Pirro

Spintronics meets Neuromorphics

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Spin-wave dispersions

Philipp Pirro

Spintronics meets Neuromorphics

Directional coupler design

Functionalities of a directional coupler

Wang, et al. Science Advances 4, e1701517 (2018).

Philipp Pirro

Spintronics meets Neuromorphics

Reconfiguring the directional coupler

Simple waveguide

 $f_{3} = 3.2 \text{ GHz}$

Parallel

Without magnetic bias field: parallel and antiparallel magnetization configurations are stable

TECHNISCHE UNIVERSITÄT

Antiparallel state has stronger coupling / lower coupling length If the domain wall is present in only one waveguide, the transmission *T* could be continuously tuned by the DW positon.

99.3%

0.7%

"Reconfigurable magnonic synapse"

Waveguide crossing

1.5%

98.5%

10.1%

89.9%

 $f_1 = 3.2 \text{ GHz}$

Anti-parallel

= 3.2 GHz

Anti-parallel

with domain wall

Wang, et al. Science Advances **4**, e1701517 (2018).

Philipp Pirro

Spintronics meets Neuromorphics

Magnonic AND-gate

Encoding in amplitude:		Linear superposition:		Truth table of AND gate:					
Input 1	Input 2	Output					Input 1	Input 2	Output
0 0 1 1	0 1 0 1	0 1 1 1				000	0 0 1 1	0 1 0 1	0 0 0 1
Encoding in phase:			Nonlinear signal transfor by nonlinear transmission		mation Cavities to enhance nonlinear effects				
0 0 π π	0 π 0 π	0 - - π	$\overset{\sim}{\overset{\sim}{\overset{\sim}{\overset{\sim}{\overset{\sim}{\overset{\sim}{\overset{\sim}{\overset{\sim}$			No simple linear realization of wave-based AND gate which can be easily implemented in a magnonic network			

Spintronics meets Neuromorphics

Magnonic nano-cavity: analytics

Distance (µm) Describe coupled system (waveguide-ring) using 1.0 1.5 2.0 2.5 3.0 0.5(nm⁻¹ matrix approach from optics: GHz GHz Coupling coefficient Ω (r 0.2 0 0 0 Transmission parameter out a D_2

Coupling parameter

 $\left|\kappa\right|^{2}+\left|t\right|^{2}=1$

Damping coefficient for one round trip: $\beta = \exp(-C / L_d)$

K

Transmitted power at resonance :

Resonance condition:
$$P_{out} = (\beta - |t|)^2 / (1 - \beta |t|)^2$$
$$2\pi R k_{SW} = 2\pi n \qquad P_{out} = 0 \text{ if } \beta = |t| = \sqrt{1 - |\kappa|^2}$$

"Critical coupling condition": complete destructive interference Round-trip phase $\cos(\theta)$ 100 Transmission P_{out}/P_{in} (%) 80 60 40 20 0 2.60 2.65 2.70 2.75 Frequency f (GHz)

Philipp Pirro

Spintronics meets Neuromorphics

 $|a_1t| = |a_2\kappa|$

Nonlinear magnonic nano-cavity

Nonlinear shift of dispersion relation:

Nonlinear shift of dispersion relation changes resonance frequency of nano-cavity → Nonlinear signal transformation: Increase of transmission for fixed frequency

Excitation field h_0 (mT) \propto input SW amplitude

Micromagnetic simulation: mumax3

Philipp Pirro

Spintronics meets Neuromorphics

"CMOS inspired" design of magnonic half adder

Choice of length d_1, d_2, d_3 allows to match phases

destructive interference for XOR

constructive interference for AND

Using Mumax3: A. Vansteenkiste, et al., AIP Advance 4, 107113 (2014)

Philipp Pirro

Spintronics meets Neuromorphics

Mainz, 10.10.2018

inspired by integrated optics

Half adder: simulation

CMOS inspired Half adder: simulation

Philipp Pirro

Spintronics meets Neuromorphics

New design: Half-adder 2.0

- No ring cavity anymore, only **two directional couplers ('DC's)** with different coupling strength
- Device design allows to build an **extended network**: amplitudes AND phases are matched

Nonlinear directional coupler

Philipp Pirro

Spintronics meets Neuromorphics

Nonlinear shift in directional couplers

Nonlinear dispersion curves in coupled waveguides:

$$\omega_{s,as_nonliner}\left(k_{x}\right) = \omega_{s,as}\left(k_{x}\right) + \left|T_{k_{x}}\left|a_{k_{x}}\right|^{2}\right)$$

Nonlinear shift coefficient:

Roman Verba, Kiew

where:

$$A_{k_{x}} = \gamma B_{ext} + \frac{\omega_{M}}{2} \left(2\lambda^{2} k_{x}^{2} + F_{k_{x}}^{yy}(0) + F_{k_{x}}^{zz}(0) \right) \qquad B_{k_{x}} = \frac{\omega_{M}}{2} \left(F_{k_{x}}^{yy}(0) - F_{k_{x}}^{zz}(0) \right)$$

Canonical variable a_{k} .

