

PHOTOCURRENTS IN MULTILAYERS FOR ULTRAFAST SPINORBITRONICS

25.10.2018 | FRANK FREIMUTH

Mitglied der Helmholtz-Gemeinschaft

MOTIVATION

T. Kampfrath et al., Nature Nanotechnology 8, 256 (2013)

Are there additional different mechanisms for photocurrent generation at magnetic bilayer interfaces?

LASER-INDUCED CURRENTS IN THE MAGNETIC RASHBA MODEL

Magnetic Rashba model: $H = \frac{-\hbar^2}{2m_e} \Delta - i\alpha (\mathbf{\nabla} \times \hat{\boldsymbol{e}}_z) \cdot \boldsymbol{\sigma} + \frac{\Delta V}{2} \boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}_{\mathrm{c}}(\boldsymbol{r})$

No superdiffusive spin-current in the magnetic Rashba model!

Laser-induced charge current:
$$J_{\alpha} = \frac{a_0^2 e I}{\hbar c} \left(\frac{\mathcal{E}_{\mathrm{H}}}{\hbar \omega}\right)^2 \mathrm{Im} \sum_{\beta \gamma} \epsilon_{\beta} \epsilon_{\gamma}^* \varphi_{\alpha \beta \gamma}$$

 $2 \int d^2 k \int r$

General:

$$\begin{aligned} \text{al:} \quad \chi^{\mathcal{O}}_{\beta\gamma} &= \frac{2}{a_0 \mathcal{E}_{\mathrm{H}}} \int \frac{\mathrm{d} \cdot \kappa}{(2\pi)^2} \int \mathrm{d}\mathcal{E} \operatorname{Tr} \Big[\\ & f(\mathcal{E}) \mathcal{O} G^{\mathrm{R}}_{\mathbf{k}}(\mathcal{E}) v_{\beta} G^{\mathrm{R}}_{\mathbf{k}}(\mathcal{E} - \hbar\omega) v_{\gamma} G^{\mathrm{R}}_{\mathbf{k}}(\mathcal{E}) \\ & -f(\mathcal{E}) \mathcal{O} G^{\mathrm{R}}_{\mathbf{k}}(\mathcal{E}) v_{\beta} G^{\mathrm{R}}_{\mathbf{k}}(\mathcal{E} - \hbar\omega) v_{\gamma} G^{\mathrm{A}}_{\mathbf{k}}(\mathcal{E}) \\ & +f(\mathcal{E}) \mathcal{O} G^{\mathrm{R}}_{\mathbf{k}}(\mathcal{E}) v_{\gamma} G^{\mathrm{R}}_{\mathbf{k}}(\mathcal{E} + \hbar\omega) v_{\beta} G^{\mathrm{R}}_{\mathbf{k}}(\mathcal{E}) \\ & -f(\mathcal{E}) \mathcal{O} G^{\mathrm{R}}_{\mathbf{k}}(\mathcal{E}) v_{\gamma} G^{\mathrm{R}}_{\mathbf{k}}(\mathcal{E} + \hbar\omega) v_{\beta} G^{\mathrm{A}}_{\mathbf{k}}(\mathcal{E}) \\ & +f(\mathcal{E} - \hbar\omega) \mathcal{O} G^{\mathrm{R}}_{\mathbf{k}}(\mathcal{E}) v_{\beta} G^{\mathrm{R}}_{\mathbf{k}}(\mathcal{E} - \hbar\omega) v_{\gamma} G^{\mathrm{A}}_{\mathbf{k}}(\mathcal{E}) \\ & +f(\mathcal{E} + \hbar\omega) \mathcal{O} G^{\mathrm{R}}_{\mathbf{k}}(\mathcal{E}) v_{\gamma} G^{\mathrm{R}}_{\mathbf{k}}(\mathcal{E} + \hbar\omega) v_{\beta} G^{\mathrm{A}}_{\mathbf{k}}(\mathcal{E}) \end{aligned}$$

For charge current: $\varphi_{\alpha\beta\gamma} = \chi^{v_{\alpha}}_{\beta\gamma}$

F. Freimuth et al., arXiv:1710.10480

Mitglied der Helmholtz-Gemeinschaft

25. October 2018

LASER-INDUCED CHARGE CURRENT

Small SOI, magnetization in y direction

$$\alpha^{R} = 0.1 eV \mathring{A} \qquad \Delta V = 1 eV \qquad \Gamma = 25 meV$$

$$\int_{J_{x}}^{0} \bigwedge_{J_{x}}^{0} \bigwedge_{J_{x}$$

Forschungszentrum

SYMMETRY ANALYSIS FOR BILAYER GEOMETRY

TABLE I: Symmetry properties of the magnetic photogalvanic effect in the ferromagnetic Rashba model with magnetization parallel to the y axis. \emptyset means no effect. M_y means odd in magnetization, i.e., the effect changes sign when the magnetization is antiparallel to the y axis. λM_y means odd in the light helicity and odd in the magnetization. $|\lambda|M_y$ means even in the light helicity and odd in the magnetization.

