Anomalous Hall and Nernst effect in the magnetic Weyl semimetal Co₃Sn₂S₂

Kevin Geishendorf, IFW Dresden, Institute for Metallic Materials

Leibniz Institute for Solid State and Materials Research Dresden

Acknowledgments

M. Lammel A. Pöhl A. Thomas K. Nielsch

R. SchlitzH. ReichlovaS.T.B. Goennenwein

P. Vir C. Shekhar C. Felser

Berry curvature and anomalous velocity

• correction to Bloch electron group velocity:

$$\dot{x_c} = \frac{\partial \epsilon}{\hbar \partial \vec{k}} + \left[\frac{e}{\hbar} \vec{E} \times \vec{\Omega} \right] \longrightarrow \text{ anomalous velocity}$$

• anomalous Hall conductivity :

$$\sigma_{\rm AH}^{\rm int} = -\frac{e^2}{\hbar} \sum_n \int \frac{d\vec{k}}{(2\pi)^3} f_{n,\vec{k}} \Omega_z(n,\vec{k}) \longrightarrow \text{Berry curvature contribution}$$

• Weyl points and nodal lines are accompanied by large Berry curvature

Kagome (ferro)magnet Co₃Sn₂S₂

- Co Kagome lattices stacked along *c*-direction
- Magnetic ordering at 175 K
- Easy axis along *c*-direction

Kassem, M. A. et al. (2016). *Journal of the Physical Society of Japan, 85* (6), 064706–7. Liu, E. et al. (2018). *Nature Physics, 14* (11),

Band structure of $Co_3Sn_2S_2$

- majority-spin bands cross Fermi energy
- minority-spin bands are gaped with 0.35eV
- two band crossings between U L and L Γ
- SOC opens gap → splitting of nodal line

Berry curvature distribution in Co₃Sn₂S₂

$$\sigma_{\rm AH}^{\rm int} = -\frac{e^2}{\hbar} \sum_n \int \frac{d\vec{k}}{(2\pi)^3} f_{n,\vec{k}} \ \Omega_z(n,\vec{k})$$

 Iarge intrinsic anomalous Hall conductivity for Co₃Sn₂S₂ expected (100 Ω⁻¹mm⁻¹)

 \sim

6

$Co_3Sn_2S_2$ microstructures

Anomalous Hall effect

 $\begin{array}{c} 0.6 \\ 0.3 \\ (\text{Eg}) \\ 0.0 \\ -0.3 \\ -0.6 \\ 110 \\ 110 \\ -5 \\ 0 \\ \mu_0 \text{H} (\text{T}) \end{array}$

extracted anomalous Hall resistivity:

- linear extrapolation to extract anomalous contribution
- anomalous Hall odd with external magnetic field:

$$\rho_{\rm yx}^{\rm A} = \frac{\rho_{\rm yx}^{\rm A}(B) - \rho_{\rm yx}^{\rm A}(-B)}{2}$$

Hall sweeps:

Geishendorf, K. et al. (2019). Applied Physics Letters, 114 (9), 092403-6.

Anomalous Hall conductivity

Anomalous Hall angle in Co₃Sn₂S₂:

Geishendorf, K. et al. (2019). *Applied Physics Letters*, *114* (9), 092403–6. Liu, E. et al. (2018). *Nature Physics*, *14* (11),

Anomalous Hall and Nernst effect

different weighing functions w_i for AHC and ANC:

→ different states visible in AHC and ANC measurements

Thermomagnetic transport

non isothermal conditions:

$$\vec{J} = \boldsymbol{\sigma}\vec{E} + \boldsymbol{\alpha}(-\nabla\vec{T})$$

∘ open circuit:

$$\vec{E} = \boldsymbol{\sigma^{-1}} \boldsymbol{\alpha} (\nabla \vec{T})$$

 \circ Seebeck tensor: $S=\sigma^{-1}lpha$

temperature gradient evaluation:

therm. resistance (Ω) 10.0 2.2 2.0 🔶 therm. 1 therm. 1 (Gm) 1.0 M 0.5 ← therm. 2 - therm. 2 0.0 200 100 300 20 40 0 0 base temperature (K) heater power (mW) $\nabla T_{\rm x} = (T_1 - T_2)/l_{\rm T}$

longitudinal Seebeck coefficient

Anomalous Nernst effect

anomalous Nernst sweeps:

extracted anomalous Hall resistivity:

anomalous Nernst coefficient S^A_{yx} (μV/K) -2 -3 avg. temperature (K)

> Significantly different temperature dependence?

AHE and ANE in $Ga_{1-x}Mn_xAs$

Relate 4 thermomagnetic transport coefficients with 2 parameters

Anomalous Nernst Conductivity

14

Mott relation

Summary Co₃Sn₂S₂

- successful fabrication of single crystalline microstructures of Co₃Sn₂S₂
- access to galvano- and thermomagnetic transport coefficients

• experimental observation of large AHC governed by Berry curvature contribution

 additional contribution to anomalous Nernst effect possibly by magnetic fluctuations near T_c

Thank you for your attention

Supplementary Information Co₃Sn₂S₂ I

3

Supplementary Information Co₃Sn₂S₂ II

magnetoseebeck (MS):

300 K > T > 140 K:

- larger magnitude of MS
- similar curve shape

140 K > T > 10 K:

- sign change to positive MS & MR
- second sign change to negative MS at low temperatures

magnetoresistance (MR) at similar temperatures:

19

Supplementary Information Co₃Sn₂S₂ III

 \wedge

Title Text

.....

.....

$$\rho_{\rm yx}^{\rm A} = \frac{\rho_{\rm yx}^{\rm A}(B) - \rho_{\rm yx}^{\rm A}(-B)}{2}$$

$$\sigma_{\rm xx} = \frac{\rho_{\rm xx}}{\rho_{\rm xx}^2 + \rho_{\rm yx}^2}$$

 $\sigma_{\rm xy}^{\rm A} \propto \sigma_{\rm xx}^0 = {\rm constant}$

$$\sigma_{\rm xy} = \frac{\rho_{\rm yx}}{\rho_{\rm xx}^2 + \rho_{\rm yx}^2}$$

•••••••••••••••••••••••••••