 $m_{z} = M_{s} a_{k_{x}} \sqrt{2 - \left|a_{k_{x}}\right|^{2}} \left(u_{k_{x}} - v_{k_{x}}\right)$

$$u_{k_x} = \sqrt{\frac{A_{k_x} + \omega_0}{2\omega_0}} \qquad \qquad v_{k_x} = -\operatorname{sign}\left[B_{k_x}\right]\sqrt{\frac{A_{k_x} - \omega_0}{2\omega_0}}$$

P. Krivosik and C. E. Patton, Phys. Rev. B 82, 184428 (2010) R. Verba, *et al*, Sci. Rep. 6, 25018 (2016)

Spintronics meets Neuromorphics

Nonlinear directional coupler

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Working principle

- Wave-based logic and particular advantages of spin waves
- Prototype of linear spin-wave logic element: Majority Gate
- Frequency multiplexer and spectrum analyzer based on caustic beams
- Towards integrated magnonic circuits:
 - Magnonic Half adder (quasi binary)
 - Analog magnon adder

Concept of analog magnon adder

Basic layout:

Idea:

use a (damping compensated) resonator to add up spin-wave pulses which arrive with a delay equal to the resonator round trip time.

> Next step (to be done): Connect nonlinear magnonic element for threshold functionality

Negative values: phase difference of $\boldsymbol{\pi}$

T. Brächer and P. Pirro, J Appl Phys **124**, 152119 (2018).

Philipp Pirro

Working principle:

Spintronics meets Neuromorphics

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Parallel parametric amplification

Micromagnetic simulation (mumax3)

- Microwave field in parallel to static field:
 "Pumping field" with f_p = 2 f_{sw}
- Pumping field acts only on dynamic magnetization
- Requirement: Elliptical trajectory of magnetization (by, e.g., shape anisotropy)

Quasi-Particle picture:

A microwave photon (with f_p) is split up into a signal (f_s) and an idler magnon (f_i) with phase relation:

$$\phi_s + \phi_i = \phi_p + \pi / 2$$

Signal phase Idler phase Pumping phase

T. Brächer, P. Pirro, and B. Hillebrands, Physics Reports 699, 1 (2017).

Animation by D. Bozhko

Philipp Pirro

Spintronics meets Neuromorphics

Parallel parametric amplification

 Strong spin-wave amplification if proper phase relation is chosen

Continuous phase-to-intensity conversion for spin waves

T. Brächer, et al., Sci. Rep. 6, 38235 (2016).

Philipp Pirro

Spintronics meets Neuromorphics

Pumped resonator: gain factor G

Range of *G* where the memory of a pulse is decaying (exponentially) with time.

Amplitude after one round trip:

$$A_p(\Delta t_{\rm rt}) = A_p(0) \cdot \exp(G^*(h_p))$$

Exponential gain factor per round trip: $G^*(h_p) = 2V \mu_0 h_p \Delta t_{\rm pump} - \Delta t_{\rm rt}/ au$

Gain factor normalized to intrinsic losses:

$$G(h_p) = \frac{G^*(h_p)}{G^*(0)}$$

G=0 : spin waves amplitude is "stationary" G=-1 : intrinsic decay of the system

T. Brächer and P. Pirro, J Appl Phys 124, 152119 (2018).

Micromagnetic simulation (mumax3)

Philipp Pirro

Spintronics meets Neuromorphics

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Analog magnon adder: gain factor G=0

$$A_p(\Delta t_{\rm rt}) = A_p(0) \cdot \exp(G^*(h_p))$$
$$G(h_p) = \frac{G^*(h_p)}{G^*(0)}$$

Different transitional dynamics until a steady state is reached, but without impact on the adding function.

Micromagnetic simulation (mumax3)

T. Brächer and P. Pirro, J Appl Phys 124, 152119 (2018).

Philipp Pirro

Spintronics meets Neuromorphics

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Kaiserslautern team: Prof. Burkard Hillebrands Jun. Prof. Andrii Chumak

Dr. Thomas Brächer

Frank Heussner Qi Wang Martin Kewenig Tobias Fischer Moritz Geilen

Acknowledgements

IMEC team in Leuven:

Dr. Christoph Adelmann Dr. Florin Ciubotarou

Giacomo Talmelli

Theory support:

Dr. Roman Verba

Inst. of Magnetism Kyiv, Ukraine

Thank you for your attention!

Philipp Pirro

Conclusion

- Spin-waves can use phase and amplitude to carry information in logic circuits based on interference phenomena
- Multiplexing in frequency opens novel ways to improve performance
- Magnonic Half adder as first proof-of-concept of integrated magnon circuits with nonlinear functionality
- Analog magnon adder with tunable gain to mimic pulse accumulation in neurons