Energy-efficient neuromorphic computing

CNRS/Thales, France

Jacob Torrejon
Mathieu Riou
Flavio Abreu Araujo
Paolo Bortolotti
Vincent Cros
Julie Grollier

with magnetic tunnel junctions

AIST, Japan C2N, France
Sumito Tsunegi Damien Querlioz
Kay Yakushiji

Akio Fukushima
Hitoshi Kubota
Shinji Yuasa

NIST, USA

Guru Khalsa
Mark Stiles

. UNIVERSITE

@B AIST °r5°

MATIOMAL INSTITUTE OF
ACVARCED INDUSTRIAL SCEINCE AND TECHNOLOGY LAEST)

NIST




WHAT: Brain-inspired computing for cognitive tasks l

e Neural networks.
e Already in heavy commercial

application.
e Quasi-static.

e Dynamic processing.
e Make use of dynamical properties

of devices.
—> Spikes, rates, oscillations, timing, ...

\

Time

e Simulate brain function
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Sophisticated CMOS-based neuromorphic chip development l

Loihi (Intel) TrueNorth (IBM) BrainScales
(Human Brain Project)

® Brain-like features natural in CMOS

e |ocal energy source
— Incoming signal does not power outgoing signal.

e Connectivity
— Digital spikes — shared communication channels

Energy efficiency and complexity is still far from the brain!
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HOW: Augment CMOS with efficient neural devices (MTJs) l

e Features for which CMOS may be
inefficient (energy and/or device area) MRAM

e Non-volatility

e Plasticity (local learning)

e Stochasticity
e Oscillators

MTJ

| Superparamagnetic
Nano-oscillators (.\ tunnel junctions
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current Time (ns) P
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Single oscillator reservoir computing l

e Time multiplexed reservoir computing
e Sine/Square ldentification (Intrinsic memory)
e Spoken digit recognition (Non-linearity)

e Sine/Square ldentification (Delayed feedback memory)
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Feed-forward networks — one direction of information flow l

hidden

layers

Non-linear nodes (neurons)
rearranges spaces to allow classification

Train off-line
adjust synaptic weights to optimize fit to test data
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Recurrent networks — have intrinsic time scales l

Information flow

Input /’ Output
time —> time
series : series
hidden
layers

Output time dependent
Input becomes time series
Training protocol not simple
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Reservoir computing — a simply trainable recurrent network l

reservoir

N
J

Input | - Output
time 1 time
series / - series
\___/
Non-linear, Linear,
Fixed synaptic Trained synaptic
weights weights
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Reservoir computing — ring geometry l

reservoir
(= RNYZRR
| - Output

Input time series 1 time
to each device / - series

Non-linear, Linear,

Fixed synaptic Synaptic weights

weights trained off-line
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Reservoir computing — time multiplexed single device

Input time series

times mask

Time multiplexed
Input to reservoir

reservoir —

Device at different
times gives virtual
Devices.

outputs
)

e

output —  \—/
time series

Z\

Output weights,
time dependent,
accumulated.
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Spin-torque nano-oscillators:
non-linear amplitude dynamics and memory

Vin = £250 mV Torrejon et al., Nature 547, 428 (2017).
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Single oscillator reservoir computing l

e Time multiplexed reservoir computing
e Sine/Square ldentification (Intrinsic memory)
e Spoken digit recognition (Non-linearity)

e Sine/Square ldentification (Delayed feedback memory)
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Task: recognizing sines from squares
at each point in time with a single oscillator

Input
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Paquot et al, Scientific Reports 2:287 (2012) Same //7,0U fo
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For extrinsic memory, each node should couple to a few other
nodes.

Preprocessing
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Experimental trajectories of oscillators’ amplitude l
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Experimental trajectories of oscillators’ amplitude .
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Different trajectories: data separation is achieved

Same input for sine and square Different outputs V)
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Trajectories need to be grouped to be classified
In sines and squares
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Classification: constructing the output
0 for sine, 1 for square
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Experimental result : RMS = 10%
perfect classification of sines and squares

waveform with 80 randomly arranged sines and squares

— Target — Reconstructed output

400

Time/t

H = 3800 Oe, I = 6.4 mA
8 1 per period, 24 nodes, 6 = 100 ns
640 first t for training, 640 next t for classification
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Single oscillator reservoir computing l

e Time multiplexed reservoir computing
e Sine/Square ldentification (Intrinsic memory)
e Spoken digit recognition (Non-linearity)

e Sine/Square ldentification (Delayed feedback memory)
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Spoken digit recognition (NIST TI-46 corpus)
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Spoken digit recognition (NIST TI-46 corpus)
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Spoken digit recognition (NIST TI-46 corpus)
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Spoken digit recognition (NIST TI-46 corpus)

Jacob Torrejon-Diaz, Mathieu Riou, Flavio Abreu-Araujo, et al, Nature 547, 428-431

(2017)

State of the art: 96 to 99.8 %o
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Recognition results are sensitive to the noise, an optimal
bias area is found
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Single oscillator reservoir computing l

e Time multiplexed reservoir computing
e Sine/Square ldentification (Intrinsic memory)
e Spoken digit recognition (Non-linearity)

e Sine/Square ldentification (Delayed feedback
memory)
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Replace intrinsic memory with delayed feedback

New part of reservoir

Intrinsic memory

Feedback memory
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To focus on feedback, nodes only couple to past states of
themselves
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Feedback allows separation of similar inputs
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Single oscillator reservoir computing l

e Augmenting CMOS based neuromorphic circuits with
energy-efficient spintronic devices.

e MTJs already accessible in stat-of-the-art BEOL CMOS
e Time multiplexed reservoir computing.

e Memory (intrinsic or delayed feedback) allows context
dependent discrimination.

e Single oscillator achieves state of the art at spoken digit
recognition — non-linearity.

e Where to?
e Small low power oscillators.
e Efficient coupling.

e Appropriate algorithms
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