Tutorial: Merging Spintronics with Photonics

Laser-induced spin currents & all-optical switching of spintronic devices

Bert Koopmans

SPICE: Ultrafast Spintronics Workshop SML, Mainz 2018

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

What happens after fs laser excitation?

Outline: Towards Integrated MagnetoPhotonics

Essential ingredient: Fs loss of magnetization

4

E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot., Phys. Rev. Lett. 76, 4250 (1996)

3 Temperature Model

E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot., Phys. Rev. Lett. 76, 4250 (1996)

Proposed microscopic mechanisms / theories 8 Lecture by **Photon field + s.o. scattering** Oppeneer Zhang & Huebner (PKL 2000 etc.) ٥o Bigot et al. (Nature Physics 2010) Lecture by Superdiffusive spin transport Sharma Battatio, Oppeneer, et al. (PRL 2010) °0 Spin orbit-induced spin-flip scattering Krieger, Sharma, Gross et al. (JCTC 2015) TDD Angular momentum Toews & Pastor (PRL 2015) many-body cluster dumped in lattice **Atomistic LLG** - very similar Chantrell, Nowak, Muenzenberger results Landau-Lifzhitz-Bloch approach Kazantseva, Atxitia, Chubykalo-Fesenko **Phonon mediated Elliott-Yafet spin-flip scattering + Weiss** This lecture e-e mediated Elliott-Yafet spin-flip scattering + $\mu(T)$ hnische Universiteit Mueller, Schneider, Rethfeld et al. PRL 2013 dhoven versity of Technology

Microscopic 3TM - Model Hamiltonian

electrons

spins

•

phonons

Using Golden Rule & Solve Boltzmann eqs.:

$$\begin{cases}
c_{e} \frac{dT_{e}}{dt} = -g_{ep}(T_{e} - T_{p}) + P(z,t) \\
c_{p} \frac{dT_{p}}{dt} = g_{ep}(T_{e} - T_{p}) \\
\frac{dm}{dt} = Rm \frac{T_{p}}{T_{c}} \left(1 - m \coth\left(\frac{mT_{c}}{T_{e}}\right)\right) + y \text{ manics} \\
\text{Wolfram Mathematica} \\
R = a_{sf} \frac{8g_{ep}kT_{c}^{2}}{E_{D}^{2}\mu_{at}/V_{at}} \approx a_{sf} 150 \text{ ps}^{-1} \leftarrow m = \frac{M}{M_{s}} \quad \tau \sim 60 \text{ fs for } a_{sf} \sim 0.1
\end{cases}$$
The set of the

Outline: Local dynamics vs. spin transport

Fs laser-induced spin transport

LETTERS

PRL 105, 027203 (2010)

Control of speed and efficiency of ultrafast demagnetization by direct transfer of spin angular momentum

(arb.u.

 $\Delta \theta / \theta$

Normalized

0.0

g. Malinowski*, F. Dalla Longa, J. H. H. Rietjens, P. V. Paluskar, R. Huiji And B. Koopmans

Department of Applied Physics, Center for NanoMaterials, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhove *e-mail: g.malinowski@tue.nl

^ot Co

Greg Malinowski

Ru

2

0.5

Delay (ps)

1

Superdiffusive Spin Transport as a Mechanism of Orualast Demagn M. Battiato,* K. Carva,[†] and P.M. Oppeneer

PHY

Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden (Received 31 March 2010; published 9 July 2010)

Oppeneer

(Tutorial)

week ending

tion

9 JULY 2010

We propose a semiclassical model for femtosecond laser-induced demagnetization due to spinpolarized excited electron diffusion in the superdiffusive regime. Our approach treats the finite elapsed time and transport in space between multiple electronic collisions exactly, as well as the presence of several metal films in the sample. Solving the derived transport equation numerically we show that this mechanism accounts for the experimentally observed demagnetization within 200 fs in Ni, without the need to invoke any angular momentum dissipation channel.

Majority spins travel further

Battiato et al. PRL 2010

e Technische Universiteit Eindhoven University of Technology

Malinowski et al. Nature Physics 2008

Ru

Optical generation of fs spin currents

Fs spin currents confirmed

Spin accumulation

Magnetization

Melnikov et al., PRL 2011 Choi, Cahill et al., Nat. Comms.2014 Barkowski, BK, Aeschlimann, et al., submitted Malinoswki et al., Nat. Phys. 2008 Rudolf et al., Nat. Comms. 2011

strong non-equilibrium!

14

 huge splitting chemical potential...

