

 In electronics: <u>integration</u> leads to miniaturization, higher performance, cost savings, robustness

WHY **NOT** INTEGRATED PHOTONICS ?

Electronics

- Relaxed processing requirements

Massive economies of scale

unec

- Single building block:

Digital devices

Common roadmap

High yield

UNIVERSITEIT

GENT

Transistor

- Single material:

Silicon

Photonics

- Many building blocks
 - Laser, Modulator, Detector Filter
 - Many technologies and materials
 - Laser : III-V semiconductors
 - Modulator : LiNbO3
 - Filter : Glass, Polymers
- High processing requirements
 - Analog devices
 - Low Yield
- No economies of scale advantage
- Many faction pushing own solution

CAN "SILICON PHOTONICS" OVERCOME THIS BOTTLENECK ?

- Single material platform
 - Silicon transparent at telecom wavelengths
 - Very high contrast : compact circuits
 - Detectors (germanium), Modulators (pn-junction)
 - Wafer level testing
- Reuse installed equipment base
 - Use best equipment available
 - Without the capital expense ...
 - Possibility to ramp up to high volumes
 - Some standardization and roadmapping ongoing

UNIVERSITEIT • umec

GENT

SILICON PHOTONICS – SUMMARY

- Silicon Photonics rapidly maturing:
 - All basic building blocks developed
 - Widely available from commercial foundries and through multi-project wafer services
- Current research focusses on:
 - Integration with new materials for enhancing functionality
 - Exploiting large scale integration for new applications
- Perfect match with EU-FET SPICE objectives !

23

47

IN FACULTEIT INGENIEURSWETENSCHAPPEN			
Prof. Dries Van Thourhout PHOTONICS RESEARCH GROUP			
E	dries.vanthourhout@ugent.be	Ghent University	
т	+32 9 264 34 38	@DThourhout	
www	v.photonics.intec.ugent.be	Ghent University	