Terahertz Nonlinear Spin Control

Rostislav Mikhaylovskiy

Acknowledgements

Radboud University, Netherlands			Moscow Physical-Technical Institute	
Alexey Kimel	Theo Rasing	Kirill Grishunin	Anatoly Zvezdin	
T. J. Huisman	S. Semin	G. Li		
Universi	ity of Regensburg, (
			R. Pisarev	A. Balbashov
	A BE		A. Mukhin	G. Ma
			T. Kamfrath	E. Mishina
Rupert Huber	Sebastian Baierl	Stefan Schlauderer		
C. Lange	M. Hohenleutner	T. Ebnet		
ërc		SEVENTH FRAMEWORK		FOM

PROGRAMME

Outline

- Introduction: why THz?
- THz linear spin control
 - Magnon-polaritons
 - Internal resonance
- THz nonlinear spin control
 - THz-driven anisotropy fields
 - Towards THz spin switching

Outline

Introduction: why THz?

THz linear spin control

- Magnon-polaritons
- Internal resonance

THz nonlinear spin control

- > THz-driven anisotropy fields
- > Towards THz spin switching

Magnetism is fast

Magnetism – strongest quantum effect

$$W_{\rm ex} = J\mathbf{S}_i\mathbf{S}_j \sim 10\,{\rm meV}$$

$$\tau_{\rm ex} = \frac{eB_{\rm ex}}{m_e c} \sim 100 \,\rm fs$$

Magnetism is fast

exchange interaction

$$W_{\rm ex} = J \mathbf{S}_i \mathbf{S}_j \sim 10 \,{\rm meV}$$

 $\neq \bigcirc \mathbb{B}_{ex} = \frac{\partial W_{ex}}{\partial \mathbf{S}_i} \sim 10^2 - 10^3 \,\mathrm{T}$

Ultrashort laser stimulus

 $S_z = \pm \hbar/2$

Spin

$$\tau_{\rm ex} = \frac{eB_{\rm ex}}{m_e c} \sim 100 \,\rm{fs}$$

Femtosecond intrinsic scale

100 fs
$$\leftrightarrow$$
 10 THz = 10¹³ Hz

Too much energy for optical excitation?

Can we excite magnetic order on its own energy scale and ultrafast?

Problem with laser excitation:

Photon energy exceeds magnetic energy scale

THz-field control of spins

Direct ultrafast interface to spins

T. Kampfrath, et al., Nature Photonics **5**, 31 (2011)

Only linear response Small spin deflection

• THz linear spin control

- Magnon-polaritons
- Internal resonance

• THz nonlinear spin control

- THz magneto-phonics
- THz-driven anisotropy fields
- > Towards THz spin switching

THz frequency dipole active excitation

Emission power grows with dipole frequecy ${\sim}\omega^2$

THz magnons or ...?

Emission power grows with dipole frequecy $\sim \omega^2$

Strong light-magnon coupling

THz magnons ... - polaritons

THz frequency dipole active excitation

Emission power grows with dipole frequecy $\sim \omega^2$

Strong light-magnon coupling

THz magnons ... - polaritons

THz frequency dipole active excitation

Emission power grows with dipole frequecy $\sim \omega^2$

Strong light-magnon coupling

THz magnons ... - polaritons

Do we see magnon-polariton signatures in experiment?

THz time-domain spectroscopy

Sample TmFeO₃

Magnon 0.8 THz

THz time-domain spectroscopy

THz transmission through TmFeO₃

Clear beating in time domain waveforms

THz emission spectroscopy

THz emission from TmFeO₃

Again beating instead of single magnon frequency

Terahertz transmission analysis

Solve Maxwell equations

Terahertz transmission analysis

Terahertz emission analysis

Solve Maxwell equations

Light acts as effective magnetic field

R. Mikhaylovskiy, et al. Nature Comm. 6, 8190 (2015)

Terahertz emission analysis

Solve Maxwell equations

Fit effective field

Light acts as effective magnetic field

R. Mikhaylovskiy, et al. Nature Comm. 6, 8190 (2015)

Thickness dependence

Origin of beating

Beating between polariton branches

Propagation effects are important for THz spin excitations!

Does polaritonics matter for THz spin control?

Wavevector (µm⁻)

Photonics Terahertz Magnon-Polaritons in TmFeO₃

Kirill Grishunin,[†][©] Thomas Huisman,[‡] Guanqiao Li,[‡] Elena Mishina,[†] Theo Rasing,[‡] Alexey V. Kimel,^{†,‡} Kailing Zhang,[§] Zuanming Jin,[§] Shixun Cao,[§] Wei Ren,[§][©] Guo-Hong Ma,^{*,§}[©] and Rostislav V. Mikhaylovskiy^{*,‡}

Introduction: why THz?