	circularly polarized	linearly polarized $(\boldsymbol{\epsilon} x \text{ or } \boldsymbol{\epsilon} y) $
J_x	$ \lambda M_y$	M_y
J_y	λM_y	Ø

F. Freimuth et al., arXiv:1710.10480

LASER-INDUCED CHARGE CURRENT

Small SOI: Dependence on lifetime-broadening Γ

$$\alpha^{\rm R} = 0.1 \,\mathrm{eV}$$
Å $\Delta V = 1 \,\mathrm{eV}$ $\mathcal{E}_{\rm F} = 1.36 \,\mathrm{eV}$

LASER-INDUCED CHARGE CURRENT

Dependence on SOI-Strength

LASER-INDUCED SPIN CURRENTS

Symmetry analysis for nonmagnetic Rashba model

TABLE III: Symmetry properties of the laser-induced spincurrent density in the nonmagnetic Rashba model. \emptyset means there is no effect. \checkmark means there is an effect. λ means the effect is odd in the helicity of light. $|\lambda|$ means the effect is even in the helicity of light.

	circularly polarized	linearly polarized
J^x_x	λ	Ø
J_x^y	$ \lambda $	\checkmark
J_x^z	Ø	Ø
J_y^x	$ \lambda $	\checkmark
$\overline{J_y^y}$	λ	Ø
J_y^z	Ø	Ø

F. Freimuth et al., arXiv:1710.10480

Mitglied der Helmholtz-Gemeinschaft

LASER-INDUCED SPIN CURRENT

Symmetry analysis for nonmagnetic Rashba model

 $\alpha^{\rm R} = 2 {\rm eV} {\rm \AA} \qquad \Gamma = 136 {\rm meV}$

All symmetry-allowed components are present. Components with spin parallel to current (J_x^x, J_y^y) are smaller than the other components.

F. Freimuth et al., arXiv:1710.10480

JÜLICH Forschungszentrum

Mitglied der Helmholtz-Gemeinschaft

LASER-INDUCED SPIN CURRENT

Nonmagnetic Rashba model: Dependence on SOI strength

 $\mathcal{E}_{\rm F} = 1.36 {\rm eV}$ $\Gamma = 136 {\rm meV}$

Strong increase with SOI strength \rightarrow look for it in giant Rashba systems

F. Freimuth et al., arXiv:1710.10480

Mitglied der Helmholtz-Gemeinschaft

25. October 2018

LASER-INDUCED SPIN CURRENT

Even larger spin currents for small quasiparticle broadening

PHOTOCURRENTS FROM LASER-INDUCED MAGNETIZATION DYNAMICS

Time (ps)

T. J. Huisman et al., Nature Nanotechnology **11**, 455 (2016) Experimental observation can be explained in terms of IFE and ISOT:

• Experiment: 50 fs pulse with 20GW/cm² (fluence $1mJ/cm^2$) \rightarrow IFE of 0.2 Tesla Determine laser-induced torques from *ab-initio* (perpendicular IFE field)

LASER-INDUCED TORQUES FROM IFE & OSTT

$$egin{aligned} H(m{r}) &= H_0(m{r}) - m{m} \cdot \hat{m{M}} \Omega^{ ext{xc}}(m{r}) \ &m{\mathcal{T}}(m{r}) &= m{m} imes \hat{m{M}} \Omega^{ ext{xc}}(m{r}) \ &m{T} &= i ext{Tr} \left[m{\mathcal{T}} G^<
ight] \end{aligned}$$

Optical spin-transfer torque (OSTT)

Parameters used in the calculation

- DFT plus Keldysh formalism
- Laser intensity is set to 10GW/cm²
- Photon energy is 1.55 eV
- Assume continuous laser beam in the calculation

Mitglied der Helmholtz-Gemeinschaft

F. Freimuth, S.Blügel and Y. Mokrousov, PRB 94,144432 (2016)

LASER-INDUCED EFF. MAGNETIC FIELDS

Effective magnetic field

- odd in helicity λ
- OSTT dominates in Fe
- IFE dominates in FePt

 In Co IFE dominates for small and medium broadenings

Co: 2 x Experiment

DEPENDENCE ON SPIN-ORBIT STRENGTH

No laser-induced torque without spin-orbit interaction (in collinear ferromagnets)

F. Freimuth, S.Blügel and Y. Mokrousov, PRB 94,144432 (2016)

Mitglied der Helmholtz-Gemeinschaft

25. October 2018

LASER-INDUCED PERPENDICULAR SPIN

odd in helicity λ
 no perfect
 correlation with B^{eff}

F. Freimuth et al., PRB **94**,144432 (2016)

LASER-INDUCED PARALLEL SPIN

- even in helicity λ
- much larger than δS_x and δS_y

F. Freimuth, S.Blügel and Y. Mokrousov, PRB 94,144432 (2016)

Mitglied der Helmholtz-Gemeinschaft

TRANSIENTS IMPORTANT?

