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WHAT: Brain-inspired computing for cognitive tasks
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● Neural networks.
● Already in heavy commercial 

application.
● Quasi-static.

● Dynamic processing.
● Make use of dynamical properties 

of devices.
→Spikes, rates, oscillations, timing, …

● Simulate brain function

in
pu

ts

ou
tp

ut
s

Time

Vo
lta

ge



Sophisticated CMOS-based neuromorphic chip development
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TrueNorth (IBM) BrainScales
(Human Brain Project)

Loihi (Intel)

Energy efficiency and complexity is still far from the brain!

● Brain-like features natural in CMOS

● local energy source
→ Incoming signal does not power outgoing signal.

● Connectivity
→Digital spikes – shared  communication channels



HOW: Augment CMOS with efficient neural devices (MTJs)
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● Features for which CMOS may be 
inefficient (energy and/or device area)
● Non-volatility
● Plasticity (local learning)
● Stochasticity
● Oscillators

MRAM

Superparamagnetic 
tunnel junctionsNano-oscillators
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Single oscillator reservoir computing
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● Time multiplexed reservoir computing

● Sine/Square Identification (Intrinsic memory)

● Spoken digit recognition (Non-linearity)

● Sine/Square Identification (Delayed feedback memory)



Feed-forward networks – one direction of information flow
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inputs

hidden 
layers

outputs

information flow

Non-linear nodes (neurons)
rearranges spaces to allow classification

Train off-line
adjust synaptic weights to optimize fit to test data



Recurrent networks – have intrinsic time scales
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Reservoir computing – a simply trainable recurrent network
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Reservoir computing – ring geometry
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Input time series
to each device

Non-linear,
Fixed synaptic 
weights

reservoir

Linear,
Synaptic weights 
trained off-line

Output 
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Reservoir computing – time multiplexed single device
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reservoir –
Device at different 
times gives virtual 
Devices.

output –
time series

Output weights,
time dependent,
accumulated.

Input time series

time
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Time multiplexed 
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Spin-torque nano-oscillators: 
non-linear amplitude dynamics and memory
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Input: current
Output: amplitude of the 
oscillator’s voltage

IDC

Arbitrary 
Waveform 
Generator Vosc(t)
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Torrejon et al., Nature 547, 428 (2017).



Single oscillator reservoir computing
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● Time multiplexed reservoir computing

● Sine/Square Identification (Intrinsic memory)

● Spoken digit recognition (Non-linearity)

● Sine/Square Identification (Delayed feedback memory)



Task: recognizing sines from squares 
at each point in time with a single oscillator
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For extrinsic memory, each node should couple to a few other 
nodes.
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Experimental trajectories of oscillators’ amplitude
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τ

Oscillator’s emitted voltage 
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Experimental trajectories of oscillators’ amplitude
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Different trajectories:  data separation is achieved
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Same input for sine and square Different outputs �𝑉𝑉(𝑡𝑡)
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in sines and squares
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Classification: constructing the output
0 for sine, 1 for square
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Experimental result : RMS = 10% 
perfect classification of sines and squares
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H = 3800 Oe, IDC = 6.4 mA
8 τ per period, 24 nodes, θ = 100 ns
640 first τ for training, 640 next τ for classification

waveform with 80 randomly arranged sines and squares
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Single oscillator reservoir computing
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● Time multiplexed reservoir computing

● Sine/Square Identification (Intrinsic memory)

● Spoken digit recognition (Non-linearity)

● Sine/Square Identification (Delayed feedback memory)
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State of the art: 96 to 99.8 %

Jacob Torrejon-Diaz, Mathieu Riou, Flavio Abreu-Araujo, et al, Nature 547, 428-431 
(2017)
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Spoken digit recognition (NIST TI-46 corpus)
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Recognition results are sensitive to the noise, an optimal 
bias area is found 
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Single oscillator reservoir computing
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● Time multiplexed reservoir computing

● Sine/Square Identification (Intrinsic memory)

● Spoken digit recognition (Non-linearity)

● Sine/Square Identification (Delayed feedback 
memory)



Replace intrinsic memory with delayed feedback
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Intrinsic memory
Feedback memory

New part of reservoir

τ



To focus on feedback, nodes only couple to past states of 
themselves
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with delayed feedback loop

without delayed feedback loop

Feedback allows separation of similar inputs
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Error rate is 
10.78%

Error rate is 
0.16%



Single oscillator reservoir computing
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● Augmenting CMOS based neuromorphic circuits with 
energy-efficient spintronic devices.
● MTJs already accessible in stat-of-the-art BEOL CMOS

● Time multiplexed reservoir computing.
● Memory (intrinsic or delayed feedback) allows context 

dependent discrimination. 
● Single oscillator achieves state of the art at spoken digit 

recognition – non-linearity.
● Where to?

● Small low power oscillators.
● Efficient coupling.
● Appropriate algorithms
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