# Anitferromagnetic memory with ultrafast writing speed

Kamil Olejník

Institute of Physics, Academy of Sciences of the Czech Republic

#### **Collaborators**

#### **Prague**

Tomáš Jungwirth Zdeněk Kašpar Vít Novák Xavi Marti Joerg Wunderlich Petr Němec Helena Reichlová Dominik Kriegner Vivien Schuler Jakub Železný Libor Šmejkal Karel Výborný František Máca Jan Mašek Alexander Shick

#### **Nottingham**

Pete Wadley
Bryan Gallagher
Richard Campion
Tom Foxon
Kevin Edmonds
Andrew Rushforth
Bryn Howells
Victoria Hills
Michal Grzybowski

#### **Berlin**

Tobias Kampfrath Tom Seifert Melanie Muller Julius Heitz Lukáš Nádvorník

#### **Diamond Light Source**

Francesco Maccherozzi Sarnjeet Dhesi

#### **Mainz**

Jairo Sinova Helen Gomonay

#### Jülich

Yuriy Mokrousov Frank Freimuth

#### Zürich

Pietro Gambardella Manuel Baumgartner

# **Outline: From DC to THz Spintronics**

#### (DC) Principles of operation of AFM memory device

- 90 degree rotation with current induced SO fields
- reading with AMR
- multi-domain character

#### (THz) Speed of writing

- mangetic dynamics of FM and AFM
- ultrafast (THz) switching

# **AFM** memory device proposal



Néel SO fields writing AMR reading

# SO fields in tetragonal CuMnAs



#### **Condition for Neel SO field:**

local inversion asymmetryCondition for effective switching:

 AFM sub-lattices occupy inversion partner lattice sites



# 90 degree switching



# AMR signal due to perpendicular pulses



# **Multi-level memory**



Length of pulses

# Magnetic domains in CuMnAs



#### **XMLD - PEEM**



Grzybowski et al. PRL (2017)

# Summary (before going fast)

- "Practical" memory based on AFM CuMnAs
- deterministic switching
- room temperature operation
- practical voltages
  - Writing pulses
  - signal



# **Summary (before going fast)**

- "Practical" memory based on AFM CuMnAs
- deterministic switching
- room temperature operation
- practical voltages
  - Writing pulses
  - signal
- GaAs, GaP, Si substrates



### Summary (before going fast)

- "Practical" memory based on AFM CuMnAs
- deterministic switching
- room temperature operation
- practical voltages
  - Writing pulses
  - signal
- GaAs, GaP, Si substrates

#### **Advantages of AFM:**

- multistate (neuromorphic applications)
- no stray fields (high integration density, robust)
- **SPEED** !!!

### From GHz FM to THz AFM spintronics



LLG equation

$$\frac{dM}{dt} = -\gamma \left( M \times B_{eff} - \eta \frac{dM}{dt} \times M \right)$$

Relaxation (switching) to energy minimum direction controlled by precession speed

#### Ferromagnets: GHz threshold in writing current

#### FM spin-orbit torque MRAM





Garello et al., APL (2014)

Above  $\sim GHz$ 

Writing current:  $I \sim 1/\tau_p \sim speed$ 

Writing energy:  $E \sim I^2 \tau_p \sim 1/\tau_p \sim speed$ 

#### **Prospect of THz writing speed in antiferromagnets**



$$\frac{dM_1}{dt} = -\gamma \left( M_1 \times (B_{ext} + B_{anis} + J_{ex}M_2) - \eta \frac{dM_1}{dt} \times M \right)$$

Relaxation (switching) to energy minimum direction controlled by precession speed

#### **GHz** switching in CuMnAs



**Energy constant in sub-nanosecond range** 

- thermally assisted switching
- shorter pulses could work !!!

# 1 ps pulses

#### **Terahertz Physics Group (Berlin)**



**Tobias Kampfrath** 



**Tom Seifert** 

#### THz radiation:



# Olejnik et al., Sci. Adv. (2018)

# THz switching



# Olejnik et al., Sci. Adv. (2018)

# **THz switching**







### THz switching – individual pulses



# **THz** switching



# THz switching – antenna effect



# THz switching – antenna effect



# THz switching – antenna effect



#### THz writing – Energy of pulses

#### Energy density of pulse writing $1m\Omega$ signal



**Constant energy below 1 ns** 

**Energy constant in sub-nanosecond range** 

- thermally assisted switching

#### **Conclusions**

#### **CuMnAs AFM memory devices**

- Deterministic switching using Néel SO fields
- Multilevel character
- Ultrashort (1 ps) writing pulses

#### **Remains**

- Time resolved experiments







# Thank you for your attention