• Experiment: 50 fs laser pulse leads to electric current with rise time 330 fs \rightarrow Limitation of detector bandwidth might matter

 \rightarrow Theory of time-dependent IFE might be necessary (transient response)

SPIN INDUCED BY LASER PULSE

Mitglied der Helmholtz-Gemeinschaft

Seite 21

Forschungszentrum

SPIN INDUCED BY LASER PULSES

$$\text{Magnetic Rashba model:} \quad H = \frac{-\hbar^2}{2m_e} \Delta - i\alpha (\boldsymbol{\nabla} \times \hat{\boldsymbol{e}}_z) \cdot \boldsymbol{\sigma} + \frac{\Delta V}{2} \boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}_{\rm c}(\boldsymbol{r})$$

Magnetization in y direction

Pulse: 3.8 fs (FWHM)

Strong prolongation of spin induced in y-direction. \neq Experimental observation: Prolongation of IFE in z-direction But: Only model without d-states \rightarrow Need for *ab-initio*

Mitglied der Helmholtz-Gemeinschaft

25. October 2018

Seite 22

Pulse: 3.8 fs (FWHM)

LASER-INDUCED ULTRAFAST DEMAGNETIZATION

What happens with the exchange splitting?

What happens with the local atomic exchange field?

Scenario 2

Reduction of local atomic magnetic moments → Collapse of local exchange field

Transverse fluctuations

Does ultrafast demagnetization induce electric currents?

Mitglied der Helmholtz-Gemeinschaft

25. October 2018

RESPONSE OF ELECTRONS TO COLLAPSING LOCAL EXCHANGE FIELD

 $H(\mathbf{r},t) = H_0(\mathbf{r}) - \mathbf{m} \cdot \hat{\mathbf{M}}(t) \Omega^{\mathrm{xc}}(\mathbf{r})$

ISOT: Exchange field $\Omega^{xc}(\mathbf{r})$ constant, magnetization direction precesses

ISOT current:
$$j_{\alpha} = \sum_{\beta} \frac{e}{V} \lim_{\omega \to 0} \frac{\mathrm{Im}G^{\mathrm{R}}_{\nu_{\alpha},\mathcal{T}_{\beta}}(\hbar\omega,\hat{\mathbf{M}})}{\hbar\omega} \left(\hat{\mathbf{M}} \times \frac{d\hat{\mathbf{M}}}{dt}\right)_{\beta}$$

Now: Magnetization direction constant, but exchange field collapses

$$H(\mathbf{r},t) = H_0(\mathbf{r}) - \mathbf{m} \cdot \hat{\mathbf{M}} \Omega^{\mathrm{xc}}(\mathbf{r},t) \qquad \text{Ansatz:} \quad \Omega^{\mathrm{xc}}(\mathbf{r},t) = \Omega^{\mathrm{xc}}(\mathbf{r})\eta(t)$$

Demagnetization-induced current:
$$j_{\alpha} = -\frac{e}{V} \lim_{\omega \to 0} \frac{\text{Im}G^{R}_{\nu_{\alpha},\Omega^{xc}m_{\parallel}}(\hbar\omega, \hat{\mathbf{M}})}{\hbar\omega} \frac{d\eta}{dt}$$

F. Freimuth, S. Blügel and Y. Mokrousov, PRB 95, 094434 (2017)

Mitglied der Helmholtz-Gemeinschaft

Mn/W(001) AND Co/Pt(111)

Current pulse induced by collapsing exchange field

Spin-orbit field is in-plane
 → Effect is maximized for in-plane M
 →Magnetic version of the inverse Edelstein effect

F. Freimuth, S. Blügel and Y. Mokrousov, PRB 95, 094434 (2017)

COLLAPSING EXCHANGE FIELD

Estimates of THz pulses induced by collapsing exchange field

Assume 10% demagnetization in 500fs and no transverse spin fluctuations. \rightarrow Theoretically expected demagnetization-induced THz pulse is of the same order of magnitude as the contribution from superdiffusive spin-current

Absent in Co/Pt und Fe/Au, where It clearly correlates with SHE.

T. Kampfrath et al., Nature Nanotechnology **8**, 256 (2013)

Not yet identified experimentally → Transverse spin fluctuations → Search in materials with clear evidence for exchange field collapse. → Search in materials with negligible superdiffusive spin-current (bulk compounds, e.g. Half Heuslers)

F. Freimuth, S. Blügel and Y. Mokrousov, PRB 95, 094434 (2017)

Mitglied der Helmholtz-Gemeinschaft

SUMMARY

4 mechanisms for generation of in-plane photocurrents in magnetic bilayers

1.) Superdiffusive current + ISHE

- Nature Nanotechnology 8, 256 (2013)
 - 3.) Driven by ultrafast demagnetization

2.) Magnetization tilt (from IFE) + ISOT

Nature Nanotechnology 11, 455 (2016)

4.) Direct conversion of light into electric currents and spin currents

arXiv:1710.10480

Importance of transients: Not so important in the Rashba model

Thank you for your attention