THz linear spin control

- Magnon-polaritons
- Internal resonance

THz nonlinear spin control

- THz-driven anisotropy fields
- > Towards THz spin switching

THz control in DyFeO₃

THz spin response of DyFeO₃

Enhancement at crossing point?

Enhancement of spectral weight

Internal resonance

Assume coupling between magnon modes

$$\ddot{l}_{z} + \gamma_{qFM}\dot{l}_{z} + \omega_{qFM}^{2}l_{z} = b(t)$$
$$\ddot{l}_{y} + \gamma_{qAFM}\dot{l}_{y} + \omega_{qAFM}^{2}l_{y} = b(t) + \alpha l_{z}$$

Internal resonance

Coupling origin?

Coupling origin

Possibilities

Nonlinear coupling

Ruled out by experiment

Propagation!

No nonlinearity

Magnon-polaritons in DyFeO₃

Modes are orthogonal (?)

How do they propagate?

Orthoferrite is highly birefringent crystal at THz!

$$\hat{\varepsilon} = \begin{pmatrix} \varepsilon_x = 23.6 & 0 & 0 \\ 0 & \varepsilon_y = 21.3 & 0 \\ 0 & 0 & \varepsilon_z = 25.6 \end{pmatrix}$$
$$\Delta \mu < 0.1$$

THz optical axis is not sample normal

qAFM $m_z \Leftrightarrow h_z$

Anisotropy from dielectric properties

Magnon-polaritons in DyFeO₃

Modes are orthogonal (?)

How do they propagate?

Orthoferrite is highly birefringent crystal at THz!

$$\hat{\varepsilon} = \begin{pmatrix} \varepsilon_x = 23.6 & 0 & 0 \\ 0 & \varepsilon_y = 21.3 & 0 \\ 0 & 0 & \varepsilon_z = 25.6 \end{pmatrix}$$
$$\Delta \mu < 0.1$$

Anisotropy from dielectric properties THz optical axis is not sample normal

Not normal modes of DyFeO₃

Coupling mediated by lattice/dielectric properties

- Introduction: why THz?
- THz linear spin control
 Magnon-polaritons
 - Internal resonance
- THz nonlinear spin control
 - THz-driven anisotropy fields
 - Towards THz spin switching

Electric field driven terahertz control

Magnetic nonlinearity?

Magnetic field works against high potential barrier

10 Tesla are required

Alternative scenario

Electric field driven terahertz control

We propose to employ low-energy electric dipole-active excitations coupled to magnetic order

Orbital states set magnetic anisotropy

Electronic transitions in crystal-field

Can THz-population of electronic orbitals drive spin motion?

Spin reorientation in TmFeO₃

Terahertz-driven spin reorientation

THz-pump optical-probe experiment

TmFeO₃: antiferromagnetic resonance

TmFeO₃: antiferromagnetic resonance

Origin of nonlinearity?

Can Zeeman interaction drive spins into strongly nonlinear regime?

 Quantitative simulation of Lagrangian FM mode dynamics

linear behaviour predicted for isolated iron spin system

 Crystal symmetry D¹⁶_{2h} allows for free energy terms quadratic in THz electric field in the intermediate phase:

$$W = \left(\chi_{xx}E_x^2 + \chi_{yy}E_y^2 + \chi_{zz}E_z^2\right)\sin^2\theta$$

 Crystal symmetry D¹⁶_{2h} allows for free energy terms quadratic in THz electric field in the intermediate phase:

$$W = \left(\chi_{xx}E_x^2 + \chi_{yy}E_y^2 + \chi_{zz}E_z^2\right)\sin^2\theta$$

 corresponds to THz induced change in magnetic anisotropy

 Crystal symmetry D¹⁶_{2h} allows for free energy terms quadratic in THz electric field in the intermediate phase:

$$W = \left(\chi_{xx}E_x^2 + \chi_{yy}E_y^2 + \chi_{zz}E_z^2\right)\sin^2\theta$$

 corresponds to THz induced change in magnetic anisotropy

 Crystal symmetry D¹⁶_{2h} allows for free energy terms quadratic in THz electric field in the intermediate phase:

$$W = \left(\chi_{xx}E_x^2 + \chi_{yy}E_y^2 + \chi_{zz}E_z^2\right)\sin^2\theta$$

 corresponds to THz induced change in magnetic anisotropy

Tm states?