- Local dissipation angular momentum (100 fs)
- Or spin currents (also fs time scale)

TUe Technische Universiteit Eindhoven University of Technology

Fs spin currents confirmed

Spin accumulation

probe to detector

Magnetization

Torque

Melnikov et al., PRL 2011 Choi, Cahill et al., Nat. Comms.2014 Barkowski, BK, Aeschlimann, et al., submitted

Malinoswki et al., Nat. Phys. 2008 Rudolf et al., Nat. Comms. 2011 Schellekens et al., Nat. Comms. 2014 Choi et al., Nat Comms. 2014 Razdolski, Melnikov et al, Nat. Comms. 2017

Experimental demonstration Optical STT

Schellekens, BK *et al.*, Nature Comms. 2014 See also: Choi, Lee *et al.*, Nature Comms. 2014

Technische Universiteit Eindhoven University of Technology

More quantitative studies

Materials engineering: Only bottom to top spin currents

Mark Lalieu, Paul Helgers et al., Phys. Rev. B (2017)

17

Mark Lalieu, Paul Helgers et al., Phys. Rev. B (2017)

How is transverse momentum absorbed?

Mark Lalieu, Paul Helgers et al., Phys. Rev. B (2017)

19

University of Technology

Fs spin transport (and THz magnons)

Resolving dispersion & q-dependent damping

We discuss the dissipative diffusion-type term of the form $\mathbf{m} \times \nabla^2 \partial_t \mathbf{m}$ in the phenomenological Landau-

Outline

- Introduction: fs All-Optical Switching (AOS)
- AOS of <u>spintronic materials</u>
- Integration of "AOS" and spintronic functionality
- Conclusions & take home

AOS in Microscopic 3-Temparature model

26

$$H = H_{e} + H_{p} + H_{s} + H_{ee} + H_{ep} + H_{ep-s} \xrightarrow{\text{Golden rule}} \text{rate equations}$$

$$FY \text{ spin-flip} + \text{ exchange scattering} \xrightarrow{e_{i,\downarrow}} H_{ee} \xrightarrow{e_{j,\downarrow}} \xrightarrow{e_{i,\uparrow}} \xrightarrow{e_{i,\downarrow}} H_{ee} \xrightarrow{e_{j,\downarrow}} \xrightarrow{e_{j,\downarrow}} \xrightarrow{e_{j,\downarrow}} \xrightarrow{e_{j,\downarrow}} \xrightarrow{e_{i,\uparrow}} \xrightarrow{e_{j,\downarrow}} \xrightarrow{e_{i,\downarrow}} \xrightarrow{e_{j,\downarrow}} \xrightarrow{$$

Similar to Schellekens and BK, PRB 87, 020407(R) (2013)

AOS phase diagram for Co_xGd_{1-x}

Requirements AOS vs. Fast CI-DWM

- 1. Anti-parallel sub-lattices1. Anti-parallel sub-lattices= reduced M= reduced M
- (2. Different (EY)
 demagnetization times
 3. Strong SOC → DMI
 - **3. Exchange scattering**

Yang, Parkin et al., Nature Nanotechnol. (2015)

If we can engineer the proper magnetic stack

Outline

- Introduction: fs All-Optical Switching (AOS)
- AOS of <u>spintronic materials</u>
- Integration of "AOS" and spintronic functionality
- Conclusions & take home

What about AOS of synthetic ferrimagnets?

•

Evans, Chantrell *et al*. APL 2014 (Fe/FePt) Gerlach, Nowak *et al*. PRB 2017 (Fe/Gd) Mangin et al., Nature Materials 2014

31

But no single-pulse switching...

Pt/Co/Gd ...

Pt/Co/Gd ... Single-pulse toggle switching

33

Mark Lalieu, Peeters, Lavrijsen et al., Phys. Rev. B 96, 220411 (Rapid) 2017 TU/e Technische Universiteit University of Technology

Fluence dependence

Fit assuming fixed threshold temperature

- No helicty dependence
- > 10⁷ successful switches and @ 100 kHz

Mark Lalieu, Peeters, Lavrijsen et al., Phys. Rev. B 96, 220411 (Rapid) 2017 TU/e

Technische Universiteit

• How come?

Mark Lalieu, Maarten Beens et al., in preparation

TU/e Technische Universiteit Eindhoven University of Technology

Layered multi-sublattice M3TM

AOS of alloy versus bi-layer

Outline

- Introduction: Is All-Optical Switching (AOS)
- AOS of spintronic materials
- Integration of "AOS" and spintronic functionality
- Conclusions & take home

Current (SHE) induced motion in Pt/Co/Gd

Lalieu, Lavrijsen and BK, arXiv 1809.02347

All-optical writing "on the fly"

Conclusions & Take home

- Converging of spintronics and fs magnetism rapidly progressing – two routes discussed
- First step towards integrated magneto-photonics

World's fastest logo...

Mark Lalieu, Peeters, Lavrijsen *et al.*, Phys. Rev. B 96, 220411 (Rapid) 2017 M.L.M. Lalieu, R. Lavrijsen & BK, arXiv 1809.02347 (2018) Lalieu, Deens, BK *et al.*, in preparation

Ue Technische Universiteit Eindhoven University of Technology

42

Acknowledgements

