Energy-efficient neuromorphic computing with magnetic tunnel junctions

CNRS/Thales, France

Jacob Torrejon Mathieu Riou Flavio Abreu Araujo

Paolo Bortolotti Vincent Cros Julie Grollier

AIST, Japan

Sumito Tsunegi

Kay Yakushiji Akio Fukushima Hitoshi Kubota Shinji Yuasa C2N, France

Damien Querlioz

NIST, USA

Guru Khalsa Mark Stiles

WHAT: Brain-inspired computing for cognitive tasks

- Neural networks.
 - Already in heavy commercial application.
 - Quasi-static.
- Dynamic processing.
 - Make use of dynamical properties of devices.
 - \rightarrow Spikes, rates, oscillations, timing, ...
- Simulate brain function

Sophisticated CMOS-based neuromorphic chip development

- Brain-like features natural in CMOS
 - local energy source
 - \rightarrow Incoming signal does not power outgoing signal.
 - Connectivity

→ Digital spikes – shared communication channels

Energy efficiency and complexity is still far from the brain!

HOW: Augment CMOS with efficient neural devices (MTJs)

- Features for which CMOS may be inefficient (energy and/or device area)
 - Non-volatility
 - Plasticity (local learning)
 - Stochasticity
 - Oscillators

- Time multiplexed reservoir computing
- Sine/Square Identification (Intrinsic memory)
- Spoken digit recognition (Non-linearity)
- Sine/Square Identification (Delayed feedback memory)

Feed-forward networks – one direction of information flow

Non-linear nodes (neurons) rearranges spaces to allow classification Train off-line adjust synaptic weights to optimize fit to test data

Recurrent networks – have intrinsic time scales

Output time dependent input becomes time series Training protocol not simple

Reservoir computing – a simply trainable recurrent network

Reservoir computing – ring geometry

Fixed synaptic weights Linear, Synaptic weights trained off-line

Reservoir computing – time multiplexed single device

Spin-torque nano-oscillators: non-linear amplitude dynamics and memory

- Time multiplexed reservoir computing
- Sine/Square Identification (Intrinsic memory)
- Spoken digit recognition (Non-linearity)
- Sine/Square Identification (Delayed feedback memory)

Task: recognizing sines from squares at each point in time with a single oscillator

For extrinsic memory, each node should couple to a few other nodes.

Experimental trajectories of oscillators' amplitude

Preprocessed Input

Oscillator's emitted voltage $\tilde{V}^{(t)}$

Experimental trajectories of oscillators' amplitude

Preprocessed Input

Oscillator's emitted voltage $\tilde{V}(t)$

Different trajectories: data separation is achieved

Trajectories need to be grouped to be classified in sines and squares

Classification: constructing the output 0 for sine, 1 for square

Experimental result : RMS = 10% perfect classification of sines and squares

waveform with 80 randomly arranged sines and squares

H = 3800 Oe, I_{DC} = 6.4 mA 8 τ per period, 24 nodes, θ = 100 ns 640 first τ for training, 640 next τ for classification

- Time multiplexed reservoir computing
- Sine/Square Identification (Intrinsic memory)
- Spoken digit recognition (Non-linearity)
- Sine/Square Identification (Delayed feedback memory)

Spectrogram

Cochlear

Jacob Torrejon-Diaz, Mathieu Riou, Flavio Abreu-Araujo, et al, Nature 547, 428-431 (2017)

State of the art: 96 to 99.8 %

Recognition results are sensitive to the noise, an optimal bias area is found

- Time multiplexed reservoir computing
- Sine/Square Identification (Intrinsic memory)
- Spoken digit recognition (Non-linearity)
- Sine/Square Identification (Delayed feedback memory)

Replace intrinsic memory with delayed feedback

To focus on feedback, nodes only couple to past states of themselves

NIST

Feedback allows separation of similar inputs

- Augmenting CMOS based neuromorphic circuits with energy-efficient spintronic devices.
 - MTJs already accessible in stat-of-the-art BEOL CMOS
- Time multiplexed reservoir computing.
 - Memory (intrinsic or delayed feedback) allows context dependent discrimination.
 - Single oscillator achieves state of the art at spoken digit recognition – non-linearity.
- Where to?
 - Small low power oscillators.
 - Efficient coupling.
 - Appropriate algorithms