THz excitations in TmFeO₃

THz excitations in TmFeO₃

- Resonant Zeeman-type
 excitation of magnons by
 THz magnetic field
- Electric dipole interaction

with 4 electronic excitations of Tm

THz excitations in TmFeO₃

Excite FM mode only by resonant Zeeman interaction

→ rule out influence of electric dipole transitions by spectral filtering

```
→ Expectation:
no nonlinearity!
```

Spectral tailoring

Spectral tailoring

Terahertz-driven anisotropy change Tm Fe

THz-population of electronic orbitals drives spin motion

Anisotropy-driven torque is 8 times larger than Zeeman torque for 0.3 T THz-field

THz-driven anisotropy in DyFeO₃

Morin temperature T_{M} =50 K

Nonlinear excitation of soft q-AFM mode

THz magnon-polaritonics

Photonics Terahertz Magnon-Polaritons in TmFeO₃

Kirill Grishunin,[†][©] Thomas Huisman,[‡] Guanqiao Li,[‡] Elena Mishina,[†] Theo Rasing,[‡] Alexey V. Kimel,^{†,‡} Kailing Zhang,[§] Zuanming Jin,[§] Shixun Cao,[§] Wei Ren,[§][©] Guo-Hong Ma,^{*,§}[©] and Rostislav V. Mikhaylovskiy^{*,‡}

THz nonlinear spin control

nature photonics Nonlinear spin control by terahertz-driven anisotropy fields

S. Baierl¹, M. Hohenleutner¹, T. Kampfrath², A. K. Zvezdin^{3,4,5}, A. V. Kimel^{4,6}, R. Huber^{1*} and R. V. Mikhaylovskiy^{6*}

Towards THz-switching

So far: nonlinearity with respect to the THz field Required: nonlinearity in spin dynamics

Towards THz-switching

How to enhance THz field?

THz magnon-polaritonics

Photonics Terahertz Magnon-Polaritons in TmFeO₃

Kirill Grishunin,[†][®] Thomas Huisman,[‡] Guanqiao Li,[‡] Elena Mishina,[†] Theo Rasing,[‡] Alexey V. Kimel,^{†,‡} Kailing Zhang,[§] Zuanming Jin,[§] Shixun Cao,[§] Wei Ren,[§][®] Guo-Hong Ma,^{*,§}[®] and Rostislav V. Mikhaylovskiy^{*,‡}

THz nonlinear spin control

nature photonics Nonlinear spin control by terahertz-driven anisotropy fields

S. Baierl¹, M. Hohenleutner¹, T. Kampfrath², A. K. Zvezdin^{3,4,5}, A. V. Kimel^{4,6}, R. Huber^{1*} and R. V. Mikhaylovskiy^{6*}

- Introduction: why THz?
- THz linear spin control
 Magnon-polaritons
 Internal resonance

- THz nonlinear spin control
 - THz magneto-phonics
 - THz-driven anisotropy fields
 - Towards THz spin switching

Electric field driven terahertz control

We propose to employ low-energy electric dipole-active excitations coupled to magnetic order

Nonlinear phononics

IR-active phonons

An effective magnetic field from optically driven phonons

T. F. Nova¹*, A. Cartella¹, A. Cantaluppi¹, M. Först¹, D. Bossini^{2†}, R. V. Mikhaylovskiy², A. V. Kimel², R. Merlin³ and A. Cavalleri^{1,4}*

ErFeO₃ – orthorombic crystal

Orthogonal phonon modes

B b B_{ub} b а Circular ionic loops

Simultaneous excitation of orthogonal phonons breaks time inversion invariance

20 THz pump excites quasi-antiferromagnetic resonance

Phonon resonance

Spin deflection scales nonlinearly

Excitation of phonons generates effective magnetic field

Phonon-driven effective field

Phonon-mediated Inverse Faraday effect (ionic impulsive stimulated Raman scattering)?

$$\Phi = i \chi \mathbf{M} \cdot \left[\mathbf{Q} \times \mathbf{Q}^* \right]$$

$$\mathbf{B}_{\rm eff} = -\frac{\partial \Phi}{\partial \mathbf{M}} = -i\chi \left[\mathbf{Q} \times \mathbf{Q}^* \right]$$

How to create circularly polarized lattice vibration?

$$-i\chi \left[\mathbf{Q}\times\mathbf{Q}^{*}\right] = -i\chi \left(Q_{x}Q_{y}^{*}-Q_{y}Q_{x}^{*}\right)\mathbf{z}_{0}$$

$$Q_x = \Theta(t) q_{ua} e^{i\omega_{ua}t} e^{-\alpha_{ua}t}, \quad Q_y = \Theta(t) q_{ub} e^{i\omega_{ub}t} e^{-\alpha_{ub}t}$$

$$B_{\rm eff} = b_0 \Theta(t) \sin(\omega_{\rm ua} - \omega_{\rm ub}) t \ e^{-(\alpha_{\rm ua} + \alpha_{\rm ub})t}$$

Simultaneous excitation of orthogonal phonons breaks time inversion invariance

Phonon-driven effective field

